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Abstract 

This paper describes an approach to translate 

rarely occurring named entities (NE) by com- 

bining phonetic and semantic similarities. The 

phonetic similarity is estimated from a surface 

string transliteration model, and the semantic 

similarity is calculated from a context vector 

semantic model. Given a source (Chinese) NE 

and its context, this approach first generates 

queries in the target (English) language ac- 

cording to the context translation hypotheses, 

then searches for relevant documents from a 
target language corpus. Target NEs in re- 

trieved documents are compared with the 
source NE based on their phonetic and contex- 

tual semantic similarities, and the best- 

matched one is selected as the correct transla- 
tion. Experiments show that this approach 

achieves 67% accuracy on translating rarely 

occurring NEs, and consistently improves the 

translation quality on different tasks over a 
state-of-the-art statistical machine translation 
system. 

1 Introduction 

Translating Named Entities (NE), in particular named 

persons, locations and organizations, can benefit many 

natural language processing tasks. Correct NE transla- 

tions often act as either key queries in cross-lingual in- 

formation retrieval or correct answers in multilingual 

question answering. Moreover, in machine translation, 

incorrect NE translations not only discard meaningful 

information from the original sentences, but also intro- 

duce a distorted context which degrades the overall 

translation quality. However, translating NEs is also a 

challenging problem. Part of the reason is that NEs are 

either phonetically transliterated (mostly for person 

names) or semantically translated (mostly for organiza- 

tion names) or both (mostly for location names, like 

“Appalachian Mountains”), and often there is no one-to- 

one mapping in transliteration and translation between 

source and target languages. Although pre-compiled NE 
translation dictionaries may help in translating some 

frequent NEs, such as the names of countries, big com- 

panies or famous persons, it cannot handle the transla- 

tion of rarely occurring names, especially new names. 

For example, in the 2001 Chinese-English translation 

evaluation test data, 20% of the automatically tagged 

Chinese NEs are not included in the 50K LDC Chinese- 
English translation lexicon. 

Although many research efforts have been focused 

on automatic NE detection, and good performance has 

been achieved in some languages (Chinchor 1997), 

there are still many areas in NE translation that call for 

further investigation. (Knight and Graehl 1997) pro- 

posed a generative model for Japanese-English back 

transliteration, (Stalls and Knight 1998) expanded that 

model to Arabic-English transliteration, and (Al- 

Onaizan and Knight 2002) additionally incorporated 

web counts to re-score the transliteration candidates. 
(Meng et al. 2001) developed an English-Chinese NE 

transliteration technique using a pronunciation lexicon 

and phonetic mapping rules. (Moore 2003) proposed 

statistical phrase translation models to find NE transla- 

tions in English-French software manuals. (Huang et al. 

2003) extracted NE translation pairs from a Chinese- 

English parallel corpus combining letter transliteration, 

word translation and NE tagging features, then con- 

structed an NE translation dictionary based on align- 

ment costs and frequencies. 

Aligning NE translations from a parallel corpus usu- 

ally achieves high accuracy on frequently occurring 

NEs, but it fails in translating rarely occurring NEs 

which may not appear in the bilingual corpus, as shown 
in the following example: 

Ch: fap FE KA A A a GE: 
Ref.: netherlands’ ambassador to china, van houten 
Hyp: netherlands ambassador hao germany hurls 
It is noticed that “van houten”, the ambassador’s 

name, was not included in the translation lexicon and 
parallel corpus, thus the name was inappropriately se- 

mantically translated character by character, “#j{S/hao {# 

/germany 4%/hurls”.



In this paper we will propose an approach focusing 
on translating these rarely occurring NEs. Given a Chi- 

nese NE and its context (e.g., the document where the 

NE appears), this approach first generates queries in 
English according to the initial document translation 

hypotheses, then searches for relevant documents from 

an English corpus using a search engine. It compares the 

Chinese NE with English NEs in retrieved documents 

based on their phonetic and semantic similarities, and 

selects the best-matched one as the translation. The pho- 
netic similarity is calculated from the surface string 

transliteration model, and the semantic similarity is 

measured according to the “distance” between the two 

NEs’ context vectors, where the context vector is con- 

structed based on the part-of-speech (POS) and relative 
locations of the NEs’ surrounding words. Experiments 
show that NE translation achieves a 67% accuracy with 

the combined similarity models, and the translation 

quality is consistently better on different translation 

tasks than a state-of-the-art statistical machine transla- 
tion system. 

