
NPen++: A Writer Independent, Large Vocabulary
On-Line Cursive Handwriting Recognition System

Stefan IMal.uk, Michael Firike, arid Alex Waibel

University of Karlsruhe
Computer Science Depart nien t
D-76128 Karlsruhe, Germany

Abstract

In this paper we describe the NPen++ system
for wri ter independent on-line handwriting recogni-
tion. This recognizer needs no training for a partic-
ular wr i te r and can recognize any common writing
style (cursive, hand-printed, or a mixture of both).
The neural network architecture, which was originally
proposed for continuous speech recognition tasks, and
the preprocessing techniques of NPen++ are designed
to make heavy use of the dynamic writing inforrna-
tion, i.e. the temporal sequence of data points recorded
on a LCD tablet or digitizer. We present results for
the wr i t e r independent recognition of isolated words.
Tested on different dictionary sizes from 1,000 up to
100,000 words, recognition rates range from 98.0% for
the 1,000 word dictionary to 91.4% on a 20,000 word
dictionary and 82.9% for the 100,000 word dictionary.
N o language models are used t o achieve these results.

1 Introduction

The success and user acceptance of pen computing
or multi-modal systems highly depends on the qual-
ity of the on-line handwriting recognition engines of
these systems. To achieve acceptable recognition per-
formance currently available handwriting recognizers
are often either writer dependent or need at least some
training for a particular writer to adapt to his hand-
writing. Additionally people usually have to write in
a particular writing style, e.g. hand-printed, or have
to use special character shapes defined in the system
instead of the usual shapes to get this high perfor-
mance. All this together makes it very hard for most
people using these systems to write as natural as they
usually would do on paper. Too small dictionaries are
an additional restriction in some of the systems.

Carnegie Mellon University
School of (jomputer Science

Pittsburgh, PA 15213-3890, USA

original coordinate sequence

normalized coordinate sequence

r - - -
I

- - - -t - - -- '
result

Figure 1: System overview

In this paper we present the NPen++ on-line hand-
writing recognition svstem, which is writer indepen-
dent and is not constrained to any specific writing
style. No training or adaptation for a particular
writer is required to achieve high recognition perfor-
mance even with dictionary sizes up to 100,000 words.
NPen++ can recognize any common writing style, i.e.
pure cursive or hand-printed, or a mixture of both.
The recognition is not based on bitmaps, which are
the only source of information in optical character
recognition, but on the dynamic writing information,
i.e. the temporal sequence of data points recorded

0-8186-7128-9/95 $4.00 0 1995 IEEE
403

http://IMal.uk

on the LCD tablet or digitizer [lo]. The system is de-
signed to make heavy use of this temporal information.
NPen++ (Figure 1) combines a neural network rec-
ognizer, which was originally proposed for continuous
speech recognition tasks [7,8], with robust preprocess-
ing techniques, which transform the original sequence
of data points into a still temporal sequence of N -
dimensional feature vectors.

We have tested the system on the writer indepen-
dent recognition of isolated words with dictionary sizes
from 1,000 up to 100,000 words. Word recognition
rates range from 98.0% for the 1,000 word dictionary
and 82.9% for the 100,000 word dictionary without us-
ing any language model. Even for the largest dictio-
nary used in the experiments the average recognition
time for a pattern is still less than 1.5 seconds.

The following section describes the preprocessing
techniques used in the system. The architecture and
training algorithm of the recognizer are presented in
section 3. A description of the experiments to eval-
uate the system and the results we have achieved on
different tasks can be found in section 4.

2 Preprocessing

In optical character recognition (OCR) input usu-
ally consists of scanned text (bitmaps) without any
temporal information about how the text was writ-
ten. The fact that this text was generated through a
temporal sequence of successive dots is lost in these
bitmaps. In contrast to OCR, in on-line handwriting
recognition the dynamic writing information, i.e. the
temporal order of data points produced during hand-
writing, is recorded on a LCD tablet or digitizer and
can be used for recognition [lo]. To take advantage
of this dynamic writing information it is preserved
throughout all our preprocessing steps. The original
coordinate sequence { (%(t) , y (t)) } t c { o T') recorded on
the digitizer is transformed into a new temporal se-
quence x: = 2 0 . . . XT, where each frame xt con-
sists of an N-dimensional real-valued feature vector

Several normalization methods are applied to re-
move undesired variability from the original coordi-
nate sequence [ll]. To compensate for different sam-
pling rates and varying writing speeds the coordinates
originally sampled to be equidistant in time are re-
sampled yielding a new sequence { (Z (t) , @(t))}tEiO..,T}
which is equidistant in space. This resampled trajec-
tory is smoothed using a moving average window in
order to remove sampling noise. In a final normaliza-
tion step the goal is to find a representation of the

(fl(t), . . . l f N (t)) E [-I, U N .

trajectory that is reasonably invariant against rota-
tion and scaling of the input. The idea is to determine
the words' baseline and centerline using an Expecta-
tion Maximization (EM) approach similar to that de-
scribed in [6]. The baseline is used to rotate the word
to a nearly horizontal orientation and the distance be-
tween the baseline and centerline to rescale the word
such that the center region of the word is assigned to
a fixed size.

