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ABSTRACT 

In this paper several improvements of our speech-to-speech 
translation system JANUS on spontaneous human-to-human 
dialogs are presented. Common phenomena in spontaneous 
speech are described, followed by a classification of differ­
ent types of noises. To handle the variety of spontaneous 
effects in human-to-human dialogs, special noise models are 
introduced representing both human and nonhuman noises, 
as well as word fragments. It will be shown that both the 
acoustic and the language modeling of these noises increase 
the recognition performance significantly. In the experi­
ments, a cluste:ring of the noise classes is performed and 
the resulting cluster variants are compared, thus allowing 
to determine the best tradeoff between sensitivity and train­
ability of the models. 

1. INTRODUCTION 

Recently, a large number of studies has been devoted to the 
task of recognizing and understanding spontaneous speech. 
Compared to read speech, some specific problems exist when 
spontaneous speech is to be recognized. The lack of fluency, 
one of the most important characteristics of spontaneous 
speech, can lead to repetitions, restarts, interjections, stut­
tering, hesitations, unusual stress, and wrong pronouncia­
tion. All of the above mentioned interruptions are pauses, 
which can be either empty (silence), or which can contain 
any kind of noise. The noise encountered in the interrup­
tions can be classified as either nonverbal sounds produced 
by the human vocal tract like laughter, lip smacks, breath­
ing, hesitations, cough, etc. so-called human noises, or as 
nonarticulatory noises, like paper rustle, key click, door 
slam, telephone ring, etc. so-called nonhuman noises. A 
superposition of noises and speech is not considered in this 
paper. 
Bootstrapping our JANUS-2 speech recognizer towards spon­
taneous speech, the recognition performance dropped sig­
nificantly compared to read speech. [1] showed that 20% 
of the errors between the alignment of the phonetical ref­
erence transcription and the phonetically recognized hy­
pothesis, were due to un modeled pause fillers and noises 
in the ATIS task. This suggest that the modeling of spon­
taneous speech events should significantly reduce the error 
rate. The explicit modeling of 14 human and nonhuman 
noises decreased the word error rate of the PHOENIX sys­
tem on the Spreadsheet-Task dramatically [2]. Compared 

to human-to-machine tasks, e.g. ATIS, human-to-human 
dialogs contain a greater variety of human and nonhuman 
noises. Modeling these effects is extremely important for 
human-to-human speech recognition tasks. 

2. JANUS-2 WITH A NEW DATABASE 

JANUS-2 is the spontaneous speech-to-speech translation 
system of Carnegie Mellon and Karlsruhe University [3, 4]. 
It was designed as a modular system containing a speaker 
independent recognizer for utterances spoken in English, 
Spanish, and German, and a parser which analyzes the hy­
potheses and translates them into an Interlingua represen­
tation. German, English or Japanese text can be generated 
from the Interlingua representation and synthesized by a 
commercially available speech .output device. Several al­
gorithms are available for acoustic modeling, i.e. TDNNs, 
MS-TDNNs, HMM, MLP and LVQ. 
JANUS-2 was extended towards spontaneous spoken human­
to-human dialogs on a new database [3]. This Appointment 

Scheduling database is being collected in a similiar fashion 
in German, English, and Spanish. In each session, two per­
sons are asked to schedule a fictitious meeting with their 
human dialog partner. The data used in the following ex­
periments consists of 63 English dialogs. A dialog represents 
in the average 9 utterances. The dialogs were divided into 
43 dialogs for training (387 utterances) and 20 dialogs of dif­
ferent speakers for testing (173 utterances). The utterances 
are transcribed using a set of l4 human and 23 nonhuman 
noise words to represent the human and nonhuman noises. 
In addition, the transcription format marks word fragments 
produced by restarts, repetitions, and interruptions as well 
as pauses. Including these noise words the vocabulary has 
a size of 865 words. 

Training Test 

dialogs 43 20 
utterances 387 173 
minutes of speech 62 27 
words 10760 4731 
noises 2383 959 

Table 1: Dialog Statistics for the training and test set 

Table 1 shows the properties of the task in the training and 
the test set. 
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3. ACOUSTIC MODELING 

For acoustic modeling a phonetically tied SCHMM trained 
for speaker independent recognition was used [5J. In order 
to generate acoustic models for the human and the nonhu­
man noises, new dedicated phonemes were added to the ex­
isting set of 46 context independent phonemes. To guaran­
tee a minimum amount of training input per model, classes 
of noises have to be created. Frequent human noises ( "ah", 
breathing, lip smack, "uh", "urn" ) and nonhuman noises 
(key click, paper rustle) form a class of their own. Hu­
man noises which are less frequent build the common class 

+human+; rare nonhuman noises are joined in the class 
+nonhuman+. A special class +garbage+ was introduced 
to handle those word fragments which were generated by 
restarts, repetitions, etc., and could not be modeled as reg­
ular words. 

