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Abstract
Inserting proper punctuation marks and deleting speech disflu-
encies are two of the most essential tasks in spoken language
processing. This challenging task has prompted extensive re-
search using various techniques, such as conditional random
fields. Neural networks, however, are relatively under-explored
for this task.

Combining different modeling techniques with different ad-
vantages has the potential to lead to improvements. In this work,
we first establish the performance of joint modeling of punctua-
tion prediction and disfluency detection using neural networks.
We then combine a conditional random fields based model and
a neural networks based model log-linearly, and show that the
combined approach outperforms both individual models, by
2.7% and 3.5% in F-score for speech disfluency and punctua-
tion detection, respectively. When used as a preprocessing step
to machine translation this also results in an improved transla-
tion quality of 2.5 BLEU points compared to the baseline and
of 0.6 BLEU points compared to the non-combined model.
Index Terms: speech disfluency detection, punctuation inser-
tion, speech translation

1. Introduction
Processing of spontaneous language poses a great number of
challenges in natural language processing (NLP) tasks, due
to its distinctive characteristics compared to written language.
While written language generally consists of well-formed,
grammatically correct sentences, spontaneous speech very of-
ten contains disfluencies. Also, unlike text written by humans,
conventional automatic speech recognition (ASR) systems do
not provide reliable sentence boundaries and proper punctua-
tion marks in their outputs.

These differences can negatively impact the performance of
subsequent applications, such as machine translation (MT) sys-
tems. Most conventional MT systems are trained using written
texts. When we deploy MT systems for spoken language, there
is a mismatch between the training data and the output of the
ASR system which is recognizing the spontaneous speech. As
well as degrading the translation quality [1, 2], speech disflu-
encies and the lack of proper punctuation marks, greatly reduce
the readability when presenting the recognition of spontaneous
speech to users.

Conditional random fields (CRF) and neural networks (NN)
have been used extensively for various NLP tasks, showing dif-
ferent advantages. CRFs are successfully used in sequence la-
beling tasks, due to their ability to model first order dependen-
cies. NNs, on the other hand, have proven themselves to be
very useful at classification tasks such as character recognition

[3] and are therefore a sound choice for NLP tasks of this nature.
The different strengths and weaknesses of both CRF models and
NN models suggest that they can complement each other when
jointly applied to the task of detecting punctuation and disflu-
encies in spontaneous speech. Despite the potential advantages
they can offer when applied together, combining the two model-
ing techniques for punctuation and disfluency detection has not
been investigated yet.

In this work, we present a punctuation and disfluency detec-
tion scheme using a combination of both CRF and NN models.
We propose an NN designed to exploit the above mentioned
synergistic effects by jointly modeling both punctuation and
disfluencies in a single network with multiple parallel output
layers. One output layer is devoted to detecting speech disflu-
encies while the other output layer is concerned with predicting
punctuation marks. The CRF also models punctuation and dis-
fluency detection using two output labels, where the first label
covers disfluency and the second one punctuation marks. The
predictions of the models are extracted in probabilities and used
as features in a log-linear combination.

2. Related Work
In [4] the authors investigated three different methodologies of
inserting punctuation marks within a given sentence boundary
on TED talks1 using a monolingual translation system. This
is later extended in [5] so that the monolingual translation sys-
tem can also detect sentence boundaries in lecture data. Their
results demonstrated that inserting punctuation marks using an-
other MT system is a promising way to improve the MT perfor-
mance of ASR output. Fitzgerald et al. [6] applied a CRF-based
disfluency detection model using lexical, language model (LM),
and parser features.

In [7] the authors presented an extensive study on various
methods of combining punctuation prediction and disfluency
removal for telephone speech data. Their results demonstrate
clearly that both problems influence each other. The soft cas-
cade system, where the decision label of the first prediction is
embedded as a feature of the second step, outperforms the hard
cascade approach where the second step is only performed on
the output of the first step.

The impact of segmentation and disfluency removal on
translation of conversational speech is investigated in [8]. They
separated the process into several steps. First they use a CRF
model to detect sentence units. Based on these units they detect
speech disfluencies, which are divided into two categories. Af-
ter the simple disfluency is modeled using a CRF model, they
use another CRF classifier to insert punctuation marks followed

1http://www.ted.com
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by a knowledge-based parser in order to remove more compli-
cated disfluencies.