The structure of this paper is as follows: in section 2 
we introduce the surface string transliteration model; in 

section 3 we describe the contextual semantic similarity 

model; we detail the query generation and retrieval 

process in section 4. In section 5 we present the experi- 
ments and analysis of the results. Conclusions will be 

given in the last section. 

2 Surface String Transliteration Model 

NE transliteration is the phonetic translation based on 
pronunciation similarities between source and target NE 
pairs. Considering that person and location names are 
ofien phonetically translated and their written forms 
resemble their pronunciations, it is possible to discover 
NE translation pairs through their written forms, i.e., 

surface string transliteration. Compared with the tradi- 
tional phoneme transliteration method, surface string 

transliteration does not require a pronunciation lexicon, 

which is an advantage especially for rare names. For 

non-Latin-derived languages like Chinese and Arabic, 
indirect surface string transliteration is feasible through 

a romanization process which maps each character into 
one or more Latin letters with similar pronunciation. For 

example, the Chinese word “4 2 YK HF” is romanized 
as the pinyin form “fei ci wo te”, which is the translation 

of “fitzwater”. 
Mappings between Chinese characters and their pin- 

yin forms are usually deterministic, while mappings 

between pinyin and English letters are more sophisti- 
cated, and can be learned from a bilingual NE list. To 

acquire such an NE list, we propose an unsupervised 
learning approach in which NE pairs are automatically 
extracted from a large bilingual dictionary. Dynamic 

programming (DP)-based string alignment is iteratively 

applied in order to find NE pairs to estimate the translit- 
eration probability from pinyin to English letter se- 

quences. 

To extract the NE pair (7 

lingual dictionary D , we want to find the entry with the 
highest joint probability, 

(fre sne) = AE MAX, 5» Pe F,€) 
Sarg max, pp PP Prele | A) 

where P,,(f)is the probability of generating the charac- 

ne s€ne*) from a given bi 

0) 

ter sequence of the Chinese NE, which can be computed 
directly from a character language model for Chinese 

NEs. The estimation of P,(e| f), the probability of 

transliterating the Chinese NE f into an English NE e, 

is as follows. 

Suppose f has m characters. For j = 1,2,..m, charac- 

ter f, is mapped into its pinyin syllable y,, which is 

further transliterated into an English letter string e,. 

Given that mappings from Chinese characters to their 

pinyin syllables are mostly deterministic, i.e. 

PCY, | f,) = 1, we have 
m 

Pele| $=] [re |A) 
el (2) 

=T[ re ly)e0, 14) =] pl». 
fed i=l 

Suppose y, is composed of m, letters, and for 

Jj =1,2,...m,, the pinyin letter y, ; is aligned to Cie the 

k th letter in e> where the alignment is represented 

ask =a,- Assuming independence of transliterated let- 

ters we obtain, 

m m 

Pelel N=T fre ly) = TL Lee) 
i=l isl j=l 

That is, the transliteration probability between a 

Chinese NE and an English NE is approximated by the 
product of their letter transliteration probabilities. 

Dynamic programming has been successfully ap- 

plied to find the “optimal” alignment path between two 
strings, where “optimal” means the minimum accumu- 
lated editing cost between aligned word/letter pairs 

(Levenstein 1965). Here the cost is usually defined as 0 

if they are the same or | in case of an insertion, deletion 

or substitution error. However, this binary cost function 
is not appropriate for pronunciation-based transliteration, 
because the phonetic similarity is more important than 
the orthographic similarity; therefore, the alignment cost 

between letters with similar pronunciations (e.g., “c” 

and “k” or “p” and “b”) should be smaller. We take the 



negative logarithm of the letter transliteration probabil- 

ity as the matching cost, where the transliteration prob- 

abilities are computed based on their alignment 

frequency. However, the alignment frequency is 

counted under a certain alignment cost function. To 

resolve this model interdependency, the binary cost 

function is initially applied to the DP string alignment. 

