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Abstract
This paper presents and examines multifeature modular deep
neural network acoustic models. The proposed setup uses
well trained bottleneck networks to extract features from
multiple combinations of input features and combines them
using a classification deep neural network (DNN).

The effectiveness of each feature combination is eval-
uated empirically on multiple test sets for both a classical
DNN as well as a for modular DNNs using only a single
module. Modular DNNs using two or more modules are
shown to reduce the WER by up to 11.5% relatively com-
pared to a baseline DNN and give the best overall perfor-
mance on both test sets.

1. Introduction
The first step in speech recognition is to extract a stream of
feature vectors form the audio. Although many of these so
called front-ends are fundamentally similar and equally use-
ful, they are still, to some extent, complementary and the
outputs of ASR systems trained separately on different front-
ends can be combined in such a manner that the combined
output contains fewer transcription errors than either of the
individual outputs [1, 2]. While very useful, this high level
combination method has the disadvantage of requiring mul-
tiple ASR systems to be run in parallel.

In this paper an alternative approach is proposed that uses
modular deep neural networks (mDNNs [3]) to combine the
features in a single acoustic model. An mDNN can be seen
as an extension of a time-delay neural network (TDNN) [4].
TDNNs are designed to be time invariant and work on se-
quences of feature vectors. As well as the current feature
vector xt the neurons of the first hidden layer are also con-
nected to a few of the preceding feature vectors xt−1xt−2, ....
The time-delay procedure is applied at the transition from the
first hidden layer to the second hidden layer. The neurons of
the second hidden layer also possess connections to the first
hidden layer’s outputs at the preceding steps.

While both TDNNs [5] and CNNs [6, 7] may have many
time-delayed or convolutional layers these layers are nor-
mally directly connected to their preceding layers. Modular
DNNs on the other hand use well trained deep neural net-
works to connect the input layer to the time-delayed layer.

As these network modules are trained as bottleneck features
(BNF) [8] we refer to this layer as the bottleneck layer. In
this paper we show how using multiple features as inputs to
the BNF modules can improve the performance of an mDNN
and go on to experiment with using an mDNN to combine
multiple different BNF modules.

This paper is structured as follows: after an overview of
the relevant related work in section 2 a multifeature DNN
AM is introduced as well as all the features used throughout
this paper. This is followed in section 3 by a description of
the proposed multifeature DNN. Section 5 explains how the
neural networks are evaluated the presents and results after
which section 6 concludes the paper with a short summary.

2. Related Work

A method of using BNFs to combine multiple feature streams
proposed in [9], shows that combining MFCC, PLP and gam-
matone features in the input layer of an MLP can lead to a
system that performs better than the system combination of
the lattices of the individual systems. The MLP using the
combined input feature also outperforms the best single fea-
ture MLP by a small amount. In contrast to this work they,
however, only look at shallow networks. Instead the authers
later focus on integrating the multiple features into a shal-
low RNN [10] trained to classify the phone targets. Stacking
MFCCs and MVDRs (Minimum Variance Distortionless Re-
sponse) at the input of a DNN was also found to be help-
ful in bottleneck feature extraction for German Broadcast
News [11] as well as for the NIST 2013 OpenKWS evalu-
ation [12].

In [13] various tonal models and methods of integrating
tonal features are analyzed on both tonal and non tonal lan-
guages. That work reports, for the first time, results of us-
ing fundamental frequency variation [14] features for speech
recognition of tonal languages and finds that early integrat-
ing tonal features consistently leads to a reduction in WER
even on non-tonal languages.

A version of the modular DNN designed for low resource
languages is discussed in [3] and modified to make use of
language resources outside of the target language [15].
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Figure 1: An example of a deep neural network with 4 hid-
den layers and an output layer with corresponding CD phone
states. Its input is a 2s+1 frame window containing both
MFCC and MVDR features.

