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Abstract

In video object classification, insufficient labeled data may
at times be easily augmented with pairwise constraints on
sample points, i.e, whether they are in the same class or
not. In this paper, we proposed a discriminative learning
approach which incorporates pairwise constraints into a
conventional margin-based learning framework. The pro-
posed approach offers several advantages over existing ap-
proaches dealing with pairwise constraints. First, as op-
posed to learning distance metrics, the new approach de-
rives its classification power by directly modeling the deci-
sion boundary. Second, most previous work handles labeled
data by converting them to pairwise constraints and thus
leads to much more computation. The proposed approach
can handle pairwise constraints together with labeled data
so that the computation is greatly reduced. The proposed
approach is evaluated on a people classification task with
two surveillance video datasets.

1. Introduction
Learning with insufficient training data in classifying or rec-
ognizing objects/people has recently become an interesting
topic [1, 2]. One solution for this problem is to integrate
new knowledge sources that are complementary to the train-
ing data. In this paper, we are particularly interested in
how to incorporate additional pairwise constraints to im-
prove classification performance in video. More specifi-
cally, a pairwise constraint between two examples describes
whether they belong to the same class or not, which pro-
vides a relationship between the labels rather than labels
themselves. The inherent characteristics, that is, the sequen-
tial continuity and multi-modalities of video streams allow
us to pose different types of constraints to boost the learn-
ing performance. These constraints can at times be obtained
automatically or only with little human effort.

Figure 1 illustrates several examples of pairwise con-

Figure 1: Examples of different kinds of pairwise con-
straints. (a) Temporal constraints from a single tracking
sequence, (b) Temporal constraints of different regions ex-
tracted at the same time, (c) Constraints provided by com-
paring faces, (d) Constraints provided by user feedback

straints in a scenario of classifying people’s identity from
surveillance video. First, constraints can be obtained from
knowledge of temporal relations. For instance, two spa-
tially overlapping regions extracted from temporally ad-
jacent frames can be assumed to share the same labels
whereas two regions appeared simultaneously in a camera
cannot be labeled as the same. Second, we can extract con-
straints from various modalities such as visual(face) and au-
ditory(voice) cues. For example, conventionally, if we want
to automatically identify a person’s face from a video se-
quence, we need to train a model from many training sam-
ples of the same person with different head poses and un-
der different lighting conditions. With the representation of
pairwise constraints, we only need a face comparison al-
gorithm to provide the pairwise relation between examples
without building statistical models for every possible sub-
ject under every possible circumstance. This provides an
alternative framework to aggregate different modalities, es-
pecially when the training examples of people of interest
are limited or not available at all. Finally, constraints can
also come from human feedback. In contrast to relevance
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feedback which asks users for label information, providing
pairwise constraints does not necessarily require users to
have prior knowledge or experience with the data set.

In the previous research some efforts have been made to
help both supervised and unsupervised learning with pair-
wise constraints [3, 4, 5, 6]. In the context of graph par-
titioning, Yu et al[3] has successfully integrated pairwise
constraints into a constrained grouping framework, leading
to improved segmentation results. In more closely related
work proposed by Xing et al [6], a distance metric learn-
ing method is proposed to incorporate pairwise information
and solved by convex optimization. However, it contains an
iterative procedure with projection and eigen value decom-
position which is computationally expensive and sensitive
to parameter tuning. By comparison, relevance component
analysis (RCA) [4] is a simple and efficient approach for
learning a full Mahalanobis metric. An inverse of the co-
variance matrix of all the center-points in the chunklets is
computed as a Mahalannobis distance. However, only pos-
itive constraints could be utilized in this algorithm. In [4],
Shental et al also propose a constrained Gaussian mixture
model which incorporates the positive and negative pair-
wise constraints into a GMM model using EM algorithm.
More recently, pairwise constraints have been found useful
in the context of kernel learning. Kwok et al[5] formulates
the kernel adaptation problem as a distance metric learning
problem that searches for a suitable linear transform in the
kernel-induced feature space, even if it is of infinite dimen-
sionality. Most of the above techniques focus on learning
(Mahalanobis) distance metrics or generative classifiers by
estimating the joint probability p(x; y). However, for the
task of classification, discriminative classifiers which learn
the posterior p(yjx) directly have their own advantages be-
cause the decision boundary might be simple even when
true underlying distance metric is complex. Moreover, for
most of these algorithms the only way of dealing with la-
beled data is to convert the labels into the pairwise con-
straints between every data pair. This drawback makes the
implementation inefficient and thus does limit usage in real
applications.

