Large Vocabulary Audio-Visual Speech
Recognition Using the Janus Speech Recognition
Toolkit

Jan Kratt, Florian Metze, Rainer Stiefelhagen, and Alex Waibel

Interactive Systems Laboratories
University of Karlsruhe (Germany)
{kratt, metze, stiefel, waibel}@ira.uka.de

Abstract. This paper describes audio-visual speech recognition experi-
ments on a multi-speaker, large vocabulary corpus using the Janus speech
recognition toolkit. We describe a complete audio-visual speech recogni-
tion system and present experiments on this corpus. By using visual cues
as additional input to the speech recognizer, we observed good improve-
ments, both on clean and noisy speech in our experiments.

1 Introduction

Visual information is complementary to acoustic information in human
speech perception, especially in noisy environments. Humans can disambiguate
an acoustically confusable phoneme using visual information because many
phonemes which are close to each other acoustically are very different from
each other visually. The connection between visual and acoustic information in
speech perception is demonstrated by the so-called McGurk Effect [I]. Visual
information such as gestures, expressions, head-position, eyebrows, eyes, ears,
mouth, teeth, tongue, cheeks, jaw, neck, and hair, could improve the perfor-
mance of machine speech recognition [2J3]. Much research has been directed
towards developing systems that combine the acoustic and visual information to
improve accuracy of speech recognition [45l6I7]. Many of the presented audio-
visual speech recognition systems work on a very limited domain, i.e. either only
spelled digits [8l9I10] or letters [11]1213] are recognized, or only a small vo-
cabulary is addressed [14]. For large vocabulary audio-visual speech recognition,
the work by Potamiamos, Neti et al. [I5/16/17] has been presented. Their AVSR
system is probably the most sophisticated system today.

In this work we also targeting the task of large vocabulary audio-visual speech
recognition. Our approach is to use the Janus speech recognition toolkit [18|[19],
which was developed in our lab and to integrate visual speech recognition into
this system. For our experiments we use the data that was used during the
workshop on audio-visual speech recognition held at John-Hopkins University in
2000 [15]. In the experiments we observed improvements, both on clean and noisy
speech, by using visual cues as additional input to the speech recognizer and hope
to further improvements by an enhanced preprocessing and normalization of the
data.
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Fig. 1. Some pictures of the recorded faces taken from the videos.

2 Databasis

The data provided for our experiments consists of nearly 90 GB of video footage
with an overall duration of about 40 hours. During recording of the videos, the
speakers were placed in front of a light-colored wall and looked right into the
camera. All videos have a resolution of 704 x 480 pixels and a frequence of 30Hz.
Figure [l depicts some sample pictures from the videodata.

Audio data was recorded at a sampling rate of 16kHz in a relatively clean
audio environment. The utterances were made in a quiet office with only the
noise of some computers in the background.

The utterances are composed of a vocabulary of about 10500 words. For the
training we got about 17000 utterances from 261 speakers with a total length of
about 35 hours. The testset is made of 26 speakers with about 1900 utterances.
These utterances have a total length of four and a half hours. The exact numbers
are given in table [Tl

Table 1. Available audio visual stored utterances for training and test.

‘Set ‘Utter. ‘ Duration‘Spk. ‘
Training| 17111  34.9 h| 261
Test 1893 4.6 h| 26

In this work, not all speakers could be used for visual recognition, because
the extraction of visual cues failed for some speakers. The biggest set we used
consisted of 120 speakers for training a stream-recognizer (see section E.3). For
this system, 17 speakers were used for testing.

The speakers, for which the detection of the region of interest is most robust
are selected by an automatic process which considers the variation in the position
of the mouth, the variation in the width of the mouth and the number of frames,
where the facial features could not be detected at all. Only those speakers were
selected, where the respective values are below a certain thresholds.
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3 Visual Preprocessing

In order to use the video images of a user’s lips for speech recognition, the
lips first have to be found and tracked in the video images. We use the pro-
gram described in [20] to find eyes, nostrils and the lip corners in the pictures.
The found lip corners are used to detect the mouth region for the visual train-
ing/recognition. For this purpose, a square around the corners is taken with
them at the left and right border at about half of the height.