3. Multifeature Deep Neural Network
Accoustic Models

Multifeature DNN-AMs are feed forward neural networks
that merge multiple different input feature in the input layer
of the neural network. An example DNN AM is shown in fig-
ure 1. It has an input layer that uses stacked MVDR+MFCC
features in a window spanning from s frames prior to the cur-
rent frame to s frames after the current time frame, followed
by four hidden layers that use the sigmoid activation function
and a softmax output layer where the neurons correspond to
the context dependent phone states. The example contains
two of the four different input feature used in this paper:

• Mel Frequency Cepstral Coefficients (MFCC):
MFCCs have established themselves as the most com-
mon front-end feature in speech recognition. They are
computed by applying a discrete cosine transformation
to log Mel features.

• Minimum Variance Distortionless Response
(MVDR) Spectrum: MVDR [16] features are an
improvment on basic linear prediction features [17].
In some circumstances warped Minimum Variance
Distortionless Response (MVDR) features for speech
recognition have been shown to be better than MFCC
features.

The other two features used in this paper are:

• Log-MEL Features (lMEL): Motivated by the phys-
iology of human hearing, the mel scale developed by
[18] is applied after performing a short-time Fourier
transformation of the audio. In large DNN AMs lMEL
features tend to outperform MFCC.
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Figure 2: An example DBNF with 4 hidden layers prior to
the bottleneck layer

• Tonal Features: The tonal features used are a com-
bination of Kjell Schubert’s [19] pitch based features
and Laskowski’s [14] FFV features. Tonal features are
not suitable as stand-alone features and are only used
to augment the other features.

4. Multifeature Modular Deep Neural
Network Accoustic Models (mDNN-AMs)

In this section the proposed modular deep neural network
acoustic model is introduced. Feed forward DNN AM such
as the one depicted in figure 1 have been analyzed and ex-
amined by many authors [20, 21]. Both their observations
and ours indicate that the addition of further hidden layers
does not result in any noticeable improvement for DNNs af-
ter about 5-8 layers. One possible explanation is that the
lower layers are being poorly trained because the gradient
decreases with each layer it is passed back though. In order
to solve this problem the mDNN-AMs use a well trained bot-
tleneck feature (BNF) module as the basis for the DNN-AM.

4.1. Multifeature Bottleneck Feature (BNF) Modules

In an MLP the outputs of a given layer can be thought of as
an alternative representation of the input feature vector. A
small hidden layer in the middle of an MLP will, therefore,
provide compact alternative features, with the number of co-
efficients being controlled by the number of neurons in the
hidden layer.

An example of such a network with 4 hidden layers prior
to the bottleneck layer is given in Figure 2. Bottleneck fea-
tures are discriminatingly trained using context dependent
subphone states as targets. After training all the layers fol-
lowing the bottleneck are discarded. In a classic GMM sys-
tem BNFs are typically used to transform the input feature
stream into a stream of bottleneck features which are then
stacked over a temporal window. An LDA or PCA is then
used to reduce the dimension back to the desired input size
for the GMM.



Multifeature-BNFs concatenate multiple different fea-
tures into a single large input vector. Using combinations
of the features described in section 3 seven different BNF
modules are analyzed in this paper.

4.2. mDNN Topology

An example modular DNN (mDNN) AM using
MVDR+MFCC features is shown in figure 3. Two
features (MFCC & MVDR) are extracted at each frame and
used together with their neighbours in a stack as the inputs
to a BNF network.

The final layers of a modular DNN-AM are same as the
final layers in a normal DNN-AM. Instead of a normal input
layer the modular DNN-AM has a bottleneck layer which
consists of stacked BNF frames from an already fine-tuned
BNF network. We refer to those final layers as the classifica-
tion module (or DNN-module) and after integration the BNF
network is referred to as the BNF module. If the classifica-
tion module has an input context of 2r + 1 (r-BNF frames
before and after the current frame) and the BNF module has
a input context of 2s + 1 then the total network requires an
input context of 2(r + s) + 1 frames. For the BNF frame
at t − i the input frames from t − i − s to t − i + s have
to be stacked and used as the input to the BNF-module. The
BNF-module is applied 2r + 1 times to generate each of the
2r + 1 BNF frames in the BNF layer.

