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ABSTRACT 

Automatic language identification is an important 
problem in building multilingual speech recogni- 
tion and understanding systems. We have devel- 
oped a front-end LID module based on LVCSR to 

identify English, German, and Spanish language 

for use in spontaneous speech-to-speech transla- 

tion. We studied the constitution of different levels 
of knowledge to identify a language, i.e. the pho- 

netic, phonotactic, lexical, and syntactic-semantic 

knowledge. A comparison of LID systems using 
different levels of these knowledge sources is pre- 
sented. We showed that the incorporation of lex- 

ical and linguistic knowledge leads to a reduction 
of the language identification error by up to 50%. 

1. INTRODUCTION 

In recent years language identification (LID) has 
received renewed and increased interest as LVCSR, 
technology is being applied to multiple languages. 

The arrival of multilingual databases like the OGI 
corpus [1], [2] and the Spontaneous Scheduling 
Task (SST) [3] enable us to compare different ap- 
proaches. Language identification is closely re- 

lated to speaker identification and speaker inde 

pendent speech recognition. Most of the recent 
approaches to LID take advantage of units that 
are smaller than words such as phonemes [4], [5] 
or broad phoneme classes [6] for the identification 
process. Many LID systems are based on HMMs 

[4], [5], [7] or NNs [6],[10]. Some approaches add 
phonotactic information encoded as phoneme bi- 
grams [5] or trigrams [7], [8]. Nevertheless, most 
approaches described by literature are restricted 

to phoneme-based knowledge sources; there is no 

study which uses word-based knowledge like a dic- 
tionary or a language model. 

Although language identification can be done 

on the word recognition level, the phonetic recog- 
nition level is certainly very efficient as mentioned 

in [5]. Constructing dictionaries and word-based 
grammars for stand-alone LID systems involves 

greater computational requirements. On the other 

hand, in multilingual speech processing tasks, in 

which recognition is the objective, dictionaries, lan- 
guage models and other higher-level knowledge 

sources are already available. In some applications 

such as speech-to-speech translations e.g. JANUS 

the identification of the language could be em- 
ployed as a front-end module to language-dependent 
LVCSR. Word level identification using higher lin- 

guistic knowledge can be integrated into the recog- 
nition process without requiring additional com- 

putational effort. Our goal is to show that the 
integration of word-based knowledge sources leads 

to improvements in the LID performance. 

The paper is organized as follows. In the first 
section the multilingual database SST which is 

used for our experiments will be described. Af 

ter that the influence of different channel condi- 
tions on the LID performance is analyzed. There- 
after, five systems using distinct levels of phone- 

mic, phonologic and linguistic knowledge are pre- 
sented and the performance is compared. 

2. THE MULTILINGUAL 
SPONTANEOUS SCHEDULING TASK 

A multilingual database of spontaneous human-to- 

human dialogs called the Spontaneous Scheduling 
Task (SST) has been collected at Carnegie Mellon



and Karlsruhe University over the last 20 months. 
In each session, two people are asked to schedule 
a meeting with their dialog partners. Constraints 

for the scenario, the calendar and the collection 

procedures of the data guarantee the comparabil- 

ity of the data recorded at different sites. The col- 
lection scenario and requirements are described in 

detail in [3] and [9]. The SST corpus currently con- 
sists of dialogs in the languages English, German, 
Spanish, and Korean spontaneously spoken by na- 
tive speakers. The collection of Japanese dialogs 

has also begun recently. Table 1 summarizes the 
current status of data collection and the data used 
for training and testing our LID systems. Since 
the database is still growing not all the data were 
available at the beginning of our experiments. 