Bilingual NE pairs are extracted from the dictionary 

according to their alignment cost. Based on this initial 

imperfect name list, the letter transliteration model and 
character language model are trained, and employed for 

the NE joint probability estimation. In the subsequent 
iterations, the alignment cost function as well as the 

transliteration probability is updated, NE pairs are re- 
selected according to their joint probabilities, and trans- 
literation and language models are re-trained using the 

cleaner NE list. 

3 Contextual Semantic Similarity Model 

Surface string transliteration model is effective in 

finding NE translation pairs with similar pronunciations 

and spellings, but it is weak at identifying NE pairs with 

dissimilar pronunciations or discriminating different 
target NEs with similar pronunciations. On the other 
hand, NEs often occur within certain semantically re- 

lated contexts, such as the title of a person or the 

neighbor area of a location. It is possible to combine the 
context’s semantic similarity with the phonetic similar- 
ity to improve the NE translation accuracy. As shown in 

the previous example, although the pronunciations be- 
tween “jifi/hao (f/de 4%/yang” and “van houten” are less 
similar, the common context with which they both occur, 

(here it is the title of the named person, “netherlands’ 
ambassador to china”, although expressed in different 

languages), indicates the strong association between the 

source NE and the target NE. 

Different context words have different power in pre- 
dicting an NE’s meanings; in other words, they have 

different semantic correlation weights with regard to the 

NE. The context words and their correlation weights can 

be represented by a context vector, which characterizes 

the NE’s topical information. In this section, we will 
describe how to create a context vector for a given NE, 

and how to calculate the semantic similarity between the 

source and target context vectors. 

3.1. Context Vector Selection 

A context vector represents the words within a cer- 
tain context of a given NE, while each word has a dif- 

ferent weight reflecting its semantic significance to the 

NE. Our task is to select context vector words and cal- 
culate their correlation weights based on their POS tags 

and distances to the NE. For each NE-word pair, the 
word’s correlation to the NE is initially measured by 

Phi-square coefficients, which are further used for esti- 
mating the weights of different POS tags and locations. 

The POS tag weights imply the types of words that 

should be included in the context vector, and the loca- 

tion weights indicate the optimal length of the context 

vector. 
While mutual information describes the independ- 

ence between random variables, Chi-square, including 

its variant, Phi-square, is better at correlating two cate- 

gorical variables. Unlike Chi-square, Phi-square’s value 
ranges from 0 (no correlation between the two variables) 

to | (perfect correlation between them), thus a probabil- 

istic interpretation is possible. In our problem, we want 
to measure the correlation between an NE and its con- 
text word, so the NE-word semantic correlation coeffi- 

cient can be defined as: 

(00m = 920») 4 

VO +2 MO +2102 +x rz + P22) 
where n, ware the NE and its context word respectively, 

$n.) = 

0410x0450; are the frequencies that they co-occur, 

that neither occur, and that one occurs and the other 

does not occur. The higher the coefficient, the more 

likely is it that the NE and the word are semantically 

correlated. 
To estimate a POS tag’s semantic significance to an 

NE, we calculate the mean of the correlation weight 

over all NE-word pairs. The correlation weight is also 
weighted by the probability that the word’s POS is the 

current POS tag. Suppose under the empirical NE-word 
pair distribution f(n,w), tis the POS tag of w, which 

is a context word of an NE 1, and then p(t|w) is the 

probability that word w has POS tag ¢, the POS tag’s 

weight is defined as: 

WO) = Egy P| wr, w)] 

= 1 y 7 y = Seana w) pC w)60n,»), 
(cD) 

where C(n, w) is the frequency that (”,w) co-occur. 

Figure | illustrates the normalized weights of differ- 

ent English POS tags, where one can observe that high 

correlations are often associated with content words 
(e.g., nouns, verbs and adjectives are likely the most 

semantically related context words of an NE). Therefore 

context vectors only include those content words whose 

POS tag weight is larger than 0.03 (corresponding to the 

top14 POS tags). We call them context vector (CV) 

words, and only consider these CV words in the location 

weight estimation. 

Similar to the POS tag weights, location weights 

represent the semantic significance of CV words at dif- 
ferent positions. Starting from a 20 word long window 

ranging from -10 (left 10 CV words) to 10 (right 10 CV 

6)



words), the weight corresponding to location/ can be 

similarly estimated from the NE-word correlation coef- 
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where / is the location index, / €[—10,10],/ #0. 