4.3. Weight Tying

During fine tuning the weights of the BNF-module are tied.
Errors can be propagated back past the BNF-layer into all
applications. Weight tying allows the modular DNN-AM to
continue on using a single BNF-module. Its weights are up-
dated using the average update:

∆wj =

2r+1∑
k=1

∆wk
j (1)

such that a single BNF-module learns to produce BNFs that
can be used in any part of a stack BNF layer.

4.4. Integration

Although the total computation cost for a single frame is very
high, the BNF frames can be cached and reused for the next
frame. At frame t the DNN-module of the example mDNN
in figure 3 requires the output of the BNF-module for 2r + 1
different inputs from t−r to t+r. For frame t−1 it requires
outputs from the BNF-module for the inputs from t − 1 − r
to t− 1 + r. So with the exception of the output of the BNF-
module at t + r all of the required outputs for frame t have
already been produced and cached.

The BNF-module is simply used to convert a stream (or
multiple streams) of input features into a stream of BNF fea-
tures which are then used as the input stream for the DNN-
module. In an offline setting the stream of input feature vec-
tors from an utterance forms a matrix and the BNF-module

converts this matrix into a matrix where the columns are
BNFs.

Because it is faster to perform a single matrix times ma-
trix operation using a fast BLAS (Basic Linear Algebra Sub-
programs) library than it is to perform many vector times ma-
trix operations, it makes sense to compute the first hidden
layer for all features at the same time. So in an mDNN, if T
features are extracted from the audio of an utterance they are
first transformed into T activations of the first hidden layer of
the BNF-module, then to T activations of the 2nd, 3rd and so
on hidden layers and then to T bottleneck features followed
by T activations of the first hidden layer of the DNN-module.
After transitioning though all the hidden layers the T proba-
bility distributions over the cd-phone states are all produced
at the same time.

If T features are extracted from the utterance then com-
puting the BNF at frames t = T or t = 1 could be problem-
atic since these frames require information about the features
at t = T + r or t = −r. To solve this every requested fea-
ture vector prior to the first one is set to the value of the first
feature and the final feature vector is used for every feature
that could follow it. The same out of bounds rule is applied
when the BNFs are used as an input to the DNN-module of
the mDNN.

4.5. Modular DNNs with multiple BNF-modules

The modular DNN is not restricted to a single BNF-module
and can use multiple BNF-modules at the same time. Fig-
ure 4 shows an example mDNN with two 4 layer BNF-
modules. The upper BNF-module uses MFCC features as
its input and the lower BNF-module uses MVDR features as
its input. Although both networks in this example have an
input window of 2s+ 1 frames they could, if it were desired,
have different sized input windows and they could also have a
differing number of hidden layers. The outputs of both mod-
ule’s BNF layers are concatenated and stacked over a 2r + 1
window.

5. Experimental Evaluation
All experiments are performed on both the German 2010
Quaero evaluation set (eval2012 [22]) which contains 3 hours
and 34 minutes of broadcast news and conversational speech
as well as on the 2 hour German IWSLT 2012 development
set (dev2012 [23]) that contains TED talks. The results of the
systems are measured using WER and reported with an ac-
curacy of two decimal places for the larger eval2012 test set
and with an accuracy of a single decimal place for smaller
dev2012 test set on which differences smaller than 0.1%
would not be statically significant. Statical significance is
measured using McNemer’s test of significance.

5.1. Speech Recognition System

The decoding and GMM AM training uses the Janus Recog-
nition Tool-kit (JRTk) with the Ibis single pass decoder [24].
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Figure 3: An example mDNN with 4 hidden layers in the BNF-module and 4 hidden layers in the DNN-module. The input of the
DNN-module requires 2r+ 1 outputs of the BNF-module at different frames. The BNF-module uses a 2s+ 1 frame window as its
input so the whole mDNN network requires 2(s + r) + 1 input features which in the example are a concatenation of both MVDR
and MFCC features.