To compensate different illumination conditions and different skin tone of
the subjects in the video images, we normalize the extracted mouth regions for
brightness. A sample image is depicted in Figure

Fig. 2. The effects of the normalization of the brightness.

As the audio processing works with 100 timeslices every second it would be
best to have a video stream with 100 frames per second, but the videos are
recorded at a rate of 30Hz. To achieve a signal with 100Hz the existing frames
are repeated three times and every third frame four times.

Once having a video stream with a frequency of 100Hz, the pictures are
cosine transformed and the 64 coefficients with the highest summation over all
training frames are searched as the best coefficients. During selection of the
best 64 coefficients the first row and column is ignored because they consist of
constant informations which gives no information for the shape of the mouth.
Only the 64 best coefficients are used for training and recognition, they keep
nearly all information about the video signal. The results are the same when
taking all 4096 elements but the training and recognition takes much longer.

As a next step the video signal is delayed by 60ms to achieve better syn-
chronization of acoustic and visual cues. This step is performed because the
movements of the lips usually start some time before a sound is produced [12]

21].

4 Experiments

This section describes the audio-visual speech recognition experiments we per-
formed. The first step in building the audio-visual speech recognizer was to train
an audio-only recognition system. This was done by using an existing speech
recognizer to label the transcriptions of the audio-visual data with exact times-
tamps. Once this was done, a new speech recognizer was trained on all 261
speakers in the audio-visual data set to get an audio-only reference system.
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For the training of the visual recognizer, we use only up to 120 speakers. This
was done because the visual lip-tracking module did not provide useful results
for all of the video sequences and because training of the visual recognizer was
quite time-consuming.

For the visual recognizer, we used a set of 13 visemes, as proposed by [15].
Twelve of these visemes were modeled with three states (begin, middle, end),
resulting in 37 viseme states.

In the remainder of this section, we describe the different experiments that
we performed. We then present and discuss the obtained results in Section 5.

4.1 Concatenation of Feature Vectors

As a first experiment, we simply concatenated the acoustic and visual input
features and trained a speech recognizer on the combined feature vector. The
acoustic part of the input vector consists of 13 cepstral coefficients per frame;
as visual features, 64 DCT-coefficients are used. In order to provide context to
the recognizer, five frames before and after the actual one are connected to the
feature vector, which results in a feature vector with 847 elements. To reduce
the dimensionality of the feature vector, a linear discriminant analysis (LDA) is
calculated. The resulting 42 most significant coefficients are then used as input
feature vector for the recognizer.

By concatenating the visual and acoustic input features, an acoustic speech
recognition system can easily be adapted to perform audio-visual recognition
with little changes. This approach, however, has several drawbacks: First, since
the feature vector becomes large, training of the system becomes computationally
expensive. A more severe disadvantage is that the importance or contribution
of audio- and videodata to the recognition process gets unbalanced, since more
features are used for the visual input than for acoustic input. Thus, important
information in the audiodata might get lost by performing LDA.

4.2 Reducing the Feature Space

As the first case is not very flexible in changing the given weights for the video-
and audio data a more flexible approach is needed to combine acoustic and
visual cues. In [15] a hierarchical LDA approach (HiLDA) to reduce the audio-
visual feature space was suggested. In this approach, LDA is performed on the
visual and acoustic input vector separately. The resulting reduced vectors are
then combined and again LDA on the combined audio-visual feature vector is
performed.

This procedure has two advantages: First, the computational load is reduced.
Now three matrix multiplications are needed for calculating the LDA transfor-
mation instead of one before, but the matrices are much smaller. As the needed
operations for a matrix multiplication grow by O(n?) the overall needed number
decreases. Second, this approach allows for better adjusting of the weights of
the different modalities. We obtained good results when first reducing the visual
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feature vector to only 10 coefficients and the acoustic vector to 90 coefficients.
During the second LDA step a reduction to 42 coefficients is performed.

4.3 Stream Recognizer

While the hierarchical LDA approach gives much more flexibility than a simple
concatenation, it still has some disadvantages that could be solved by a stream
recognizer which processes acoustic and visual features independently. For build-
ing such a system, a separate classifier is trained to compute likelihoods for each
of the input streams separately. Results are then combined at a later stage. This
system has proven to give the best results. For the combination the possible
hypotheses are scored for each stream and then combined by the given stream
weights. For our system best results were achieved if the audiodata gets weighted
by 70%.