In this work, we propose a new regularized discrimina-
tive learning approach which naturally incorporates pair-
wise constraints into a conventional margin-based learning
framework. The proposed approach allows the classifiers
using additional pairwise constraints with labeled data to
model the decision boundary directly, instead of resorting
to seek an underlying distance metric which could be much
more complex. Analogous to kernel logistic regression [7],
we also derive a kernelized representation of our proposed
pairwise learning framework using a logistic regression loss
function, which is called ”pairwise kernel logistic regres-
sion” in this work. This algorithm is evaluated in the con-
text of classifying people’s identities from the surveillance
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Figure 2: Comparison of loss functions (a) Comparison of
four different loss functions against margin yf(x). The
losses are misclassification I(sgn(f) 6= y), exponential
exp(�yf), support vector (1 � yf)+, logistic regression
log(1 + exp(�yf(x)). (b) The pairwise loss function in
Eq(5) against f(x1) and yf(x2)

video.

2. Discriminative Learning with Pair-
wise Constraints

Formally, the goal of classification is to produce a hypoth-
esis f : X ! Y , where X denotes the domain of possi-
ble examples, Y denotes a finite set of classes. The learn-
ing algorithm typically takes a set of training examples
(x1; y1); :::; (xm; ym) as input, where yi 2 Y is the label
assigned to example xi 2 X . Moreover, in addition to the
data with explicit labels, there is another set of pairwise
constraints (x11; x12; y

0
1) : : : (xn1; xn2; y

0
n) available from

entire data pool including both labeled and unlabeled data,
where y0i 2 f�1; 1g is the pairwise constraint assigned to
two examples xi1; xi2 2 X . For the sake of simplicity,
(xi1; xi2; 1) will be called the positive constraints which
means the example pair (xi1; xi2) belongs to the same class
and (xi1; xi2;�1) the negative constraints defined similarly.

2.1 Regularized loss function with pair-wise
information

We begin our discussion with the case of binary classifica-
tion. Many machine learning algorithms attempt to mini-
mize the regularized empirical risk

min
f

Rreg(f) =

mX
i=1

L(yi; f(xi)) + �
(kfkH); (1)

where L is the empirical loss function, 
(�) is some
monotonically increasing regularization function on the do-
main [0;+1] which controls the complexity of the hy-
pothesis space, H denotes a reproducing kernel Hilbert
space(RKHS) generated by some positive definite kernel
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K, k � kH the corresponding norm and � is the regular-
ization constant. The empirical loss function L(y i; f(xi))
is usually set to a function of ”margin” yf(x) [8], i.e.
L(yi; f(xi)) = eL(yif(xi)). With different choices of loss
functions and regularization terms, we can derive a large
family of well-studied algorithms from Eq(1). For example,
the SVM can be viewed as a binary margin-based learning
algorithm with loss function eL(z) = max(1�z; 0) and reg-
ularization factor kwk22. More examples can be found in the
work of [8]. To illustrate, figure 2(a) shows a comparison
of four different loss functions against the margin yf(x).