From the normalized coordinate sequence
{ (z (t) , ~ (t)) } ~ ~ { o . . . ~) the temporal sequence z$ of N-
dimensional feature vectors zt = (f i (t) , . . . , fr~(t))
is computed (Figure 2). Currently the system uses
N = 15 features for each data point. The first two
features f i (t) = z (t) - z(t - 1) and f2(t) = y (t) - b
describe the relative X movement and the Y posi-
tion relative to the baseline b. The features f ~ (t) to
f ~ (t) are used to describe the curvature and writing
direction in the trajectory [5] (Figure 2(b)). Since
all these features are strictly local in the sense that
they are local both in time and in space they were
shown to be inadequate for modeling temporal long
range context dependencies typically observed in pen
trajectories [2]. These features can't model effects like
that in the neighbourhood of the current data point
there might be another part of the trajectory which
was written earlier or later as it happens e.g. with
t-crossings that cross already written parts of the tra-
jectory. Therefore, nine additional features f7(t) to
fls(t) representing 3 x 3 bitmaps were included in each
feature vector (Figure 2(a)). These so-called context
bitmaps are basicall., low resolution, bitmap-like ds-
scriptions of the coordinate's proximity, which were
originally described in [2].

Thus, the input representation as shown in Figure 2
combines strictly local features like writing direction
and curvature with the context bitmaps, which are
still local in space but global in time. That means,
eac,h point of the trajmtory is visible from each other
point of the trajectory in a small neighbourhood. By
using these context bitmaps in addition to the local
features, important information about other parts of
the trajectory, which are in a limited neighbourhood
o f a coordinate, are encoded.

3 The NPenff recognizer

The NPenf+ recognition component integrates
recognition and segmentation of words into a single
network architecture, the so-called Multi-State Time
Delay Neural Network (MS-TDNN). The MS-TDNN,
which was originally proposed for continuous speech

404

final input representation

normalized
coordinate
seauence:

t-2 t-1 t t+l t+2

(a) context bitmaps

(b) writing direction curvature

Figure 2: Feature extraction for the normalized word “able”. The final input representation is derived by
calculating a 15-dimensional feature vector for each data point, which consists off a context bitmap (a) and
information about the curvature and writing direction (b).

recognition tasks [7, 81, combines the high accuracy
pattern recognition capabilities of a TDNN [9, 51 with
a non-linear time alignment algorithm (dynamic time
warping) for finding stroke and character boundaries
in isolated handwritten words.

3.1 Modeling assumptions

Let W = (201, . . . WK} be a dictionary consisting of
K words. Each of these words wi is represented as a
sequence of characters wi z circa, . . .cik where each
character c j itself is modelled by a three state hidden
markov model cj E qyqjq; . The idea of using three
states per character is to model explicitly the initial,
middle and final section of the characters. Thus, wi is
modelled by a sequence of states wi G qioqil . . . q j S k . In
these word HMMs the self-loop probabilities p(q i j Iqi?)
and the transition probabilit,ies p(qi j Iqij-l) are both
defined to be $ while all other transition probabilities
are set to zero.

During recognition of an unknown sequence of fea-
ture vectors z: = a0 , . .OT we have to find the word
wi E W in the dictionary that maximizes the a-

posteriori probability p(wilxT, e) given a fixed set of
parameters 0 and the observed coordinate sequence.
That means, a written word will be recognized such
that

wj = argmax,tEWp(wi IS:, 6) .

In our Multi-State Time Delay Neural Network ap-
proach the problem of modeling the word posterior
probability p(wiIs;f, e) is simplified by using Bayes’
rule which expresses that probability as

Instead of approximating p(wi IO;, 6) directly we de-
fine in the following section a network that is supposed
to model the likelihood of the feature vector sequence
P(X;f I wi 1 6).

