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Abstract. The maximmm cntropy method has recently been successtully intro-
duced to a variety of narural language applications. In each of these applications,
however, the power ol the maximum enlropy method s aclieved al the cost of
a considerable increase In computational reguirements. In this paper we present
a techuique, closely related 1o the classical clusler expansion [rom statistical me-
chanies, for reducing the compntational demands necessary to caleulate conditional
maxinmm entropy language models.

1. Introducticon

In this paper we present a computational technique that can enable faster cal-
culation of maximum entropy maodels. ‘The starfing point for aur method is an
algoritlin [1] for constructing maximum entropy distributions thal is an exlension
of the generalized iterative scaling algorithm of Darroch and Rateliff [2.3]. 'LI'he
extended algorithm relaxes the assumption ol [2,3] thal the constraint [unctions
sum to a constant, and results in a sct of decoupled pelynemial cquations, onc for
each featnre, that must be solved to obtain the scaling terms. For each iteration,
the distribution must be normalized (that is, the partition [unction must be cal-
culated). and the coefficients of the polynamials must he determined; these steps
have roughly the sarne compulational cost.

For language modeling applications the partition function and coellicient cal-
culations cntail summing over the target vocabulary, typically on the order of
10,000-100,000 words, and determining those features that apply ta each possible
word for cach context that appears in the training data. When this caleulation is
implemented directly by carrying out the summation while hashing ta determine
[ealures and fealure weighls, 1l can be exceedingly slow. We address this problem
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by nse of a technique that we call the cluster expansion, dne to its resemhblance to
series expansion methods in statislical physics, thal carries out both the partition
tunction and coctlicient caleulations cfficiently. Qur basie idea i1s to aveid hashing
and an explicit summation over the entire target vacabulary for each context by
caleulating the partition function (or coctficients) for all contexts simultanconsly
as a telescoping sum of palynomials in the feature weights. By choosing the data
structures 1 the implernentation appropriately, the cluster expansion can be easily
implemented for a class of language models that includes n-gram constraints in
addition to state canstraints fram an underlying autamaton, or other long-distance
constraints.

In this paper we present a description of the hasic technique as well as its
application to the construction of a simple language model lor use in a speech
recognition system.

2. Language Modeling
2.1. LANGUAGE MODELS AS PRIORS FOR BAYESIAN DECODING

Language modcling attempts to 1dentify regularitics in natural language and cap-
ture them in a statistical model. Language models are crucial ingredients in auto-
matic speech recognition [4] and statistical machine translation [5] systems, where
their use is naturally viewed in terms of the noisy channel model from information
theory. In this [ramework an information source ermits messages X [rom a distri-
bution P{X) which then enter into a noisy channel and emerge transformed into
ohservables ¥ according to a conditional prohability distribution P(Y | X'). "The

preblem of decoding is to determine the message X having the largest posterior
probability given the observalion:

X= argmax P(X | V) = argmax P(Y | X) P(X).
Xer XeH '

Thus, Bayesian decoding is carried ont using a prior distribution P(X) on mes-
sages, a channcl model P(Y | X), and a decoder argmaxy .. For speech recogni-
tion and machine translation, the prior distribution is called a language model and
il musl assign a probability to every siring of symbols thal can be hypothesized by
the decoder. The most common language models used in today’s speech systems
are the n-gram madels, constructed in terms of simple word frequencies.

2.2, CONDITIONAL MAXIMUM ENTROPY LANGUACGLE MODLELS

In the usual application of the maximum entropy principle [6], prior information,
typically 1 the lorm of [requencies, 1s represeuted as a sel of coustraints which
collectively determine a unique maximum entropy distribution. For example, if we
ohserve certain bigram word frequencies r;; = pag; w;) and we constrain a lan-
guage modael to agree with these observations, the maximum entropy distribution
assigns a probahility pa (W) to a ward string W according to a Gibhs distribution
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of the form
; 1 ;
W) = —-exp %j g fi5 (W)

where the feature fi; (W) counts the number of times the bigram w,w; occurs in
the siring W, and where thie partition [unction Zy 18 oblained by sumiming over
all possible word strings .

