
NPen++: A Writer Independent, Large Vocabulary 
On-Line Cursive Handwriting Recognition System 

Stefan IMal.uk, Michael Firike, arid Alex Waibel 

University of Karlsruhe 
Computer Science Depart nien t 
D-76128 Karlsruhe, Germany 

Abstract 

In this paper we describe the NPen++  system 
for wri ter  independent on-line handwriting recogni- 
tion. This recognizer needs no training for a partic- 
ular wr i te r  and can recognize any common writing 
style (cursive, hand-printed, or a mixture of both). 
The neural network architecture, which was originally 
proposed for continuous speech recognition tasks, and 
the preprocessing techniques of NPen++ are designed 
to make heavy use of the dynamic writing inforrna- 
tion, i.e. the temporal sequence of data points recorded 
on a LCD tablet or digitizer. We present results for  
the wr i t e r  independent recognition of isolated words. 
Tested on different dictionary sizes from 1,000 up to  
100,000 words, recognition rates  range from 98.0% for  
the 1,000 word dictionary to 91.4% on a 20,000 word 
dictionary and 82.9% for  the 100,000 word dictionary. 
N o  language models are used t o  achieve these results. 

1 Introduction 

The success and user acceptance of pen computing 
or multi-modal systems highly depends on the qual- 
ity of the on-line handwriting recognition engines of 
these systems. To achieve acceptable recognition per- 
formance currently available handwriting recognizers 
are often either writer dependent or need at  least some 
training for a particular writer to adapt to his hand- 
writing. Additionally people usually have to write in 
a particular writing style, e.g. hand-printed, or have 
to use special character shapes defined in the system 
instead of the usual shapes to get this high perfor- 
mance. All this together makes it very hard for most 
people using these systems to write as natural as they 
usually would do on paper. Too small dictionaries are 
an additional restriction in some of the systems. 
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Figure 1: System overview 

In this paper we present the NPen++  on-line hand- 
writing recognition svstem, which is writer indepen- 
dent and is not constrained to any specific writing 
style. No training or adaptation for a particular 
writer is required to achieve high recognition perfor- 
mance even with dictionary sizes up to 100,000 words. 
NPen++  can recognize any common writing style, i.e. 
pure cursive or hand-printed, or a mixture of both. 
The recognition is not based on bitmaps, which are 
the only source of information in optical character 
recognition, but on the dynamic writing information, 
i.e. the temporal sequence of data points recorded 
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on the LCD tablet or digitizer [lo]. The system is de- 
signed to make heavy use of this temporal information. 
NPen++ (Figure 1) combines a neural network rec- 
ognizer, which was  originally proposed for continuous 
speech recognition tasks [7,8], with robust preprocess- 
ing techniques, which transform the original sequence 
of data points into a still temporal sequence of N -  
dimensional feature vectors. 

We have tested the system on the writer indepen- 
dent recognition of isolated words with dictionary sizes 
from 1,000 up to 100,000 words. Word recognition 
rates range from 98.0% for the 1,000 word dictionary 
and 82.9% for the 100,000 word dictionary without us- 
ing any language model. Even for the largest dictio- 
nary used in the experiments the average recognition 
time for a pattern is still less than 1.5 seconds. 

The following section describes the preprocessing 
techniques used in the system. The architecture and 
training algorithm of the recognizer are presented in 
section 3.  A description of the experiments to eval- 
uate the system and the results we have achieved on 
different tasks can be found in section 4. 

2 Preprocessing 

In optical character recognition (OCR) input usu- 
ally consists of scanned text (bitmaps) without any 
temporal information about how the text was writ- 
ten. The fact that this text was generated through a 
temporal sequence of successive dots is lost in these 
bitmaps. In contrast to OCR, in on-line handwriting 
recognition the dynamic writing information, i.e. the 
temporal order of data points produced during hand- 
writing, is recorded on a LCD tablet or digitizer and 
can be used for recognition [lo]. To take advantage 
of this dynamic writing information it is preserved 
throughout all our preprocessing steps. The original 
coordinate sequence { (%( t ) ,  y ( t ) ) } t c { o  T') recorded on 
the digitizer is transformed into a new temporal se- 
quence x: = 2 0 . .  . XT,  where each frame xt con- 
sists of an N-dimensional real-valued feature vector 

Several normalization methods are applied to re- 
move undesired variability from the original coordi- 
nate sequence [ll]. To compensate for different sam- 
pling rates and varying writing speeds the coordinates 
originally sampled to be equidistant in time are re- 
sampled yielding a new sequence { ( Z ( t ) ,  @(t))}tEiO..,T} 
which is equidistant in space. This resampled trajec- 
tory is smoothed using a moving average window in 
order to remove sampling noise. In a final normaliza- 
tion step the goal is to find a representation of the 

(fl(t), . . . l  f N ( t ) )  E [-I, U N .  

trajectory that is reasonably invariant against rota- 
tion and scaling of the input. The idea is to determine 
the words' baseline and centerline using an Expecta- 
tion Maximization (EM) approach similar to that de- 
scribed in [6]. The baseline is used to rotate the word 
to a nearly horizontal orientation and the distance be- 
tween the baseline and centerline to rescale the word 
such that the center region of the word is assigned to 
a fixed size. 