Within this learning framework, pairwise constraints can
be introduced as another set of empirical loss functions,
which penalize the violation of given constraints,

mX
i=1

L(yi; f(xi))+�

nX
i=1

L0(y0i; f(xi1); f(xi2))+�
(kfkH);

(2)
where we call L0(y0i; f(xi1); f(xi2)) pairwise loss func-
tions. It is desirable for the pairwise loss function to give a
high penalty when f(xi1) and y0if(xi2) have different signs
but low penalty otherwise. Meanwhile, the loss functions
should be robust to noisy data. Therefore, the problem can
be translated into seeking a family of loss functions with the
above properties. Analogous to the misclassification loss,
we can choose

L0(y0i; f(xi1); f(xi2)) = I(sgn[f(xi1)] 6= sgn[y0if(xi2)]);

which gives a unit penalty for violation of pairwise con-
straints, and no penalty at all otherwise. Although mini-
mizing this exact loss may be worthwhile, in this form it
is generally intractable to solve and even worse, it is not ro-
bust to noisy data without the ability to penalize large errors
more heavily. Following the idea of ”margin”, we can also
choose a pairwise loss function to be a monotonic decreas-
ing function of y 0if(xi1)f(xi2), i.e.,

L0(y0i; f(xi1); f(xi2)) =
eL0(y0if(xi1)f(xi2)):

However, in most cases this function is not a convex func-
tion and thus finding global optimum is no longer guar-
anteed. Taking all these factors into account, we choose
loss function L0 to be a monotonic decreasing function of
the difference between the predictions of two pairwise con-
straints f(xi1)� y0if(xi2), i.e.,

L0(y0i; f(xi1); f(xi2)) = eL0(f(xi1)� y0if(xi2));

which plays a similar role as the residues y�f(x) in regres-
sion. The intuition is that the prediction difference can be a
”soft” measure of how possible it is the pairwise constraints
would be violated. When eL0 is convex, these pairwise loss
functions have a nice property of convexity to f(x i1) and

f(xi1), and thus allows us to apply standard convex opti-
mization techniques.

Similar to the loss function in regression, the pairwise
loss function should be symmetric for any example pair, i.e.,eL0(f(xi1) � y0if(xi2)) = eL0(y0if(xi2) � f(xi1)). There-
fore, eL0 is an even function and could be represented as
eL0(x) = fL00(x)+fL00(�x), where fL00 now can be any mono-
tonic decreasing function f : X ! R. To ensure the label
loss function and pairwise loss function are comparable, we
usually choose fL00 in the same form as eL. Putting all these
together, our primal optimization problem has the following
form,

mX
i=1

eL(yif(xi)) + �

nX
i=1

eL(f(xi1)� y0if(xi2))

+�

nX
i=1

eL(y0if(xi2)� f(xi1)) + �
(kfkH): (3)

Note that when the number of pairwise constraints n is zero,
it trivially degraded to a margin-based learning problem
with only labeled data.

A special case for Eq(3) is to fit a linear decision bound-
ary on the input feature space, i.e., f(x) can be expressed
in form of wTx and kfkH = kwk in the L2 space. Sub-
stituting f(x) = wTx and kfkH = kwk into Eq(3), we
have

mX
i=1

eL(yiwTxi) + �

nX
i=1

eL(wTxi1 � y0iw
Txi2)

+�

nX
i=1

eL(y0iwTxi2 � wTxi1) + �
(kwk): (4)

It can be shown that the objective function of Eq(4) when
� = 1 is equivalent to the objective function of Eq(1) with
a expanded labeled data set, which includes 2n pseudo-
labeled data (x = xi1 � y0ixi2; y = 1) and (x = xi1 �
y0ixi2; y = �1) in addition to original labeled data. This
property is intriguing because it allows a quicker imple-
mentation for linear kernel classifiers by means of adding
2n new training examples without modifying existing algo-
rithms or software packages.

Note that in our experimental implementation, we adopt
the logistic regression loss function as the empirical loss
function eL(x) = log(1 + e�x), yielding

mX
i=1

log(1 + e�yif(xi)) + �

nX
i=1

log(1 + ef(xi1)�y
0

if(xi2))

+�

nX
i=1

log(1 + ey
0

if(xi2)�f(xi1)) + �
(kfkH); (5)

because it can be easily solved by unconstrained optimiza-
tion techniques. However, our discussion can be extended
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to other loss functions as well. Figure 2(b) depicts the pair-
wise loss function used in Eq(5).

2.2 Kernelization

In this section, we present the kernelized representation of
the primal problem Eq(5) using the representer theorem [9].
This representation allows simple learning algorithms to
construct a complex decision boundary by projecting the
original input space to a high dimensional feature space,
even infinitely dimensional in some cases. This computa-
tionally intensive task is achieved through a positive definite
reproducing kernel K and the well-known ”kernel trick”.