In contrast to this use of the joint distrihution, recent applications of the max-
tmum entropy method in language modeling [7,8] have employed conditional mod-
cls. Such models employ features to represent varions frequencics in the training
text, such as the bigram features just mentioned, but they use this information
to constrain a family of conditional exponential models. Factoring a word string

W = wqtey - into conditional prohabilities we can write
N N
P = plwoy) H plwg | wow - --wiZq) = plug) HP(U-’;:‘ | ;)

= i=1

where h; 18 the history at time i. In terms of conditional models, the constraints
arc prescnted as

Z plh) ZP('UJ | ) falhyw) = Z plhyw) falh,w)
1) W

Bt

where A 1s a history, and (e maximum enlropy model subject 1o these constraints
ig given by

1 .
e | 2 delelhw) ) (1)

el =
T'he partition funetion 75 (h) is now abtained fram summing aver the farget word
vocabulary, rather than over all word strings. Clonstraining a family of conditional
models in this manner 18 typically much more manageable computationally than
working with a single constrained joinl distribution. In addition, the use of condi-
tional models is desirable for applications which process the input in a left-to-right
fashion.

3. Dterative Scaling

The gencralized itcrative scaling algorithm of Darroch and Ratcliff [2] is one
method for calenlating the maximum entropy distribution (1). This algorithm
assutnes thal the [eatures [, (e, @) are non-negalive and sum Lo a constant, inde-
pendent of A and w:

M(h,w) = Z folhow) =M, forall h,w. (2)
(Given these restrickions, the Darroch-Rateliff algorithm begins with an initial

madel, typically the uniform distribution obtained by sctting A, = 0. In the it-
erative step, when the current model is pi(w | h), the algorithm increments each
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parameter X, by an amount AX, determined hy

( 2 ohw PURw) fulh w) )

A/\Q:—

Zh L p(h Px ”‘lh f” I, U]

Letting AJ, = e, we can express this update as choosing Ag, 1o be the unique
solution of the equation

JE [frfiﬁgﬂ = plfs] (3)
where ¢[-] denotes expectation with respect to ¢ and we use p, to denote the
distributlion gy (h, w)y = plhipalw|h).

While the restriction (2) on M can always be enforced by introducing a “slack
variahle,” it can he inconvenient ta do so for conditional maximum entropy lan-
guage models that typically have hundreds of thousands of features. In [1] an
algorithm wag introduced that extends the Darroch-Rateliff procedure by relaxing
the assumption that M (%, @) is a constanl. The updates lor the improved algo-
rithm are again given by cquation (3), but with M now interpreted as a random
variahle. When (2) holds, the algorithms are identical. In general, the algorithm
which allows M Lo vary is more natural and easier Lo implement. Tl also couverges
more quickly, hy effectively inereasing the step size taken toward the maximum
entropy solution al each ileralion.

4. Cluster Expansions
4.1. THE MAYER EXPANSION FOR A CLASSICAL GAS

It the Hamiltonian for a classical N-particle system is given by H = 152; P2+
Z,Kj v;; and the system accupies a valume ¥, then the classical partition function
ol the system al lemperalure T s given by

Qn(V, 1) }ts‘»’?\' /w [ dpdyg exp ——321} —’321,,

i<

where 4 = 1/&7 and f is a constant introduced to make @Qx dimensionless. Com-
puting the integral over the momenta reduces this to