C(n,w,/) is the frequency that word w occurs at the 

location / in the context vector of n. 
Figure 2 illustrates the distribution of normalized lo- 

cation weights, which looks Gaussian: the closer a loca- 

tion is to the NE, the higher correlations it has. Notice 

that about 95% of weights are distributed within the [- 

7,7] window, so only the content words within this win- 

dow are included in the context vector. 

To summarize, the context vector of an NE is con- 

structed from its left and right 7 content words, where 

“content words” are those whose POS tags are in the top 

14 Content POS tag Set (CPS). The context vector is 

composed of both word identities and their semantic 

significance to the NE: 

V ={(w,W(t,)) | €[-7,7],/ 4 0,te CPS}, (7) 

where W(t,/) =W(H)W(/) is the product of their POS 

and relative location weights. 

3.2. Semantic Similarity between Context Vectors 

Given a source and target NE pair (7,7, ) with their le 

context vectors (V,,V,), the semantic similarity be- 

tween the two vectors can be defined as the “mutual 
translation probability”, which is the product of two 

conditional semantic translation probabilities, 

SOV) =P(v, |v )P(Y, |¥,) (8) 
where P(v, |v ) is regarded as the probability that the 

source vector is “semantically translated” into the target 

vector. It is computed with a modified IBM translation 

model-2 [Brown et al. 1993], 
; 

ral WEP |M © 
where / is the length of the source vector and J is the 

length of the target vector. With this formula, each word 

in the source vector can be translated from any word in 

the target vector. The word translation probability is 

also adjusted by the POS and location weights of the 

target word, which emphasize the correct translations of 

important context words, for example the title of a per- 

son. p(e| f)is the word translation probability esti- 

mated from a Chinese-English aligned corpus with IBM 

model 1. P(v,|v,) is estimated in the similar way. 



4  Cross-lingual Retrieval for NE Transla- 
tions 

Two similarity measures have been introduced to find 

NE translation pairs: pronunciation similarity based on a 
surface string transliteration model and semantic simi- 

larities based on a context vector semantic model. In 
this section, we will demonstrate how to apply these 

measures to search for NE translation pairs using the 

cross-lingual retrieval approach. 

Given a Chinese NE together with the context in 

which it occurs (e.g., a document), we want to find Eng- 

lish documents containing the NE translation, such that 

after automatically tagging all NEs in the retrieved text, 

we can compare the source NE with each English NE 

based on their phonetic and semantic measures, and 

ultimately choose the best-matched English NE as the 

translation. Assuming that documents containing the 

same NE share common topics (even if the texts are 
from different languages), our task is to search for topic- 

relevant English documents using the Chinese document 
as the query. 

4.1 Query Generation 

Given the source document, the query for a target NE 

translation search can be flexible: a few key phrases 
around the NE, the sentence holding the NE, or even the 

whole document. Containing less irrelevant information, 

short queries usually can generate less unrelated target 

text. However the identification and translation of key 

source phrases are crucial: if the query is not carefully 
selected or correctly translated, retrieved documents 

may not contain the target NE translation. On the other 

hand, long queries such as a sentence or the whole 

document may be less focused but with richer context, 

and the danger of missing relevant documents and cor- 

rect NE translations is also reduced. 
Due to the high risk of missing correct NE transla- 

tion because of errors in identifying and translating 

source key phrases, we prefer to choose a longer context 
as the query, such as the whole document. In our current 
implementation, we use a statistical machine translation 
system to translate the Chinese document into English, 

after that feed the translation hypothesis into any search 

engine, such as Google or the Lemur Toolkit. 

4.2 Corpus Indexing and Search Engine 

Most commercial search engines have the advantage of 

accessing a large corpus and collecting huge informa- 

tion from web pages on the World Wide Web, which is 

very helpful for rare NE translations. However for our 
research purposes at this stage we prefer a more flexible 
corpus indexing strategy allowing both sentence-based 

and document-based indexing. So we start by building 

our own search engine using Lemur (Ogilvie and Callan 

2002), a toolkit for language modeling and information 

retrieval. 
The indexed corpus is composed of 963,478 English 

documents from the Xinhua News Agency, which cor- 

responds to over 7.3 million sentences and 200 million 
words. The indexing just follows the standard procedure 
where no stemming and stop word removal is used. The 
retrieval model is the widely used TF-IDF model. 