To begin, let C(�) represent the empirical loss and

(kfkH) = kfk2H. Therefore, the primal problem Eq(5)
can be rewritten as,

min
f2H

C(fyi; f(xi)g; fy
0
i; f(xi1); f(xi2)g) + �kfk2H: (6)

The loss function C(�) is pointwise, which only depends
on the value of f at the data points ff(xi); f(xi1); f(xi2)g.
Therefore by the representer theorem, the minimizer f(x)
admits a representation of the form

f(�) =

m0X
i=1

�iK(�; �xi)); (7)

where m0 = m + 2n, �xi = fx1; : : : ; xmg _
fx11; : : : ; xm1g _ fx12; : : : ; xm2g is a expended training
set including labeled examples xi and examples from every
pairwise constraints fxi1; xi2g.

In the following, denote by K the m 0 � m0 Gram ma-
trix. Moreover, denote by K l an m � m0 matrix con-
taining top m rows of K corresponding to x i, i.e., Kl =
[K(xi; �xj)]m�m0 . Similarly, denote by Kl1 and Kl2 the
n �m0 matrices containing n rows of K corresponding to
xi1 and xi2 respectively. We derive the kernelized repre-
sentation of logistic regression loss function by substituting
Eq(7) into Eq(5),

R(�) = ~1T log(1 + e�Kp�) + �~1T log(1 + eK
0

p�)

+�~1T log(1 + e�K
0

p�) + ��K�; (8)

where � = f�1 : : : �m+2ng, the regressor matrix Kp =
diag(y1 : : : ym)Kl and the pairwise regressor matrixK0

p =
Kl1 � diag(y01 : : : y

0
n)Kl2.

To find the minimizer �, we derive the parameter esti-
mation method using the Newton-Raphson method to iter-
atively solve the equation. Since the optimization function
is convex, Newton method can guarantee the finding of the
global optimum. The gradient and Hessian are as follows,

@R(�)

@�
= KT

p p+�(K0T
p p�K

0T
p (1�p)) +�KT�; (9)

@2R(�)

@�2
= KT

pWKp + 2�K0T
p W

0Kp + �KT ; (10)

where p(x); p0(x) denote the logistic model

p(x) =
eKp�

1 + eKp�
;p0(x) =

eK
0

p�

1 + eK
0

p�
;

and W;W0 denote the corresponding weighted matrices
diag(p(xi)(1� p(xi))) and diag(p0(xi)(1� p0(xi))).

It can be shown that the Newton updates are � 7!

�� (@
2R(�)
@�2

)�1 @R(�)
@�

. In practice, we solve this optimiza-
tion problem with a subspace trust region method based on
the interior-reflective Newton method described in [10]. In
the rest of this paper, we will call this learning algorithm
pairwise kernel logistic regression (PKLR).

2.3 An Illustrative Example

To show the advantages of incorporating pairwise con-
straints into discriminative learning, we prepared a syn-
thetic spiral dataset shown in figure 3(a) which is non-
linearly separable. There are a total of 201 positive exam-
ples and 199 negative examples. 40 training examples are
randomly sampled from each class. Additional 4 pairs of
positive constraints are also provided on the dataset. With
only the labeled data, the conventional kernel logistic re-
gression(KLR) misclassifies the tails of two spirals due to
insufficient labeled data (figure 3(b)). The additional pos-
itive constraints might be useful to correct the bias. How-
ever, applying the RCA algorithm [4] with these constraints
only leads to slightly performance improvement shown in
figure 3(c), since the true distance metric cannot be simply
modeled by a Mahalanobis distance. In contrast, the PKLR
algorithm learns a much better boundary shown in figure
3(d) by using pairwise constraints to model the decision
boundary directly. In this example, we intentionally only
generate the positive constraints to provide a relatively fair
comparison with the RCA algorithm. In fact, negative con-
straints can be naturally applied in the PKLR framework.