From the normalized coordinate sequence 
{ ( z ( t ) ,  ~ ( t ) ) } ~ ~ { o . . . ~ )  the temporal sequence z$ of N- 
dimensional feature vectors zt  = ( f i ( t ) ,  . . . , fr~(t)) 
is computed (Figure 2). Currently the system uses 
N = 15 features for each data point. The first two 
features f i ( t )  = z ( t )  - z(t  - 1) and f2(t) = y ( t )  - b 
describe the relative X movement and the Y posi- 
tion relative to the baseline b.  The features f ~ ( t )  to 
f ~ ( t )  are used to describe the curvature and writing 
direction in the trajectory [5] (Figure 2(b)). Since 
all these features are strictly local in the sense that 
they are local both in time and in space they were 
shown to be inadequate for modeling temporal long 
range context dependencies typically observed in pen 
trajectories [2].  These features can't model effects like 
that in the neighbourhood of the current data point 
there might be another part of the trajectory which 
was written earlier or later as it happens e.g. with 
t-crossings that cross already written parts of the tra- 
jectory. Therefore, nine additional features f7(t) to 
fls(t) representing 3 x 3 bitmaps were included in each 
feature vector (Figure 2(a)). These so-called context 
bitmaps are basicall., low resolution, bitmap-like ds- 
scriptions of the coordinate's proximity, which were 
originally described in [2]. 

Thus, the input representation as shown in Figure 2 
combines strictly local features like writing direction 
and curvature with the context bitmaps, which are 
still local in space but global in time. That means, 
eac,h point of the trajmtory is visible from each other 
point of the trajectory in a small neighbourhood. By 
using these context bitmaps in addition to the local 
features, important information about other parts of 
the trajectory, which are in a limited neighbourhood 
o f  a coordinate, are encoded. 

3 The NPenff recognizer 

The NPenf+ recognition component integrates 
recognition and segmentation of words into a single 
network architecture, the so-called Multi-State Time 
Delay Neural Network (MS-TDNN). The MS-TDNN, 
which was originally proposed for continuous speech 
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Figure 2: Feature extraction for the normalized word “able”. The final input representation is derived by 
calculating a 15-dimensional feature vector for each data point, which consists off a context bitmap (a) and 
information about the curvature and writing direction (b). 

recognition tasks [7, 81, combines the high accuracy 
pattern recognition capabilities of a TDNN [9, 51 with 
a non-linear time alignment algorithm (dynamic time 
warping) for finding stroke and character boundaries 
in isolated handwritten words. 

3.1 Modeling assumptions 

Let W = (201, . . . WK} be a dictionary consisting of 
K words. Each of these words wi is represented as a 
sequence of characters wi z circa, . . .cik where each 
character c j  itself is modelled by a three state hidden 
markov model cj E qyqjq; .  The idea of using three 
states per character is to model explicitly the initial, 
middle and final section of the characters. Thus, wi is 
modelled by a sequence of states wi G qioqil  . . . q j S k .  In 
these word HMMs the self-loop probabilities p(q i j  Iqi?) 
and the transition probabilit,ies p(qi j  Iqij-l) are both 
defined to be $ while all other transition probabilities 
are set to zero. 

During recognition of an unknown sequence of fea- 
ture vectors z: = a0 , . .OT we have to find the word 
wi E W in the dictionary that maximizes the a- 

posteriori probability p(wilxT, e) given a fixed set of 
parameters 0 and the observed coordinate sequence. 
That means, a written word will be recognized such 
that 

wj = argmax,tEWp(wi IS:, 6) .  

In our Multi-State Time Delay Neural Network ap- 
proach the problem of modeling the word posterior 
probability p(wiIs;f, e )  is simplified by using Bayes’ 
rule which expresses that probability as 

Instead of approximating p(wi IO;, 6) directly we de- 
fine in the following section a network that is supposed 
to model the likelihood of the feature vector sequence 
P(X;f I wi 1 6).  

3.2 The MS-TDNN architecture 

In Figure 3 the basic MS-TDNN architecture for 
handwriting recognition is shown. The first three lay- 
ers constitute a standard TDNN with sliding input 
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Figure 3: The Multi-State TDNN architecture, consisting of a $layer TDNN to estimate the a posteriori prob- 
abilities of the character states combined with word units, whose scores are derived from the word models by a 
Viterbi approximation of the likelihoods. 

windows in each layer. In the current implementation 
of the system, a T D N N  with 15 input units, 40 units 
in the hidden layer, and 78 state output units is used. 
There are 7 time delays in the input layer and 5 time 
delays in the hidden layer. 

proximation of the log likelihoods of the feature vector 
sequence given the word model wi, i.e. logp(zT1Uri) is 
approximated by 

T 

The softmax normalized output of the states layer 
is interpreted as an estimate of the probabilities of the 
states qj given the input window xi': = 2t-d. . . xt+d 

for each time frame t ,  i.e. 

m a x x  logp(z:+:Iqt, wi) + logp(qtIqt-1, wi) 
G t= l  

q: t=l 

P(qt lx;::) T 

x m a x z l o g  P(qt) + logP(qtlqt-1,wi). 