English SST 

dialogs words 
recorded 1984 505k 

transcribed 1826 460K 
used for training 117 38809 
used for testing 20. 4731 

German SST 

dialogs words 
recorded 734 158K 

transcribed 534 115k 
used for training 192 45034 
used for testing 18 4107 

Spanish SST 

dialogs words 
recorded 340 79K 
transcribed 256 70K 
used for training 75 61382 
used for testing 13. 3740 

Table 1: The database SST 

A dialog is represented by so-called turns or 

utterances. We found that the number of turns 
per dialog was language-dependent. English and 
German dialogs contain on average 10 turns while 
Spanish dialogs contain on average 16 turns. Fur- 
thermore the length of a turn as can be seen in 

figure 1 is language specific. Table 1 shows that 
the number of spoken words in Spanish dialogs is 
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Figure 1: language specific length of the test ut- 
terances 
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much higher than in German and English. On the 
one hand this is due to the fact that Spanish turns 
tends to be longer as shown in figure 1 but on the 

other hand there are many more words per second. 

for Spanish turns. For the experiments the dialogs 

are divided into a test and a training set of distinct 
speakers. The identification process is performed 
by presenting the complete turn to the system. 

3. THE SYSTEM STRUCTURE 

There are several kinds of architectures for LID 
systems. In the first architecture called paral- 
lel architecture, for each language that is to be 

identified a language-dependent system is trained. 
Language identification of the incoming test turn 
is performed by running all systems in parallel. 
Each system decodes the turn with the language- 

dependent models and calculates the likelihood 

or the distance score (depending on the decod- 
ing algorithms) to determine the best hypothesis 
for that turn. The language belonging to the sys- 

tem with the highest likelihood or the minimal dis- 
tance score is hypothesized. This kind of structure 

is used in [5], [8] and [4] for example. The sec- 
ond architecture called integrated structure con- 
sists of a single global recognition system which 

is language-independent as described in [10] and 
[6]. One drawback of the integrated stucture is



the increasing ambiguity when adding languages 
to be identified to the system. We use a parallel 
architecture as shown in figure 2. 
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Speech 
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Figure 2: parallel architecture of our LID system 

4, CROSS-CHANNEL CONTROL 

As mentioned before, many constraints are applied 

to the data collection procedure to guarantee the 
comparability of the recorded data. Both of the 
sites at which we collect our data use the same 

closed speaker microphones, the same hardware 

to digitize the speech input, and the same sce 

nario and calendar. To control for possible chan- 
nel variations or different environmental noise we 
have recorded additional cross-chamnel data. We 

collect German input speech of native speakers in 

the U.S. under the same conditions as the English 
input from U.S. and similarly English input speech 
of English native speakers in Germany under the 

same conditions as the German input is collected. 

It is obvious that even slight differences in chan- 
nel conditions might have considerable influence 
on the LID results. Many studies in the past do 

not take into account that channel variations leads 
to erroneous results. To demonstrate the effect 
of different channel conditions to our system we 

performed channel-dependent language identifica- 
tion tests in addition to our cross-channel exper- 

iments. The tests as shown in figure 3 and fig- 
ure 4 are based on the phoneme recognizer system 

Language 

PnoPT which is described in the next section. Fig- 
ure 3 shows the results of the channel-dependent 
test by plotting the score calculated by the Ger- 

man recognizer against the score calculated by the 
English recognizer for each given test turn. As 
can be seen the languages German and English are 
easy to separate from each other. For the channel- 

independent test as shown in figure 4 for the data 
recorded in Karlsruhe the identification problem 

becomes much harder. 
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Figure 3: channel-dependent experiments with 

PnoLM 
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Figure 4: cross-channel experiments with PnoLM



5. LID USING DIFFERENT 
KNOWLEDGE SOURCES 

For each language we constructed five systems ap- 
plying different levels of knowledge. 

5.1. System PnoPT 

PnoPT is a recognizer with phoneme-based acous- 
tic modeling. For each language a system with 
context-independent phonemes which are modeled. 
by SCHMMs with 50 tied mixture weights was 
build. For the German language we used a set 

of 46 phonemes, for English 54 phonemes and for 

Spanish 48 phonemes. The phoneme sets include 

special noise models to model human and nonhu- 
man noises as described in [11]. 