The JrTk [24] is extended with a DNN AM object that imple-
ments the same interface to the Ibis decoder as the existing
GMM AM. A diverse range of topologies are supported by
allowing their computation to be controlled by a tcl script.
All acoustic models use a left to right HMM without skip
states where each of the 46 normal phonemes have three
HMM states and the silence phoneme has only a single state.
The cluster tree is built with 6016 leaves.

5.2. Neural Network Training

Each neural network is pretrained layerwise using denoising
autoencoders with a 20% corruption and a constant learning
rate for 2 million mini batches. After pretraining the final
layer is added, with the output layer using the softmax acti-
vation function. The full DNN is then fine-tuned using the
newbob learning rate schedule. All training is performed us-
ing Theano[25].

5.3. Analysis of Multifeature DNNs

Since tonal features can only be used as augmented features
and not as individual feature the following combination of
input feature were tested:

• Single feature: MFCC, MVDR, lMEL

• 2 features: MFCC+MVDR, lMEL+T1

• 3 features: MFCC+MVDR+T

• 4 features: MFCC+MVDR+lMEL+T

Both the MVDR and MFCC features use 20 coefficients
while the lMEL features have 40 coefficients and are the
same size as the merged MVDR+MFCC feature vector. The
addition of 14 tonal features brings the input sizes up to
54 for both the MVDR+MFCC+T (m2+t) and the lMEL+T

1T=tonal
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Figure 4: An example mDNN with a 4 layer DNN-module built on top of two BNF-modules: a 4 layer MFCC BNF-module and a
4 layer MVDR BNF-module. The input of the DNN-module requires 2r + 1 outputs of both the BNF-modules at different frames.

(lmel+t) networks. The final MVDR+MFCC+T+lMEL
(m3+t) MLP that contains all available features has an input
of 94.

Each feature combination is trained on multiple topolo-
gies that only vary in their size (1200-2000) and number (4-
8) of hidden layers. The reported numbers always use the
best topology for the feature combination.

Combining the MVDR and MFCC input features results
in a network with a significantly (p < 0.005) lower WER
than either of the individual features and on about par with
networks using the lMEL feature that have the same num-
ber of coefficients. The lMEL system is 0.06% better on the
eval2010 test set but 0.2% poorer on the dev2012 test set.
A pattern in the results shown in table 1 can be found that

suggests that input features using more coefficients tend to
perform better. The addition of tonal features always results
in an improvement.

The best results on the eval2010 test set are achieved
by using all input features which is slightly but significantly
(p < 0.005) better than the lmel+t DNNs.

5.4. Evaluation of Multifeature mDNNs

The mDNN topology is evaluated using the same combina-
tions of input features used in the previous experiment and
compared with those results. The BNF-modules used in the
experiment are taken from working GMM systems where the
use of the multifeature deep BNFs were evaluated.



Best normal DNN Modular DNN Comparable CNC
BNF-Module Name Features eval2010 dev2012 eval2010 dev2012 eval2010 dev2012

MFCC mfcc 1 15.88 20.3 15.35 19.5 - -
+MVDR m2 2 15.45 19.9 14.71 19.4 15.55 20.0
+T m2+t 3 14.96 19.8 14.54 19.3 - -
+lMEL m3+t 4 14.72 19.4 14.31 18.9 15.09 19.6
lMEL lmel 1 15.31 20.1 14.72 19.5 - -
+T lmel+t 2 14.77 19.6 14.52 19.0 - -
MVDR mvdr 1 15.58 20.2 14.81 19.5 - -

Table 2: Results of the multifeature mDNNs compared with both normal DNN using the same input feature combinations and
equivalent confusion network combinations. Tested on both the eval2010 and dev2012 test set.

eval2010 dev2012
MFCC 15.88 20.3
+MVDR 15.45 19.9
+T 14.96 19.8
+lMEL 14.72 19.4
lMEL 15.31 20.1
+T 14.77 19.6
MVDR 15.56 20.2

Table 1: Evaluation of DNNs using various combinations of
MFCC, MVDR, T and lMEL input features. Result presented
on the IWSLT dev2012 and Quaero eval2010 test sets.