Given a query, the search engine returns a ranked 

list of relevant sentences or documents with relevance 
scores. We experiment with both sentence-based and 

document-based query generation and corpus indexing. 

From a test data of Chinese newswire documents, we 

selected 114 Chinese NEs and manually translated them, 

then we used our MT system to translate the Chinese 

sentences/documents containing these NEs into English. 

Considering that rarely occurring NEs are the most dif- 
ficult to translate, the translated NEs are mostly incor- 

rect in the translation hypotheses. These English 

hypotheses are fed into the search engine as the queries, 
and the top 1000 English sentences or documents are 
selected as the relevant text. We evaluated NE coverage 

by counting how many correct NE translations can be 

found in the retrieved texts, and it turned out that the 

document-based query/indexing covered about 70% of 

correct NE translations, while the sentence-based 

query/indexing has the coverage of about 60%. The 

reason may be that the topic information provided by 

each sentence is rather limited, and if its translation hy- 

pothesis is not reliable, the generated query could be 

severely distorted from the original meaning, thus the 

retrieved text may become irrelevant. In the following 

experiments we only use document-based querying and 
indexing. 

4.3 Combining Similarity Features for NE Trans- 
lation Selection 

English NEs in the retrieved text are automatically 
tagged using IdentiFinder™, the NE tagging tool from 

BBN (Bikel et al., 1997). For each tagged English NE, 

its context vector is created according to its neighbor 

content words, with their POS tags and locations, as 

described in section 3.1. 

To find the translation of a source NE ny, we com- 

pare it with each tagged NE in the retrieved English text, 

using both transliteration similarity and context vector 

semantic similarity. We create the context vector for 

both the source NE and each tagged target NE. For each 

source and target NE pair(,,n,), with their corre- 

sponding context vectors (V,,V,), their overall similar- 

ity score is defined as: 

D(1,.0,) = AP alt, | ,)+ ASU p5¥,)s ne (10)



where P,, is the transliteration probability as computed 

in formula (3) and S is the context vector semantic 

similarity as computed in formula (8), 2, and A, are the 

weights of each model empirically chosen based on 

experiment. The NE pairs with the highest overall simi- 
larity scores are considered translations. In practice, 

one source NE can be translated in several different 
ways, which have similar pronunciations but different 

spellings, and some of them are just typos. To make 
sure that translated NEs follow most people’s usage, 

from among the top NE hypotheses with similar spell- 
ing, we choose the one with the highest frequency as the 

translation. 
Figure 3 illustrates the overall architecture of the 

NE translation. In addition to various modules and data 
flows described above, one may notice the link from the 

NE Translation Selector to the Machine Translation 
module, which indicates that translated NE pairs can be 

further integrated into the machine translation engine to 

improve the query translation quality, retrieve better 
relevant documents and improve NE translation again, 

and this can be an iterative process. 
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Figure 3. Overall Architecture of NE Translation 

5 Experiment Results and Discussion 

5.1. Transliteration Model Training and Evalua- 

tion 

We train the Chinese-English surface string translitera- 

tion model using the manually compiled Chinese- 

English dictionary provided by LDC, which contains 

English translations for 54,131 unique Chinese words. 

Initially, 3,000 word translation pairs with a minimum 

string matching cost are extracted, under the 0/1 cost 

function. Most of them are NE pairs whose pinyin for- 
mat resembles the English translation. The initial letter 

transliteration model and Chinese character language 

model are trained from this name list. Using these mod- 

els, an additional 500 NE pairs with a minimum translit- 

eration cost are extracted in each iteration, and added 

into the existing NE pair list to update models. This 
process continues until adding more NE pairs does not 
improve the extraction accuracy further, which usually 

happens at the 5-6" iteration where a total of 
5,500~6,000 NE entries are included. 