3. Extension to Multi-class Classifica-
tion

In the following discussion we extend our learning frame-
work to multi-class classification. As a first step, it is worth-
while to consider how to present pairwise constraints 1 in
the context of a one-against-all classifier, where it means
that the negative class is less-defined anything else. Positive
constraints still hold because if data pairs are considered the
same object they must belong to the same class. However,

1Note that in multi-class object classification, a pairwise constraint in-
dicates whether a pair of examples are the same object or not, instead of
whether they belong to the same class in a one-against-all classifier
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Figure 3: An illustration of pairwise kernel logistic regres-
sion applied to synthetic data (a) The synthetic dataset. ”Æ”
and ”�” denotes positive and negative examples, ”�” denotes
training data and each pair of framed numbers denote pos-
itive constraints. (b) Decision boundary of KLR. (c) Deci-
sion boundary of KLR in the metric space learned by RCA.
(d) Decision boundary of PKLR

negative constraints, which means two examples are not the
same object, can no longer be interpreted as that two ex-
amples are in different classes because it might be the case
they both belong to the negative class. Therefore for nega-
tive constraints, we can only penalize the cases where they
are both labeled as positive. Thus, the modified loss func-
tion can be defined as,

Reg0(f) =
X
i

eL(yifi) + �
X
y0

i
=�1

eL(�fi1 � fi2)

+�
X
y0

i
=1

(eL(fi1 � fi2) + eL(fi1 � fi2)) + �
(kfkH); (11)

where fi denotes f(xi). One-against-all classifiers allow
the learning algorithm to handle new types of objects in the
test set by classifying every unseen objects into the negative
class. This is important especially when the number of the
training examples is small.

With the aid of this one-against-all representation, we
can simply extend our algorithm to multi-class classification
with some output coding schemes. We choose a loss-based
output coding scheme to construct a multi-class classifier
using multiple binary classifiers [11],

ŷ = argmin
r

SX
s=1

LM (mrsfs(x)) ;

where S is the number of binary classification problems, s

is the their indices, r is the class index, mrs is the elements
of coding matrix and fs(x) are the prediction for x using
classifier s. The loss function LM we choose is the same
as eL(x), i.e. LM (x) = log(1 + e�x). The one-against-all
coding matrix is adopted in our experiments. Note that if
only positive constraints are available, we can also use the
other coding schemes as long as there are no zero entries in
the coding matricies, such as ECOC coding schemes.

4. Experiments
In the experiments that follow, we applied the PKLR algo-
rithm to the task of classifying people identities with two
datasets from real-world surveillance video.

4.1. Data Collections and Preprocessing
To test the performance of the PKLR algorithm, we col-
lected two different datasets from a geriatric nursing home
surveillance video. One of the datasets was extracted from
a 6 hour long, single day and single view video. The other
dataset was extracted from video across 6 consecutive days
from the same camera view. Both collections were sam-
pled at a resolution of 320 � 240 and a rate of 30 frames
per second. The moving sequences of subjects were auto-
matically extracted using a background subtraction tracker.
The silhouette images, each of which corresponds to the ex-
tracted silhouette of a moving subject, are sampled from the
tracking sequence every half second. In this experiment, we
mainly experimented on images that did not have any fore-
ground segments containing two or more people. Finally,
we obtain the single day dataset with 63 tracking sequences
or 363 silhouette images for 6 subjects, and the multiple
day dataset with 156 tracking sequences or 1118 silhouette
images for 5 subjects.

Because of the relative robustness of color histograms to
variations of target appearance, we represent the images us-
ing a histogram of HSV color spaces in the following exper-
iments, where each color channel has a fixed number of 32
bins. Thus we have a total of 96 one-dimensional features in
the color histogram. Some examples of these two datasets
are depicted in figure 4. From these examples, it can be
seen that the silhouette images are collected from various
lighting environments and the subjects walked in arbitrary
directions. For each subject, the color representation is rel-
atively stable in the single day dataset, but it is much more
diverse in the multiple day dataset, which makes learning
more difficult.