Qz\f (If, T) W / ([(}' CXp —;‘)) Z vy Ag\r i N [\1"7, TJ

z<]

a . . . . g
where X\ = /2707 /kT. The idea of the cluster cxpansion is to make a change of

varlables

iy = e~ |

and cxpand Zy as a sum of products of oy

Za(V, 1) = [ qu L4 gy )= /dq 1-I-Z(f)r:j-I-ZZfﬁ;jfﬁm—l----
Vv

[R] ! i f g k<l
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A convenient way to think about the integrals that need to be computed comes
from expressing the various terms as graphs. If N = 3, for example, the integrands
are represented as graphs as follows:

3

3 3
P12 — ) $12 P23 — \ @12 @23 P13 — A

1 2 1 2 1 2

In terms of this correspondence, Zy = >, S(G), where the sum is over all N-
particle graphs and S(G) is the appropriate integral; for example,

3

S(L):/‘/dquﬁszl&

1 2

If a graph G is disconnected, then S(G) factors into a product of terms, and each
connected component is referred to as a cluster. The Mayer cluster integral b; is

given by by = 1/13 7 11 iers @, S(G1). Thus,

3 3 3 3
1
] DNV VAN
' 1 2 1 2 1 2 1 2

Simple combinatorial arguments lead to an expression for Zy in terms of the
integrals b;. While this is then carried further to obtain a series expansion for
the grand partition function, our use of the method will simply make use of the
discrete analogues of the integrals b; for conditional models. For more details on
the statistical physics calculations we refer to [9].

4.2. CLUSTER EXPANSIONS FOR CONDITIONAL MAXENT MODELS

The computation necessary to carry out the iterative scaling algorithm described
in Section 3 is naturally divided into two parts. First, for a conditional maximum
entropy model of the form (1), it is necessary to compute the partition functions
Zx(h) for each history h such that p(k) > 0. Using the notation from statistical
physics, we make the change of variables ¢, (h, w) = e*> fe(h®) _ 1 50 that Z,(h)
can be expressed as

)= JI0+¢) =D [ 1+D o+ D badar+ -

w

In analogy with the classical expansion, this expresses the normalization 7, (h)
as a sum of cluster integrals, where > >~ ¢a(h,w) is the order one cluster,
> Dot @a o is the order two cluster, and the highest order cluster that needs
to be cofnputed is the order-M cluster where M is the largest value of )~ fuo(h, w).

This gives an ezact expression for Zy(h) as a telescoping sum. The point of
using this technique, as we will explain further in the following section, is that
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computation of the individual clusters can be significantly more efficient than com-
puting Zy{h) directly. Turthermore, the computation of the clusters can be shared
across different histories. The use of Cheeseman’s method [10,11] of reordering
summations within a cluster can provide further savings.

The sceond computation that is necessary is the ealculation of the coctficients
of A3, in the expectation pa[f.AZY] that appears in the scaling equation (3). In
a mauner sunilar o that described above, we expand 1 terms of ¢. 1o oblain

- #h) ; W—
in[faAAM] = il 1 iy By G+ | Falh,w) AgMlan)
mfetrd)] ;Z,\[h_]g +ZJ’:(‘JW+;J;I”): + Falh,w) AFD

Here again, indircet computation of the cocfficients through the caleulation of the
individual cluster terms can be significantly more efficient, than direct compntation.
The pritary savings that this technique allords results from ils avoidance of an
cxplicit summation over the entire target vocabulary for cach history. In addition,
it can make hashing for feature lookup unnecessary. While we do not generally
obtain beller theoretical computational complexily, this simple trick can result
in substantial savings in the computation necessary for carrying our generalized
tlerative scaling., We will now give further details of these calculations lor a simple
topic-dependent bigram model developed for use in a speech recognition system.

5. Example: A Topie-Dependent Language Model

In this seclion we describe the application of the cluster expansion o the train-
ing of a topic-dependent bigram model of the Switchboard corpus [12] for use in
a speech recognition system. This corpus comprises approximately three million
words of text, transcribed [rom more than 150 hours of speech collected [rom
telephone conversations. An important aspect of the Switchhoard corpus is that
the couversations are restricled Lo 70 dillerent topies. To take advantage ol this
gtructure, we trained a maxinum entropy language model whose constraints were
of three types. In addition to unigram and bigram constraints, we introduced
lople-dependent unigram constraints [or those words having the greatest rmutual
information with the topic.