Iter. | 0/1 1 2 3 4 5 6 
Prec. | 93.1 | 96.0 | 95.8 | 97.8 | 99.1 | 99.1 | 99.1 

Table 1. Precision of Top 6000 NE Pairs Using 
Different Models 

Table 1 presents the NE extraction precision of the top 
6000 NE pairs using a different model in each iteration. 
“0/1” represents the result when using only the starting 
0/1 cost function. One can notice a trend of increasing 

precision after each iteration, although the increase is 

smaller and smaller until negligible at the 5~6" iteration, 

indicating that most NE pairs in the dictionary have 

already been included and that adding more non-NE 

entries will not benefit the transliteration model. 

5.2 Creating Context Vectors 

In section 3.1, the NE-word correlation coefficients are 

estimated from a subset of the indexed English Xinhua 

News corpus. It is composed of over 37 million words 
from 188,755 documents. 380,641 unique English NEs 

are automatically tagged, and the coefficient is calcu- 

lated for each (NE, word) pair. 

prime 0.0319 clinton 0.0046 
israeli 0.0222 bill 0.0034 
minister 0.0194 yatom 0.0032 
caretaker 0.0160 david 0.0030 
yasser 0.0145 summit 0.0030 

arafat 0.0115 ariel 0.0029 
leader 0.0069 camp 0.0028 
palestinian 0.0063 likud 0.0028 
outgoing 0.0060 sharon 0.0028 
al-shara 0.0047 cabinet 0.0027 

Figure 4. Context Words with High Correlation 
Coefficients for the NE “Ehud Barak” 

Figure 4 shows the top 20 words/coefficients for the 
NE “Ehud Barak”, the former Israeli Prime Minister. It 

shows that words with high coefficients are mostly topic 

relevant words, which indicates that the Phi-square 

based NE-word correlation coefficient is an effective 
measure of topical relevance. 

In the following example, we will show a Chinese 

NE (fJt >£)’s context vector created from a Chinese 
sentence and the best-matched English NE (Otmar 

Issing)’s context vector created from the retrieved text, 



then illustrate the semantic correlations between the two 
vectors. 

Ch: BKI/NR PRT INN BTB/NN 22PE AR 
INN #/7NR 3/NR fYE/NN 20/CD H/NR #£/P ETA 
INN #N/VV... 

Eng: = European/JJ_ = Central/NNP_— Bank/NNP- 

Chief/NNP Economist/NNP Otmar/NNP Issing/VBG 
told/VBD the/DT European/JJ Parliament/NNP last/JJ 
week/NN that/IN ... 

In the above sentences, NEs are automatically 

tagged and highlighted for each language. The POS 

information has been automatically tagged as well, 

where the taggers are trained from some manually anno- 

tated data for each language using transformation-based 

learning (Brill 1995). Considering POS and distance to 

the NE, the context vectors (words and their normalized 

weights) for the Chinese NE (left) and English NE 

(tight) are shown in Figure 5. The links between Chi- 

nese and English words indicate they are translations of 

each other. In this example, links between words with 

high semantic weights show a strong correlation be- 
tween the two context vectors. 

0.019 28 5F ERE Economist 0.015 
0.017 BE Chief 0.014 
0.015 HARERT —__—__ Bank 0.012 
0.003 EY}——_~ Central 0.009 
0.019 ft ~_Biopean 0.013 
0.005 A old 0.008 
0.015. Hela) Beran 0.010 
0.007 FR Parliament 0.011 

last 0.009 

Figure 5. Context Vector of Chinese NE (/eft) and 

Best-matched English NE (right) 

5.3. Improving Machine Translation Quality with 

NE Translation 

To evaluate the effectiveness of the proposed NE trans- 
lation strategy, we test it for a Chinese-English machine 

translation task. The test dataset is the NIST 2002 Ma- 
chine Translation Evaluation test data. The test data is 
composed of 100 Chinese documents, 878 sentences, 

and 25,430 words. 2469 NEs are automatically tagged, 

and among them PERSON, LOCATION and 

ORGANIZATION names roughly account for 20%, 

60% and 20% respectively. Since most 
ORGANIZATION NEs are semantically translated 

word-by-word, and since we already have good word 

and phrase translation components in the baseline sys- 
tem, we will focus on PERSON and LOCATION NE 
translations, as they are often transliterated. 