The DNN-modules are pretrained by first mapping the
input features into the bottleneck feature space and per-
formed by training and stacking denoising autoencoders. Af-
ter pretraining the classification layer is added and the whole
mDNN network is jointly finetuned. The input feature sizes
range from 20 for the mfcc network features to 94 for the
m3+t network. With r, the number of BNF frames before
and after the current frame used as the input to the DNN-
module, set to 7 and each BNF layer containing 42 neurons
the DNN-modules input layer has 630 neuron. All mDNN
networks have the same topology. Both their BNF-modules
and their DNN-modules have 4 hidden layers of 2000 neu-
rons. The whole network, therefore, has 9 hidden layers.

The results of this experiment are shown in table 2. As
a comparison, for each input feature combination its best
result with a normal DNN, regardless of the topology, is
shown in columns of the table. The last column contains
a comparison to a system combination using confusion net-
works performed on the DNN output lattices of single fea-
ture DNNs. The cnc comparison result in line two of table is
a combination of the best MVDR DNN and the best MFCC
DNN and although it is slightly better than both of them it
is outperformed by both the MVDR+MFCC DNN and the
MVDR+MFCC mDNN. The cnc comparable to the m3+t
network is a combination of the MFCC DNN, the MVDR
DNN, and the lmel+t DNN and does not even improve on
the performance of the lmel+t DNN.

For all input feature combinations the mDNN outper-
forms the normal DNN by 0.5% absolute or more on the

dev2012 test set. On the eval2010 test set the improvements
varied from an improvement of 0.25% on the lmel+t features
to over 0.7% on both the MVDR and MVDR+MFCC fea-
tures. The relative usefulness of features is not altered by us-
ing an mDNN. With 19.4% on dev2012 the m3+t DNN has
4.5% relative lower WER than the basic MFCC DNN which
has a WER of 20.3 and a 3.5% lower WER than the lMEL
DNN which is the best single feature DNN. In the modular
case the improvements are slightly less. All single feature
mDNNs have a WER on dev2012 of 19.5% and the m3+t
network has a 3% lower WER at 18.9%. For the single fea-
ture inputs the mDNN results in improvements of 3-4% com-
pared to the normal DNN while the multifeature inputs are
only improved by 2.5-3.5%.

Using only lMEL features as inputs performs as well
as using the combined MVDR+MFCC feature in both the
DNN and the mDNN and on both test sets. The addition of
tonal features boosts the performance of the lMEL DNN and
mDNN more than the MVDR+MFCC DNN and mDNN.

In total the best multifeature mDNN reduces the WER of
a basic MFCC DNN by 7% relative from 20.3% to 18.9%
on the dev2012 test set and by 10% relative from 15.88% to
14.31% on the eval2010 test set. Compared to the best single
feature DNN, lMEL, it still improves the dev2012 test set by
6% and the eval2010 test set by 6.5%.

5.5. Evaluation of mDNNs with multiple BNF-modules

The effectiveness of the mDNN with multiple BNF-modules
is evaluated by training 8 mDNNs with between two and
seven BNF-modules. The results are compared to perform-
ing a CNC on normal DNN networks that use the same input
features and the BNF-modules. The BNF-modules are the
same as in the multifeature mDNN experiment and can them-
selves contain multiple input features. After mapping the
training data into the bottleneck feature spaces of all BNF-
modules used. The DNN-module is pretrained on the merged
BNF features. All other training parameters are the same as
in the previous experiments.