More precisely, the model thal we construcied was specilied as [ollows, Condi-
tioning on a word history A which cnds in a word w’, the probability of predicting
w ig given hy

plw | k) = Zp(topic =t R plw|h,t) = Z pltopic = ¢ | 1) plew | w', 1) .
1

t

This model has two components: a tepic prediction model p(topic = ¢| k) and a
word prediction model p(rw; |1 wy). (The tapic prediction maodel is not discussed
here.) The word prediction model 1s constructed as a conditional maximum entropy
distribution of the form

1 .
palwy | owi) = mexp (i + A+ Agj)
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We thus place constraints on the model so that it agrees with the bigram and
unigram frequencies as they appear in the data. In addition, we constrain the
topic-dependent unigrams, corresponding to the parameters A;;, for those words
wj that appear with sufficiently high mutual information with topic ¢. For example,
the topic-independent bigram constraint equations take the form

D wi, ) p(wy [w;, 1) = plw;, wy) = e
1

where p 1s the empirical distribution, and the corresponding scaling equations
update A;; by an amount A);; = log Af;;, where AS;; is the unique positive
solution to the equation

Z[)(wi, t) p)\(w]' | wi,t) Aﬁ%(i’t’j) = 5 -
t

The constraint and scaling equations for the parameters A; and A;; are similar.

To apply the cluster expansion technique to this model we express the partition
functions Z,(i,t) in terms of the variables ¢, = ej — 1 and expand Z,(i,t) =
Z]»(l + ¢;)(1 4 ¢4;)(1 + ¢;;) into a sum of four cluster “integrals”

Za(i,0) = by + by (i, 1) + ba(i, 1) + b3 (i, 1) .

Using a variant of the physicists’ graph notation that is appropriate for conditional
models;, we can express these terms as a sum over all configurations of a set of
graphs; for example,

U P > .
bo(i,8) =S - +i° +,~7 .

In these figures the unlabeled vertex is summed over, and an edge connecting the
vertex labeled ¢ denotes a unigram term ¢;. Thus,

€

bs(i,t) =S| ¢ = ¢ bij b -
J

i

We use the fact that ¢, = 0 unless A, 1s a parameter that is being estimated.
This is what allows the above telescoping summation to be carried out efficiently;
for example, the summation Z]' ¢;j¢;; is carried out only over those indices j for
which the bigram (w;,w;) is constrained. The largest cluster, bs(i,t), involves a
summation over all those indices j for which the bigram (w;,w;) is constrained
and w; is a topic word for topic ¢t. The cluster integrals for the various values of
(¢,t) with p(w;,t) > 0 can be calculated simultaneously by a single pass through
appropriately constructed data structures, and requires no expensive hashing of
the bigram parameters. A very similar analysis is applied to the task of computing
the coefficients of the iterative scaling equations for all of the parameters. When
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we implementad this technique for the topic-dependent model, the resulting cal-
culation was more than 200 times laster than the direct implementation of the
iterative scaling algorithm.

6. Summary

)

Our use of the cluster expansion for the language model presented in Section
demonstrates that this technique can be an important tool for reducing the com-
putational burden of computing maximum entropy language maodels. ''he methaod
also applics to higher order models such as “trigger models” [8], where oceur-
rences of words far back in the history can influence predictions hy the use of
long-distance bigram parameters. As a general techuique, however, the method is
limited 1n its usctulness. As in statistical mechanics, when the number of inter-
acting constraints is large (é.e., when the gas is dense), the cluster expansion is of
little use in computing the cxact maximum cntropy solution. For such cascs the
nse of approximartion techniques should be investigated.
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