Noise 

ah 
breathing 
lip smack 
uh 
urn 
+human+ 
key click 
paper rustle 
+nonhuman+ 
+garbage+ 
Silence 

total 

Training Test 
counts % I counts 

41 0.38 22 
766 7.12 294 
316 2.94 137 
200 1.86 80 
195 1.81 62 
67 0.62 29 

401 3.73 186 
41 0.38 24 
67 0.62 18 
74 0.69 33 

215 2.0 74 

0.47 
6.21 

2.9 
1.69 
1.31 
0.61 
3.93 
0.51 
0.38 

0.7 
1.56 

2383 22.15 I 959 20.27 

Table 2: Frequencies of the 10 noise classes 

The absolute and relative frequencies of the 10 modeled 
classes of noise are shown in table 2. It can be seen, that 
human-to-human dialogs seems to have a very high rate of 
noise events and this fact is reflected in the transcription of 
the utterances. Figure 1 illustrates the balanced occurence 
of the different noises in our training and test set. In con­
trary the transcribed utterances of the ATIS trainingset 
contain not nearly enough noise words to train our noise 
models. 

4. LANGUAGE MODELING 

Different types of language modeling were evaluated. In 
[2J noises are allowed to follow all words without language 
model penalties. So noise words are treated like silences. 
But statistics on occurrence of noise events showed, that 
noise some words are more probable than others at distinct 
locations in the utterance. Key click and breathing for ex­
ample are much more common at the beginning and at the 
ellcl of an utterance. 

Therefore we incorporate noise models into the language 
model. So the noise events are modeled like regular words 
by applying their language model probabilities. These two 
types of language modeling are compared with our baseline 
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like silence 
like regular words 

relative reduction 

6.8% 
10.9% 

Table 3: Word error reduction for language modeling 

system: a bigrarn language model of perplexity 44 with­
out the noise words. The results shown in table 3, suggest 
that modeling the noises like regular words improves the 
performance moderately. 

129 Test 

8% tsl Training 

6% 

4% 

ZOk 

F igure 1: Percentage of noise classes in all words (mono­
grams) 

Modeling the noises like regular words requires that the 
noise words are distinguished from each other. So one rea­
son for the small improvement may be a high substitution 
rate of noises by other noises. Table 4 shows different word 
error rates caused by noise models. In fact, most of the 
errors are due to substitutions of noises by other noises. 
Therefore a better modeling of the noise events, when more 
training data becomes available, should lead to better im­
provements. 

word errors caused by noises 

Substitutions noises-noises 
Substitutions noises-words 
Substitutions words-noises 
Deletions 
Tnsertions 

II 34.4% 

]2.1 
3.2 
1.3 

6.17 
11.61 

Table 4: Analysing the word error rate 

Insertions and deletion of noises are another main source 
of error. But we assume that noise events do not have much 
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semantic relevance. Therefore all noise words are elimi­
nated from the hypotheses before parsing the recognized 
sentences. Because of this fact, noise-to-noise substitutions, 
noise insertions, and noise deletions aTe irrelevant in the 
output of the speech recognizer. Nevertheless, the mini­
mization of deletion and insertion errors is vital to avoid 
continuation errors. But the main objective, if noises are 
stripped out from the hypotheses, is the substitution error 
between noise models and word models. The table shows 
that this kind of substitution error is only a relatively small 
portion of the total error. Contrary to common belief (e.g. 
[1]) we found, that noise models are Hot highly confusable 
with short function words. 

5. CLUSTER EXPERIMENTS 

5.1. Clustering the classes of noises 

Although approximately 20% of all words are noises, the 
lack of training data remains the main problem of acoustic 
noise modeling. T herefore a tradeoff between trainability 
and sensitivity of the models had to be found for a given 
training set. Our experiments examined if the merging of 
noise models would improve the performance of the system. 
Therefore the 10 noise models were clustered, and differ­
ent variants of ILhe resulting clusters were compared. An 
agglomerative clustering algorithm was used, based on the 
acoustic information loss after merging two clusters of noise 
models. Information loss is given by the difference of en­
tropy between the original models and the merged model, 
weighted by their frequencies [6]. This algorithm used a 
heuristic optimization, which allowed elements to be moved 
from one cluster to another. 