Recently authors in [9] applied different segmentation and
punctuation insertion schemes along with CRF-based disflu-
ency detection on meeting data and translated the output in
order to evaluate the performance in terms of BLEU [10]. In
one system, they jointly modeled punctuation and disfluency
using a CRF model, which improved the baseline by around 2
BLEU points. This performance, however, is around 0.5 BLEU
points lower than their best system, where speech disfluency
is modeled using a CRF model and punctuation mark insertion
is modeled separately using their monolingual translation sys-
tem. They attribute the performance drop to the limited amount
of data for CRF modeling. Only disfluency annotated meeting
data was used for the joint training while the monolingual trans-
lation system was trained on a larger data set.

3. Data
We chose to conduct our experiments on a set of transcribed En-
glish meetings and lectures introduced in [9]. Speech disfluen-
cies are annotated with disfluency labels by human-annotators
and grouped into five disfluency classes. The first class, FL,
represents filler words, such as “uh” or “uhm”, and discourse
markers, e.g. “you know” and “like”. The next class, RC, cov-
ers repetitions which can be either exact copies of utterances or
simply a rough copy of them. In spontaneous speech a speaker
may change her mind on what she wants to say or how she wants
to express herself, leading to unfinished or partial sentences.
These corrected parts are assigned the class NC. The last dis-
fluency class, IR, is used for interruptions. In conversational
speech, especially in multi-party meetings, there is a great deal
of communication between different speakers. When a speaker
is interrupted she may not be able to finish her sentence causing
partial segments.

Words are grouped into four classes, Period, Comma,
QuMark and none based on punctuation marks directly fol-
lowing them. The punctuation class Period is used for pe-
riods and exclamation marks. The class Comma only contains
commas, while the class QuMark is used for question marks.
Detailed statistics of the data is shown in Table 1. The class
none represents the token which is not followed by a punctua-
tion mark.

The training data set consists of both lectures and meet-
ing data while the validation and test sets are made up of only
meeting data. Compared to the lecture data the sentences in the
meeting data tend to be shorter. They therefore on average con-
tain fewer commas per sentence but more sentence boundary
punctuation marks. The meeting data uses 5 meeting sessions

Train Valid Test
All tokens 142,789 8,466 14,855

Disf.

FL 7,447 674 999
RC 4,743 450 1,017
NC 2,634 146 330
IR 1,361 250 860

clean 126,604 6,946 11,649

Punct.

Period 7,809 485 1,621
Comma 10,181 388 963
QuMark 905 117 190
none 123,894 7,476 12,081

Table 1: Data statistics.

with 5 to 12 speakers per session and the lecture data consists
of 26 lectures each given by a single lecturer. The test data is
manually translated into French, and used to evaluate the per-
formance and effect of punctuation prediction and disfluency
detection in MT.

Apart from the annotated data, we use 400K words of un-
annotated meeting data for pretraining the NN models, which
we describe in 4.2. The un-annotated data has a format similar
to that of the meeting data part of the training data.

4. Model
4.1. Features

The same set of features is used for both CRF and NN training
in order to make them comparable. Inspired by [11], we use lex-
ical and LM features. Our lexical features include the current
and adjacent words/part-of-speech (POS) tokens in a 20 word
window and their patterns. For NN training, we use the vec-
tor representation of each word as in [12]. Using the k-means
algorithm words are also clustered into 100 clusters based on
their vector value. Analogue to the features introduced in [2],
we use the phrase table from an MT system to check the poten-
tial translations of each word. The LM features contain unigram
and 4-gram scores as well as their ratios. Information about seg-
ment boundaries induced by speaker changes is also included as
an additional feature.

4.2. Conditional Random Fields

As a framework dedicated to labeling sequence data, CRFs
show good performance in diverse tasks of NLP, including sen-
tence segmentation [13], POS tagging [14] and shallow pars-
ing [15]. Our disfluency detection and punctuation insertion
model can be also modeled as a sequence labeling task, where
each word is labeled into different disfluency and punctuation
classes.

In this work we use the linear chain CRF modeling tech-
nique implemented in GRMM package [16]. As there are two
output labels for each token, one for disfluency and another for
punctuation, we use one linear chain edge across disfluency la-
bels, another one across punctuation labels, and another for the
in-between edges. The model is trained using L-BFGS, with
default parameters.

4.3. Neural Networks

Many other NLP problems like language modeling [17] have
been successfully addressed using NN due to their good clas-
sification ability. Two broad categories of NN are used for se-
quence modeling, recurrent neural networks [18, 19] where a
hidden layer depends on the previous token’s hidden layer and
the feature of the current token to predict its label and feed for-
ward neural networks [20, 21] which have a fixed input context.