In all cases the mDNN outperformed the confusion net-
work combination of DNN systems using the same input fea-
tures. The best mDNN with multiple BNF-modules m2+t ⊕
lmel+t ⊕ m3+t (⊕ is used to indicate that a combination of



Modular DNN Comparable CNC
BNF-Modules Features Name eval2010 dev2012 eval2010 dev2012

mfcc 1 1 15.35 19.5 - -
⊕ mvdr 2 2 sys01 14.54 19.2 15.55 20.0
⊕ m2 3 2 sys03 14.73 19.3 15.44 19.9
mfcc ⊕ mvdr ⊕ lmel+t 3 4 sys02 14.24 18.7 15.09 19.6
m2+t ⊕ lmel+t 2 4 sys04 14.19 18.8 14.68 19.4
⊕ m3+t 3 4 sys08 14.06 18.7 14.45 19.2
⊕ mfcc ⊕ mvdr 5 4 sys06 14.33 18.9 14.83 19.4
⊕ m2 ⊕ lmel 7 4 sys05 14.44 18.8 14.69 19.4
m2 ⊕ lmel 2 4 sys07 14.34 19.1 15.07 19.8

Table 3: Comparison of mDNNs using multiple BNF-modules with confusion network combinations of normal DNNs using the
same input features. The ⊕ is used to indicate that multiple BNF-modules are combined in a single mDNN.

BNF-modules) improves the best single module mDNN by
0.2% from a WER 18.9% to 18.7% on the dev2012 test set
and by 0.25% from 4.31% to 14.06% on the eval2010 test
set. Using McNemar’s significance test this is found to be
significant at p < 0.005. The overview of the results given in
table 3 begins with a single BNF-module mDNN using mfcc
input features that achieves a WER of 15.35% on eval2010
and 19.5% on dev2012. The next entry augments that mDNN
with an MVDR BNF-module and improves dev2012 by
0.3% to 19.2% and eval by 0.81% from 15.35% to 14.54%.
The further addition of the MVDR+MFCC BNF-module de-
graded the dev2012 test set to 19.3% and the eval2010 test
set to 14.73%. If instead of the MVDR+MFCC BNF-module
the lmel+t BNF-module is added to the mfcc ⊕ mvdr mDNN
then it is further improved to 14.24% on eval2010 and 18.7%
on dev2012.

The best mDNN with two BNF-modules is the m2+t ⊕
lmel+t mDNN which has a WER of 14.19% on eval2010 and
18.8% on dev2012. The addition of an m3+t BNF-module
improves it slightly by 0.13% to 14.06% on the eval2010 test
set and by 0.1% to 18.7% on the dev2012. The further inclu-
sion of both the MVDR BNF-module and the MFCC BNF-
module slightly increases the WER on both sets. Increasing
the number of BNF-modules to 7 by also including the m2
and lmel BNF-modules into the mDNN results in another
slight increase in WER.

The usefulness of tonal features can be clearly seen by
comparing the m2 ⊕ lmel mDNN to the m2+t ⊕ lmel+t DNN
which add tonal features to the input to both of the BNF-
modules. They are able to improve the dev2012 test set by
0.3% and the eval2010 test set by 0.15%.

Using an mDNN with multiple BNF-modules increases
the mDNNs overall improvement compared to an MFCC-
DNN by 8% relative on the dev2012 test and by 11.5% on
the eval2010 test set. Compared to an lMEL DNN it reduced
the WER by 7% relative from 20.1% to 18.7% on dev2012
and by 8% relative from 15.31% to 14.07%.

6. Conclusion
The modular deep neural network acoustic model presented
in this paper incorporates the well trained feature extraction
networks using multiple input features. It is initially eval-
uated using only a single feature extraction module. This
evaluation demonstrates the usefulness of using multiple dif-
ferent input feature vectors. Modular deep neural networks,
whose sole feature extraction network uses multiple features,
outperform those using fewer features or even a single fea-
ture.

Using two or more different feature extraction networks
as modules in the same modular deep neural network results
in further improvements. The best approaches use three fea-
ture extraction networks that are, in turn, each trained using
multiple input features. The best modular deep neural net-
work is able to reduce the word error rate on the test data sets
by up to 11.5% relative improvement compared to a baseline
deep neural network..
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