The baseline system incorporates several word and 
phrase transducers for text translation: a 50K entry 

word-based C-E translation lexicon from LDC, which 

has the best word translation accuracy because of man- 

ual verification; several phrase transducers automati- 
cally constructed from a 6M words bilingual corpus 

using HMMs and integrated segmentation and align- 

ment approaches (Vogel et. al. 2003). Importantly, the 

baseline also includes a 39K entry NE transducer which 

is constructed by aligning tagged NEs from the same 

parallel corpus according to multiple NE alignment 
costs (Huang et. al. 2003). 

Among 1,898 tagged PERSON and LOCATION 

NEs, 400 NEs are not covered by the LDC translation 

lexicon. After manually removing incorrectly tagged 

NEs, 338 true NEs (corresponding to 158 unique NEs) 
are translated with the transliteration model plus the 
semantic context vector model, and the translation hy- 

potheses are compared with the reference translations 
for evaluation. 

Table 2 shows the type and token NE translation 
precision using different similarity models, where 

“Translit” means using the transliteration model only, 

and “+SCV” means additionally combining the context 

vector semantic model. It also shows the performance of 
the baseline system, where the translations basically 

come from several phrase and NE transducers trained 
from the 6M words bilingual corpus. The limited paral- 
lel corpus coverage explains the relatively lower per- 
formance of the Baseline system, as the source NEs 

cannot be found in the parallel corpus. When finding 
NE translations from the retrieved monolingual text, the 
surface string transliteration model alone increases the 

translation precision by about 30%, and the context vec- 
tor semantic model additionally improves the translation 
accuracy by about 10%. Further error analysis indicates 

that 50% of errors are due to the limited coverage of 

retrieved documents, i.e., correct NE translations are 

either not included in or not retrieved from the indexed 
English corpus. 

Token (338) Type (158) 
Precision Precision 

Baseline 27.8% 27.8% 

+Translit 57.1% 50.0% 

+SCV 67.8% 59.5% 

Table 2. NE Translation Precision 

We integrate both sets of NE translation hypotheses 

into the baseline system: “+Translit” and “+SCV”, and 
test them in different translation tasks: the small data 
track and the large data track differing in the amount of 

bilingual resources allowed for use. To accurately meas- 

ure the contribution of the proposed NE translation 
method, we first extract 164 sentences containing these 

rarely occurring NEs from the whole test set (887 Chi- 

nese sentences), translate and evaluate on this subset,



then we evaluate the NE translations on the whole test 
data. The translation quality is measured by the auto- 

matic MT evaluation metrics, such as NIST and Bleu 

scores. 
Table 3 shows the translation scores of different sys- 

tem configurations on the NE sentences subset, and ta- 

ble 4 shows the translation scores on the whole test data. 

Because the selected sentences are hard to translate due 

to these rarely occurring NEs, their translations have 

lower NIST and Bleu scores than the whole test set (1.0 

difference in NIST and 0.03 difference in Bleu for the 
Baseline). When adding transliterated NE translations, 

an obvious improvement can be observed in all the 

cases. Additionally adding the context vector model also 
leads to a small but consistent improvement. 

Small track Large track 

NIST. Bleu NIST. Bleu 

Baseline 5.6234 0.1166 | 6.8483 | 0.1794 

+Translit 6.2684 0.1387 | 7.1969 | 0.2005 

+SCV 6.3618 0.1404 | 7.2779 | 0.2025 

Table 3. C-E MT Evaluation on NE Sentences 

Subset 

Small track Large track 

NIST. Bleu NIST. Bleu 

Baseline 6.5765 0.1479 | 7.8733 | 0.2023 

+Translit 6.7718 0.1537 | 7.9573 | 0.2075 

+SCV 6.8702 0.1580 | 7.9790 | 0.2079 

Table 4. C-E MT Evaluation on Whole Test 
Set 

6 Conclusion 

We propose an approach to translate rarely occurring 

NEs by combining their phonetic and semantic similari- 

ties . Given a source NE and its context, this approach 

generates queries in the target language according to the 

context translation hypotheses, then searches for rele- 

vant documents from a target corpus. Target NEs in 

retrieved documents are compared with the source NE 

based on their phonetic and contextual semantic simi- 

larities, and the best-matched one is selected as the cor- 
rect translation. Experiments show that this approach 

achieves 67% on translation accuracy, and consistently 

improves the translation quality on different tasks. 
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