Due to its shorter training time we use a five layer feed-
forward NN in this paper. It is trained to jointly predict both the
punctuation and disfluency labels. As can be seen in Figure 1
the input consists of a 907 dimensional feature vector encoding
the features described in Section 4.1, followed by three hidden
layers containing 500 neurons each, and two parallel output lay-
ers. The hidden layers use the sigmoid activation function and
the output layers use the softmax activation function. The paral-
lel output layers are devised for the joint detection of disfluency
and punctuation marks. Each output layer is considered to be a
separate softmax group which results in the network generating
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Figure 1: Proposed joint punctuation and disfluency prediction
neural network.

a separate probability distribution for punctuation and disflu-
ency labels.

The network is pretrained layer-wise using denoising auto-
encoders [22] which enable us to also make use of the 400K
unannotated examples as well as the 140k labeled examples.
After pretraining the network is fine-tuned using mini-batch
gradiant decent. Pretraining and fine-tuning were implemented
using Theano [23].

5. Log-linear Combination
In MT, combining different translation models and LMs log-
linearly in a decoder can greatly improve the translation quality
[24]. The individual models are encoded as separate features
and weighted using interpolation coefficients optimized on a
validation set. Inspired by this, we combine our CRF based
punctuation and disfluency prediction with our NN based one
log-linearly using a label LM. For this task, we perform the
search for the best label sequence as well as the optimization of
the log-linear weights using an MT decoder [25].

For a given word sequence w = w1 . . . wn we wish to find
the best sequence of punctuation and disfluency labels (p, d) =
(p1, d1) . . . (pn, dn):

argmax
(p,d)

m∑
i=1

λi · fi(w, p, d) (1)

where m is the number of features and

pi ∈ {Period,Comma,QuMark,none}
di ∈ {FL,RC,NC,IR,clean}.

We define input features from the two models (M ∈
{CRF,NN}) for each of the punctuation labels by:

fM
p̂ =

n∑
j=1

δp̂,pj · logPM (pj |w) (2)

and for each of the disfluency labels by:

fM
d̂ =

n∑
j=1

δd̂,dj · logPM (dj |w) (3)

The final input feature is derived from a 9-gram LM trained
on the output labels of the training data. The LM is built using
the SRILM Toolkit [26].

This formulation of the problem not only allows us to find
the optimal label sequence, it can also be easily extended to
incorporate further models.

6. Experimental Setup
6.1. MT System Description

The English-to-French translation system is built on 2.3 mil-
lion parallel sentences. The training data includes written-style
data such as the European Parliament data and the News Corpus
data. It also includes a spoken-style data such as TED, which is
used as in-domain data on which the models are adapted. Man-
ual transcripts of some of the TED data are used as development
data for the MT system.

We use a 4-gram LM built with the SRILM Toolkit as well
as a bilingual LM [27] in order to extend source word context.
For the optimization, we use the minimum error rate training
(MERT) [28] in the phrase-based decoder [25]. The translation
results are reported using case-insensitive BLEU.

6.2. Results

Our first experiment measures the quality of disfluency detec-
tion and punctuation insertion using precision, recall and the
standard F-score metric. The scores presented in Table 2 mea-
sure whether a word was labeled as one of the disfluency classes
or not. The results of the individual CRF and NN models, which
are found in the first two rows of the table, show that the CRF
model detects more disfluencies and therefore has a better recall
performance. On the other hand, the NN model outperforms it
on precision leading to fewer false detections. Their log-linear
combination improves the F-score by 2.7% and seems to strike
a balance between precision and recall.

System F-score Precision Recall
CRF 53.90 68.83 44.29
NN 49.31 81.08 35.43
Log-lin. comb. 56.56 72.77 46.26

Table 2: Overview of the disfluency removal F-scores for our
systems.

Similarly, the evaluation of our models’ punctuation pre-
diction capabilities show that while the NN model is the most
precise at detecting punctuation marks, it is more conservative,
and therefore has a lower recall than the CRF model. As can
be seen in Table 3, we achieve our best performance on both F-
score and recall when the models are combined. Both metrics
are noticeably improved by the combination, F-score by 3.5%
and recall by 5.5%.

System F-score Precision Recall
CRF 58.22 60.23 56.34
NN 52.82 65.31 44.35
Log-lin. comb. 61.76 61.64 61.87

Table 3: Comparison of our CRF, NN and combined systems
for punctuation prediction measured in F-score.

In order to evaluate not only the raw detection accuracy,
but also its impact on an MT system, we use the punctuation-
predicted, disfluency-removed test data as input data for the MT
system described in Section 6.1. It is evaluated against a hu-
man translation of the oracle text where all annotated disfluent
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words were removed and reference punctuation marks are in-
serted. Table 4 shows the results. In order to ensure a fair com-
parison, we use consistent segments for translation and evalua-
tion in all tests; they span all tokens between speaker changes.
In the baseline system, all disfluent words are kept and only just
prior to the speaker change is a single sentence ending period in-
serted. The test data generated by our systems and the reference
may also contain punctuation marks within these segments. A
trivial rule-based disfluency removal system that only removes
simple filler words such as uh or uhm is also listed in order to
demonstrate the additional capabilities of our models.