As the weights for audio- and videodata are not combined before the recog-
nition process it is not necessary to train a stream recognizer again because of
changing the weights. This behavior can save a lot of time while testing different
scenarios because only the test must be computed for each one. In the two cases
described before the training must be computed again for each test.

Another advantage of this additional flexibility is the possibility to automat-
ically adapting the recognizer to a given environment, e.g. by measuring the
signal-to-noise ratio of the audio-signal.

5 Results

Now the results of the different audio visual speech recognizers are presented.
As the stream recognizer provides the best results the most detailed results
are available for this system. Tests on small subsets show the advantage of the
HiLDA and stream recognizer to the simple feature concatenation attempt. First
we trained three audio-visual recognition systems and an audio only system
with 14 speakers. Testing was done on five separate speakers. As can be seen
in table 2] the audio only system performs best in this case, followed by the
stream recognizer and the HiILDA approach. The concatenation is the worst of
the tested scenarios.

The poor audio-visual recognition results in this case are likely due to the
little amount of training data. As there is a high variability in the video, more
training data is needed.

In our second experiment, we therefore trained the systems with 30 speakers
(see Table ). As you can see, now audio-visual recognition outperforms pure
acoustic recognition, even on clean audio data. Testing was again done on five
subjects.

In our last experiment we trained an audio-visual stream recognition system
with a much bigger training set. Since the acoustic and visual parts of the stream
recognizer can be trained independently, different amount of training data can
be used for each modality. To train the acoustic part of the recognizer, we used
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Table 2. Audio visual word error rates for a System trained on clean audiodata, five
speakers are used for the test set.

| [[14 speakers[30 speakers|

audio 48.28% 39.29%
concat || 51.36% 40.11%
HiLDA|| 49.16% 38.48%
stream || 49.28% 38.24%

Table 3. Audio visual word error rates for a System trained on 120 speakers for the
video part and all 261 speakers for the audio case.

stream weights clean | noisy

audio:video audio | audio

100:0 (audio-only)|(|25.26%|53.94%
90:10 24.78% | 51.19%
80:20 24.30% | 48.53%
70:30 24.10%|47.37%
60:40 24.29% | 48.05%
50:50 25.52% | 52.72%

all 261 speakers. For the visual part, we used only those 120 speakers, were
the automatic tracking of the lips performed the best. Testing was done on 17
subjects.

Table [3 depicts the recognition results depending on the stream weights. It
can be seen that weighting the acoustic stream by 70% led to the best recognition
results, both on clean and on noisy audio. On clean speech, WER of the audio-
visual system is 1% lower than the audio only system (5% relative improvement).
In the case of noisy audio, the relative WER decreases by 12.5%: word error rate
is dropped from 53.94% absolute to 47.37% absolute.

The noise level was selected to get a similar dimension of WER as in [I5].
Figure Blshows the progression of recognition rates for different SNR values. For
rising noise levels higher improvements of the audio visual against the audio only
recognition rates are achieved.
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Fig. 3. Plot of word error rates for different SNR values.
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6 Conclusion and Future Results

In this paper we have described how audio-visual speech recognition can be
done with the Janus speech recognition toolkit, a HMM-based state of the art
speech recognizer. Experiments were performed on a large vocabulary speaker
independent continuous speech recognition task. We obtained good experimental
results by training a stream recognizer, which first computes log likelihoods
for each of the input modalities and then combines these hypotheses using the
stream weights. With this approach, relative improvements on both clean and
noisy speech were obtained. The achieved amount of improvements in relative
WER is by now about half of the improvements reported in [I5]. We think that
this is mainly due to the fact that we could only use a fraction of the data used
in [15].

The presented system provides a good basis for further audio-visual speech
recognition research. We are now working on the improvement of the facial fea-
ture tracking approach in order to being able to use more speakers from the
database. In fact, we are now already able to use 200 speakers instead of 120
used for the presented experiments.

Among the first things that we plan to improve is the visual preprocessing
of the data. So far, only histogram normalization is done. Since we observed
that some subjects tilted their heads quite significantly, we hope to improve the
recognition results by appropriate rotation of the input images in the future.
Adaptive adjustment of the combination weights for the input modalities should
also improve the recognition results in the future.
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