3.2 The MS-TDNN architecture

In Figure 3 the basic MS-TDNN architecture for
handwriting recognition is shown. The first three lay-
ers constitute a standard TDNN with sliding input

405

l l I -

- t ime *

Figure 3: The Multi-State TDNN architecture, consisting of a $layer TDNN to estimate the a posteriori prob-
abilities of the character states combined with word units, whose scores are derived from the word models by a
Viterbi approximation of the likelihoods.

windows in each layer. In the current implementation
of the system, a T D N N with 15 input units, 40 units
in the hidden layer, and 78 state output units is used.
There are 7 time delays in the input layer and 5 time
delays in the hidden layer.

proximation of the log likelihoods of the feature vector
sequence given the word model wi, i.e. logp(zT1Uri) is
approximated by

T

The softmax normalized output of the states layer
is interpreted as an estimate of the probabilities of the
states qj given the input window xi': = 2t-d. . . xt+d

for each time frame t , i.e.

m a x x logp(z:+:Iqt, wi) + logp(qtIqt-1, wi)
G t= l

q: t=l

P(qt lx;::) T

x m a x z l o g P(qt) + logP(qtlqt-1,wi).

(1)

where q j (t) represents the weighted sum of inputs to
state unit j at time t . Based on these estimates, the
output of the word units is defined to be a Viterbi ap-

Here, the maximum is over all possible sequences of
states qT = 90. . .qT given a word model, p(qtlzt-d)
refers to the output of the states layer as defined in (1)
and p(qt) is the prior probability of observing a sta.te
qt estimated on the training data.

t t d exp(qj(t))
t+d Ck exp (V k (t>> p(qjlzC,-d)

406

3.3 Training algorithm

Dictionary
Task Size

During training the goal is to determine a set of
parameters 6 that will maximize the posterior proba-
bility p (w l z r , 6) for all training input sequences. But
in order to make that maximization computationally
feasible even for a large dictionary system we had
to simplify that maximum a posteriori approach to
a maximum likelihood training procedure that maxi-
mizes p(zTlw, 6) for all words instead.

The first step of our maximum likelihood training
is to bootstrap the recognizer using a subset of ap-
proximately 2,500 words of the training set that were
labeled manually with the character boundaries to ad-
just the paths in the word layer correctly. After train-
ing on this hand-labeled data, the recognizer is used
to label another larger set of unlabeled training data.
Each pattern in this training set is processed by the
recognizer. The boundaries determined automatically
by the Viterbi alignment in the target word unit serve
as new labels for this pattern. Then, in the second
phase, the recognizer is retrained on both data sets to
achieve the final performance of the recognizer.

Test Recognition
Pat terns Rate 4 Experiments and results

wsj-lk
wsi-5k We have tested our system on different writer inde-

pendent tasks with dictionary sizes ranging from 1,000
up to 100,000 words. The character set used in the dic-
tionaries consists of all lower case and upper case let-
ters. The system was trained on approximately 5,700
patterns from a 7,000 word dictionary, written by 80
different writers. The test was performed on data from
an independent set of 40 writers.

All data used in these experiments was collected at
the University of Karlsruhe, Germany. Only minimal
instructions were given to the writers. The writers
were asked to write as natural as they would normally
do on paper, without any restrictions in writing style.
The consequence is, that the database is character-
ized by a high variety of different writing styles, rang-
ing from hand-printed to strictly cursive patterns or
a mixture of both writing styles (for example see Fig-
ure 4). Additionally the native language of the writers
was German, but the language of the dictionary is En-
glish. Therefore, frequent hesitations and corrections
can be observed in the patterns of the database. But
since this sort of input is typical for real world appli-
cations, a robust recognizer should be able to process
these distorted patterns, too. From each of the writers
a set of 50-100 isolated words, choosen randomly from
the 7,000 word dictionary, was collected.

1,000 800 98.0%
5.000 2.500 95.3%

Figure 4: Different writing styles in the database: cur-
sive (top), hand-printed (middle) and a mixture of
both (bottom)

All dictionaries used for the experiments were se-
lected randomly frorn the ARPA Wall Street Journal
Task (WSJ), which was originally defined for speech
recognition evaluations.

91.4%
I wsi1OOk i IOO.OOO i 2.500 ’ I 82.9%

Word recognition results for dictionary sizes from
1,000 to 100,000 words are shown in Table 1. In the
current system the average recognition time (prepro-
cessing + recognition) ranges from 1.0 second for the
1,000 word dictionary to 1.2 seconds for the 20,000
and 1.5 seconds for the 100,000 word dictionary, mea-
sured on a DEC Alpha AXP 3000/600. This shows
that recognition time is virtually independent of the
dictionary size. Approx. 40% of the total recognition
time is spent for preprocessing, which has’nt been op-
timized for speed yet.