System BLEU
Baseline 14.42
+ No uh 14.94
CRF 16.32
NN 16.18
Log-lin. comb. 16.93
Oracle 22.76

Table 4: Translation scores after disfluency removal and punc-
tuation insertion using various systems, measured in BLEU.

Removing disfluent words and inserting punctuation marks
using only the CRF model improves the translation quality of
the baseline system by 1.90 BLEU points. This approach also
compares favorably to our trivial system, beating it by around
1.38 BLEU points. The NN model outperforms the trivial rule-
based system by 1.24 BLEU points. Using both models in a
decoder results in our best score of 16.93 BLEU, which beats
the baseline system by 2.51 BLEU points and the CRF-based
system by 0.61 BLEU points.

6.3. Analysis

The synergistic effect of the log-linear combination is presented
in Table 5. The raw input contains a repetition, marked in bold
letters, and is missing proper punctuation marks. In the manu-
ally cleaned version of this excerpt, the repeated part is removed
and punctuation marks are inserted, which makes it notably eas-
ier to understand. The CRF model was able to successfully de-
tect the repetition in the first segment. In the second segment
however, it deletes too much, leading to the ungrammatical sen-
tence “for what are these recordings for”. This false labeling
of disfluencies is probably due to the repetitive nature of that
segment. The CRF also fails to insert any sentence boundaries.
Although the NN based model was unable to remove the repet-
itive part in the first segment, it correctly detected the sentence
boundary after the first segment.

Using the combined model we were able to remove the
speech disfluency detected by the CRF model while at the same
time inserting the correct sentence boundaries. This shows that
even when the two separated models perform imperfectly, we
can benefit from their synergistic effects. It is also notable that
while the location of the sentence boundaries was correctly pre-
dicted by the NN it predicted the wrong punctuation class. In
the model combination though both the location of the sentence
boundaries and the fact that they were question marks were cor-
rect. It suggests that combining the models provides an oppor-
tunity to optimize on relative importance of the features.

Table 6 shows another impressive impact of the combined
model on a very disfluent segment. Speech disfluencies accord-
ing to the annotators are marked in bold letters. Although the
result of the combined model does not match disfluency and

Raw input
do you use do you have digits as a class
what are these for what are these recordings
for

Manually
cleaned

Do you have digits as a class?
What are these for? What are these record-
ings for?

CRF do you have digits as a class
for what are these recordings for

NN do you use do you have digits as a class.
What are these for what these recordings for

Log-lin.
comb.

do you have digits as a class?
What are these for? What are these record-
ings for

Table 5: Excerpt from the test data showing how the CRF and
NN models complement each other.

Raw input yeah you you mean this okay right right
good yeah it’s an at sign

Manually
cleaned

Yeah. You mean this. Okay. Good. It’s an
at sign.

CRF yeah, this okay right, right good yeah, it’s
an at sign.

NN yeah, you mean this okay, right, right
good, yeah, it’s an at sign.

Log-lin.
comb.

yeah, this okay, right? Good, yeah, it’s an
at sign.

Table 6: Excerpt demonstrating the improved readability of the
combined model despite a prediction that is very dissimilar to
manually cleaned text.

punctuation marks of the annotation, thereby lowering the F-
score, its readability is comparable to the annotated sentence.

7. Conclusion
In this paper we showed that multiple models with complemen-
tary advantages can be combined in order to improve the perfor-
mance of joint disfluency and punctuation labeling. We present
both CRF based and NN based models and explain how they can
be combined in a log-linear decoder, in order to achieve better
performance. Both models and their combination are tested on
conventional meeting data and intrinsically evaluated with F-
score as well as extrinsically by using them as a precursory step
to an MT system.

The results demonstrate that our combination outperforms
the two individual models on both F-score and BLEU. Com-
pared to the best single model it boosts the disfluency detec-
tion F-score by 2.7% and the punctuation prediction F-score by
3.5%. While both the CRF and NN models improve the trans-
lation quality of the baseline system by 1.90 and 1.76 BLEU
points respectively, the combined approach gives us an im-
provement of 2.51 BLEU points.

An analysis of our proposed model indicates that these im-
provements stem from synergies between the models. We go on
to show that it can also noticeably increase the readability of the
spoken language input even when the model’s output does not
conform to the human annotation.

In future work, we would like to include further models
into our combination and apply it to other genres and to other
languages.
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