F igure 2 shows the results of the clustering procedure. 
The cluster variants are labeled by the number of noise 
classes they contain. As a result, particularly rare but 
acousticly similar models receive more data to be trained 
on. 

breathing 

key click -

paper rustle f--
lip smack I 

uh f--

+nonhuman+ f--
+human+ --

I 
urn -y-
ah 

+garbage+ � cluster 
�!1 8 7 I:) 5 4 � 2 variants 

Figure 2: Result of the clustering of the 10 noise classes 
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5.2. Comparison of the cluster variants 

For each of the resulting cluster variants 23 iterations of 
training were performed. Every other iteration thc recogni­
tion performance was tested, using the word accuracy (WA) 
on the test set. Table 5 shows the averaged results of every 
cluster variant, using the mean WA and the best WA over 
all iterations. 

over all Iterations II average WA best WA 

1 Cluster 45.36 47.2 
2 Cluster 44.52 46.0 
3 Cluster 46.34 48.7 
4 Cluster 44.94 47.1 
5 Cluster 46.74 49.1 
6 Cluster 46.98 51.1 
7 Cluster 44.52 45.2 
8 Cluster 44.52 46.1 
9 Cluster 46.28 49.6 

10 Cluster 46.30 49.8 

Table 5: Average word accuracy for all cluster variants 

For the experiments the baseline system was used, so 
the absolute word accuracy overall is quite low. By today, 
the performance of the system was improved by context­
dependend phonemes, data-driven codebook adaption [7], 
dictionary learning [8], and using morphology for language 
modeling [9]. JANUS-2 has at this time a word accuracy of 
about 66% for English and about 70% for German. 

word accuracy [%] 

---1 Cluster 

+6 Cluster 

50j-__ � 

46 

42 

40 

38�---------� 
1 2-8 9-15 16·22 23 25 

iterations 

Figure 3: Word accuracy for cluster variants 1, 6, 10 

FigllTe 3 shows the two limiting cases, and the best clus­
ter variant. Variant 1 describes the modeling of one noise 
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word for all human and nonhuman noises, so the maxi­
mum amount of training data was available. Variant 10 
describes the opposite extreme. All noise words are trained 
separately, so the maximum sensitivity of the models is 
reached. Variant 6 yields best results for the given test set. 
In this variant, breathing, paper rustle, key click , lip smack 
and "uh" are modeled separately, the remaining noises are 
merged to one common cluster. This variant represents 
the best tradeoff between train ability and sensitivity of the 
noise models. 

relative reduction 

1 Cluster 
10 Cluster 

6 Cluster 

10 % 
14 % 
17 % 

Table 6: Word error reduction for clustering 

5.3. Statistical Relevance 

For indicating the statistical relevance of the results we used 
an empirical test. For each cluster variant we used the 
number of misrecognized words per sentence on the test 
set after the 23rd iteration and performed a t-test for pairs 
[10] to see the significance of the differences of the mean 
values between the best (Cluster 6) and the other variants. 
Table 7 shows the mean number of misrecognized words 
(mean error) over all test sentences, for all cluster variants, 
and the significance given by the two-side probabilities p 
((*: 0.01 < p:S 0.05; **: p:S 0.01)). 

Cluster Variant Iteration 23 Iteration 23 
Mean Error Significance 

1 Cluster 11.52 ** 

2 Cluster 12.15 ** 

3 Cluster 11.25 ** 

4 Cluster 12.23 ** 

5 Cluster 11.06 * 

6 Cluster 10.72 
7 Cluster 12.09 ** 

8 Cluster 11.52 ** 

9 Cluster 11.11 ** 

10 Cluster 11.00 * 

Table 7: Statistical relevance of the results 

6. CONCLUSION 

In this paper, improvements of the JANUS-2 system to­
wards human-to-human dialogs are presented. Analyzing 
the spontaneous spoken database suggests that human-to­
human dialogs contain an extremely high rate of human and 
nonhuman noises. To model these noise events. acoustic and 
language modeling of noises were performed. Overall, this 
lea,ds to a relative word error reduction of 17 %. The lack of 

training data is still the main problem. W hen the database 
increase, we intend to refine the acoustic models and as con­
sequence of better acoustic modeling the language proba­
bilities can be applied more reliably. 
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