For approx. 60% of the errors the system makes on
our test set the correct answer is in the list of the 5 best
words found by the system, as can be seen in Figure 5.
For N = 1 . . . 10 this figure shows the recognition rates
for the 1,000, 5,000, 10,000 and 20,000 word dictio-
naries if the correct word is in the list of the N best
hypotheses found by the system. For N > 10 no sig-
nificant performance improvements are observed. Ex-
perience from continuous speech recognition and the
fact that the correct answer is often very close to an

407

100 I

.--- ----U- -- board and to the recognition of sentences using lan-
guage models to achiove further improvements of the
word recognition rate.

References

[l] S. Manke and U. Bodenhausen, “A Connection-
ist Recognizer for Cursive Handwriting Recogni-
tion”, Proceedzngs of the ICASSP-94, Adelaide,

[2] S. Manke, M . Finke, and A. Waibel, “Combining
1 2 3 4 5 6 7 8 9 10 Bitmaps with Dynamic Writing Information for

On-Line Handwriting Recognition”, Proceedzngs of

94 / /
5K +----

20K *- April 1994.
92 1, , , I , j::, I
90

N-best

Figure 5: Recognition results with respect to the dic-
tionary size if the N = 1 . . . 10 best words are counted
as correct.

incorrect output of the recognizer shows that we can
expect further improvements of the word recognition
rate by using language models for the recognition of
sentences.

5 Conclusions

In this paper we have presented the NPen++ sys-
tem, a connectionist recognizer for writer independent
on-line cursive handwriting recognition. This system
combines a robust input representation, which pre-
serves the dynamic writing information, with a neural
network integrating recognition and segmentation in
a single framework. This architecture has been shown
to be well suited for handling temporal sequences as
provided by this kind of input.

Evaluation of the system on different dictionary
sizes has shown recognition rates from 98.0% for a
1,000 word dictionary to 82.9% for the 100,000 word
dictionary. Even for the largest dictionary used in the
experiments the average recognition time for a pat-
tern is still less than 1.5 seconds. These results are es-
pecially promising because they were achieved with a
small training set compared to other systems (e.g. [4]).
As can be seen in Table 1, the system has proved to
be virtually independent of the dictionary. Though
the system was trained on rather small dictionaries,
it generalizes well to completely different and much
larger dictionaries. Recognition time doesn’t depend
on the dictionary sizes, but mainly on the length of
the input patterns.

Work is in progress to extend this system to the full
character set available on an english computer key-

the ICPR-94, Jerusalem, October 1994.
[3] S. Manke, M. Finke, and A. Waibel, “The Use

of Dynamic Writing Information in a Connection-
ist On-Line Cursive Handwriting Recognition Sys-
tem”, Advances in Neural Information Processing
7, MIT Press, Cambridge (MA), 1995.

[4] M. Schenkel, I. Guyon, and D. Henderson, “On-
Line Cursive Script Recognition Using Time De-
lay Neural Networks and Hidden Markov Models”,
Proceedings of the ICASSP-94, Adelaide, April
1994.

[5] I. Guyon, P. Albrecht, Y. Le Cun, W. Denker, and
W. Hubbard, “Design of a Neural Network Char-
acter Recognizer for a Touch Terminal”, Pattern
Recognition, 24(2), 1991.

[6] Y. Bengio and Y. LeCun. “Word Normalization
for On-Line Handwritten Word Recognition”, Pro-
ceedings of the ICPR-94, Jerusalem, October 1994.

[7] P. Haffner and A. Waibel, “Multi-State Time De-
lay Neural Networks for Continuous Speech Recog-
nition”, Advances in Neural Information Process-
ing Systems (NIPS-4), Morgan Kaufman, 1992.

[8] C. Bregler, H. Hild, S. Manke, and A. Waibel, “Im-
proving Connected Letter Recognition by Lipread-
ing”, Proceedings of the ICASSP-93, Minneapolis,
April 1993.

[9] A. Waibel, T. Hanazawa, G. Hinton, K. Shiano,
and K. Lang, “Phoneme Recognition using Time-
Delay Neural Networks”, IEEE Transactions on
Acoustics, Speech and Signal Processing, March
1989.

[lo] C. Tappert, C. Suen, and T. Wakahara, “The
State of the Art in On-Line Handwriting Recog-
nition”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(8), 1990.

[ll] W. Guerfali and R. Plamondon, “Normalizing
and Restoring On-Line Handwriting”, Pattern
Recognition, 16(5), 1993.

408