(1) 

where q j ( t )  represents the weighted sum of inputs to 
state unit j at time t .  Based on these estimates, the 
output of the word units is defined to be a Viterbi ap- 

Here, the maximum is over all possible sequences of 
states qT = 90. .  .qT given a word model, p(qtlzt-d) 
refers to the output of the states layer as defined in (1) 
and p(qt) is the prior probability of observing a sta.te 
qt estimated on the training data. 

t t d  exp(qj(t)) 
t+d Ck exp ( V k  (t>> p(qjlzC,-d) 
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3.3 Training algorithm 

Dictionary 
Task Size 

During training the goal is to determine a set of 
parameters 6 that will maximize the posterior proba- 
bility p ( w l z r ,  6) for all training input sequences. But 
in order to make that maximization computationally 
feasible even for a large dictionary system we had 
to simplify that maximum a posteriori approach to 
a maximum likelihood training procedure that maxi- 
mizes p(zTlw, 6) for all words instead. 

The first step of our maximum likelihood training 
is to bootstrap the recognizer using a subset of ap- 
proximately 2,500 words of the training set that were 
labeled manually with the character boundaries to ad- 
just the paths in the word layer correctly. After train- 
ing on this hand-labeled data, the recognizer is used 
to label another larger set of unlabeled training data. 
Each pattern in this training set is processed by the 
recognizer. The boundaries determined automatically 
by the Viterbi alignment in the target word unit serve 
as new labels for this pattern. Then, in the second 
phase, the recognizer is retrained on both data sets to 
achieve the final performance of the recognizer. 

Test Recognition 
Pat terns Rate 4 Experiments and results 

wsj-lk 
wsi-5k We have tested our system on different writer inde- 

pendent tasks with dictionary sizes ranging from 1,000 
up to 100,000 words. The character set used in the dic- 
tionaries consists of all lower case and upper case let- 
ters. The system was trained on approximately 5,700 
patterns from a 7,000 word dictionary, written by 80 
different writers. The test was performed on data from 
an independent set of 40 writers. 

All data used in these experiments was collected at  
the University of Karlsruhe, Germany. Only minimal 
instructions were given to the writers. The writers 
were asked to write as natural as they would normally 
do on paper, without any restrictions in writing style. 
The consequence is, that the database is character- 
ized by a high variety of different writing styles, rang- 
ing from hand-printed to strictly cursive patterns or 
a mixture of both writing styles (for example see Fig- 
ure 4). Additionally the native language of the writers 
was German, but the language of the dictionary is En- 
glish. Therefore, frequent hesitations and corrections 
can be observed in the patterns of the database. But 
since this sort of input is typical for real world appli- 
cations, a robust recognizer should be able to process 
these distorted patterns, too. From each of the writers 
a set of 50-100 isolated words, choosen randomly from 
the 7,000 word dictionary, was collected. 

1,000 800 98.0% 
5.000 2.500 95.3% 

Figure 4: Different writing styles in the database: cur- 
sive (top), hand-printed (middle) and a mixture of 
both (bottom) 

All dictionaries used for the experiments were se- 
lected randomly frorn the ARPA Wall Street Journal 
Task (WSJ), which was originally defined for speech 
recognition evaluations. 

91.4% 
I wsi1OOk i IOO.OOO i 2.500 ’ I 82.9% 

Word recognition results for dictionary sizes from 
1,000 to 100,000 words are shown in Table 1. In the 
current system the average recognition time (prepro- 
cessing + recognition) ranges from 1.0 second for the 
1,000 word dictionary to 1.2 seconds for the 20,000 
and 1.5 seconds for the 100,000 word dictionary, mea- 
sured on a DEC Alpha AXP 3000/600. This shows 
that recognition time is virtually independent of the 
dictionary size. Approx. 40% of the total recognition 
time is spent for preprocessing, which has’nt been op- 
timized for speed yet. 

For approx. 60% of the errors the system makes on 
our test set the correct answer is in the list of the 5 best 
words found by the system, as can be seen in Figure 5. 
For N = 1 . . . 10 this figure shows the recognition rates 
for the 1,000, 5,000, 10,000 and 20,000 word dictio- 
naries if the correct word is in the list of the N best 
hypotheses found by the system. For N > 10 no sig- 
nificant performance improvements are observed. Ex- 
perience from continuous speech recognition and the 
fact that the correct answer is often very close to an 
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.--- ----U- -- board and to the recognition of sentences using lan- 
guage models to achiove further improvements of the 
word recognition rate. 
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