4.2. Selecting Informative Pairwise Constrains
from Video

As mentioned in section 1, there are several types of pair-
wise constraints that can be extracted from a video stream.
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(a)

(b)

Figure 4: Examples of images from the datasets collected
from a geriatric nursing home. (a) Examples of 6 subjects
in the single day dataset. Each column refers to a differ-
ent subject, (b) Examples of 5 subjects in the multiple day
dataset.

In this paper, we pay particular attention to two types of
pairwise constraints:

Temporal Constraints This type of constraints is obtained
by knowing the temporal relation in video sequences.
For example, a sequence of extracted regions gener-
ated from tracking a single moving object can be as-
sumed to indicate a single person. On the other hand,
two regions extracted simultaneously from a camera
cannot be the same person.

Active Constraints In analogy to active learning
paradigms, this type of constraints is obtained
from users’ feedback. Typically, the system gives
users the most ambiguous pair of examples and users
provide the constraint label as feedback.

However, for the video data there are always too many pair-
wise constraints to incorporate. To address this, we would
like to select the most informative pairwise constraints be-
fore applying our learning algorithm. One important ob-
servation is that surveillance video data generally arrive in
the form of image tracking sequences. If the constraint be-
tween every image pair of tracking sequences G1 and G2

has to be modeled, the pairwise loss function in Eq(3) will
be expanded to a sum of jG1jjG2j terms,

L0(y0; f(G1); f(G2)) =

jG1jX
i=1

jG2jX
j=1

eL(f(xi)� y0f(xj))

for every xi 2 G1 and xj 2 G2
2. In the case where ei-

ther jG1j or jG2j is large the computational complexity will
be very large. However, it is reasonable to assume that the
images in a single sequence are similar to each other and
thus the pairwise constraints (xi; xj); xi 2 G1; xj 2 G2

are likely to be redundant. Based on this assumption, we
aggregate all of the sequence constraints using the cen-
troids �i which is the mean color histogram of every se-
quence images as an approximation. Therefore, we have
the following pairwise loss function: when G1 = G2 = G,
L0(y0; f(G1); f(G2)) =

PjGj
i=1
eL(f(xi) � f(�)), or when

G1 6= G2, L0(y0; f(G1); f(G2)) = eL(f(�2)� y0f(�1)).
Another observation can help to further reduce the num-

ber of pairwise constraints, i.e., it is not necessary to incor-
porate the pairwise constraints for which the KLR algorithm
already provide correct predictions. But this criterion is not
applicable in practice since true constraints are not known
for unlabeled sequence pairs. As an alternative, we first
choose the most ambiguous sequences based on the predic-
tion ambiguity of KLR, and then construct the correspond-
ing pairwise constraints. Since our following experiments
are dealing with multi-class classification, we adopt a selec-
tion strategy called best-worst case model proposed in [2],
of which the rationale is to choose the most ambiguous se-
quences by maximizing the expected loss for the predicted
label,

argmax
x

min
r2Y

SX
s=1

LM (mrsfs(x)): (12)

Figure 5 summarizes the learning process with the selection
strategies for pairwise constraints. A kernel logistic regres-
sion algorithm is first applied with only the labeled data.
The top K ambiguous sequences fG1; :::; GKg are selected
based on Eq(12). For each sequence G i, we add a temporal
constraint (Gi; Gi; 1) into constraint set. For any pairs of
sequences that overlap, a negative constraint (G i; Gj ;�1)
will be constructed. Moreover, the nearest training se-
quence to gj in terms of kernel distance is coupled with
Gi to form a active constraint (Gi; Gj ; yij), which pairwise
labeling is requested from users. Finally, the PKLR algo-
rithm is trained with both existing labeled data and addi-
tional pairwise constraints.

2Note that G1 and G2 can be the same sequence G, which refers to
modeling the self-similarity of sequence G.
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Figure 5: The flowchart of the learning process. See text for
details.

4.3. Performance Evaluation

Our experiments are carried out in the following way. Each
dataset is first split into two disjoint sets based on temporal
order. Training images are randomly drawn from the first
set, which contains 50% of the first set’s sequences. The
rest images are used as test images. For every specific pa-
rameter setting, we increase the number of sequence con-
straints from 0 to N until the classification performance is
relatively stable. N was chosen to be 20 in the single day
dataset and 40 in the multiple day dataset. In terms of active
constraints, we simulated the human labeling process using
true pairwise constraints without actually asking a human to
label in each iteration. For each experiment, the training set
is repeatedly re-sampled 10 times to provide a more stable
estimation of performance.

For evaluation, the prediction error rate is reported. The
baseline performance uses the KLR classifiers with ma-
jority voting scheme, i.e. each image is predicted inde-
pendently and for each sequence the majority label is pre-
dicted as true labels. We used the RBF kernel K(xi; xj) =

e��kxi�xjk
2

with � = 0:08 in all of our experiments,
which was chosen by maximizing the accuracy with cross-
validation in the training set. Also, we empirically set the
regularization parameters � to be 0.001, and pairwise coef-
ficient � to be 1.

The first series of experiments compare the effectiveness
of the PKLR algorithm using different types of pairwise
constraints together with the baseline classifier shown in
figure 6(a) and 6(c). Three different curves are plotted, in-
dicating the performance of the PKLR algorithm using tem-
poral constraints, using active constraints and using both
of them. For both datasets we observed that the error rate
can be considerably reduced even with a small number of
constraints. Learning with temporal constraints is effective
in the single day dataset but unable to get improvement in
the multiple day dataset. This is partially due to the di-
verse color representation in the multi-day data. It degrades
the effectiveness of temporal constraints which cannot cap-
ture long term relations between examples. However, active
constraints, if available from users, can be more effective to
reduce the error in both datasets. Moreover, the combina-

tion of both constraints produced a higher performance. For
the first dataset, it reduces error rate from 20% down to 4%
with 20 pairs of both type of constraints. For the second
dataset, it again reduces error rate from 22% down to 8%
with 40 pairs of both type of constraints.

In figure 6(b) and 6(d), we also compare the performance
of the PKLR algorithm with the RCA algorithm using the
same amounts of pairwise constraints. We use the RCA al-
gorithm to learn a better distance metric before applying the
KLR for prediction. An identity matrix �I is added to the
inner chunklet covariance matrix to make it invertable. Be-
cause RCA can only take the positive constraints as input,
another curve is depicted for PKLR algorithm with the pres-
ence of only positive constraints. A combination of tempo-
ral and active constraints is applied in all three experiments.
The results show that our algorithm achieves superior per-
formance to the RCA algorithm even without negative con-
straints. On the other hand, the experimental results also
demonstrate the usefulness of incorporating negative con-
straints.

5. Conclusion
We have presented a discriminative classification frame-
work which can learn the decision boundary with labeled
data as well as additional pairwise constraints. The ex-
periments with two surveillance video datasets demon-
strated the proposed approach could achieve considerable
improved performance with pairwise constraints, compared
to the baseline classifier which uses labeled data alone and
majority voting scheme. The proposed approach also out-
performs a metric learning algorithm using pairwise con-
straints called RCA algorithm when using the same number
of pairwise constraints.

Future work includes incorporating different types of
noisy multi-modal pairwise constraints, such as face recog-
nition and speaker identification. It would be interesting
to study how these different types of pairwise constraints
can improve the performance of a discriminative classifier.
We would also like to point out that although our learn-
ing framework and previous work on learning distance met-
ric exploit the pairwise constraints in a different way, they
are somehow complementary. It may be possible to apply
the proposed learning framework in a new distance metric
learned from the other algorithms.
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Figure 6: Summary of the experimental results (a) The error rate of PKLR against number of constraints with different
constraint types in the single day dataset. The number of constraints is growing from 0 to 20 at a step 4. The result were
obtained by 10 repeated runs with different randomly drawn training and testing images. We compared three cases: using
temporal constraints only, active constraints only and both types of constraints. (b) Comparison of PKLR with all constraints,
PKLR with positive constraints and KLR with RCA algorithms in the single day dataset. (c), (d) are similar to (a), (b) except
reported in the multiple day dataset. The number of constraints is growing from 0 to 40 at a step 5.
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