5.2. System PwithPT 

PwithPT is similar to PnoPT but in addition phono- 
tactics ie. a phoneme bigram was applied. This 

phonological knowledge is integrated into the search 
procedure as presented in [5]. The phoneme accu- 
racy for our PwithPT was 49.6% for German input, 

48.3% for English and 46.9% for Spanish speech 
which is comparable to the performance of other 

spontaneous spoken speech systems. 

The identification process with the system 

PnoPT is restricted to the short-term acoustic dif- 
ferences between languages, i.e. the use of differ- 
ent phoneme sets and the different realizations of 

some phonemes in distinct languages. An example 
for the first is the phoneme /ch/ in the German 
word ich which has no English counterpart. An 
example for the latter is the phoneme /r/ which 
has different realizations in English and German. 
The system PwithPT integrates phonotactic know- 

ledge. For example the transition from /s/ to /w/ 
in the English word switch is not allowed in Ger- 

man. 

5.3. System WnoLM 

WnoLM is a word-based recognizer including a word. 
dictionary which contains the rules for concatenat- 

ing phonemes to make words. The phoneme mod- 

els are similar to PnoPT except that generalized 

triphones are used to model coarticulation effects. 
The German dictionary contains 2077 words, the 
English 1073 and the Spanish dictionary has 2781 

entries. The search is implemented as a word- 

dependent N-best algorithm. 

5.4. System WwithLM 

This is similar to the WnoLM system but with inte- 
grated word bigrams as a form of linguistic know- 

ledge. WwithLM is our JANUS-2 recognizer en- 
gine. The word accuracy of the system used in 

the language identification experiments is 65.8% 

for German speech, 65.2% for the English input 

and 63.6% for Spanish speech. For the recognition 
of speech the integration of a word-based lexicon 
and grammars leads to very large improvement. 
We want to analyze how the integration of these 
knowledge sources helps for the language identifi- 

cation for LVCSR. 

5.5. System WpostLM 

In the system WwithLM the language model was 
integrated into the search process, so the identi- 
fication of languages is a one-stage process. The 

WpostLM is a two-stage process. In the first step 

WnoLM is performed to the test turns. In the 

second step a language model scoring routine is 
applied to the given first best hypotheses. This 

routine computes the language model probabili- 
ties p(w1, W2,-++, Wn|L) for a given turn. The lan- 

guage belonging to the turn with the best score is 
hypothetized. The basic idea is that the language 
model of the correct language matches best to the 

first best hypothesis. 

Figure 5 shows the improvement reached by 

the different knowledge sources for the identifica- 
tion test between English and German. To show 
the effects of channel dependencies for each sys- 
tem we conducted 3 different tests. In the first 

row in front of the chart labeled with KA is the 
result of the test on data recorded at site Karl- 
sruhe, the second row describes the test on data 

recorded at CMU, and the third row are the tests 
without channel control; that is, data for each lan- 

guage was collected on the different channel of the 
collecting site. As can be seen in figure 5 the
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Figure 5: Comparison of the five systems 

incorporation of knowledge sources improves the 

language identification accuracy significantly. For 
the cross-channel tests system WpostLM leads to 

best results. In all cases the performance increases 

when adding the dictionary. Furthermore, tests 
including the language-dependent word grammars 

outperform the results of those without linguistic 
knowledge. Testing under different channel condi- 
tions increases the performance significantly. Here 
the two-stage system WpostLM does not have any 

impact. Note however, that in practice for lan- 

guage identification systems channel dependencies 
are undesirable and removed by channel normali- 
sation techniques. 

[System ]G-E]G-S]S-E | 

data recorded at U.S. 
PnoPT 90.2% | 70.2% | 91.9% 

PwithPT | 91.0% | 74.9% | 89.9% 

WnoLM 91.4% | 82.1% | 96.5% 

WwithLM | 93.3% | 88.6% | 97.7% 
WpostLM | 94.1% | 95.2% | 90.3% 

Table 2: LID-performance for German, English 
and Spanish input 

Table 2 summarizes results from our experi- 

ments with the three languages English (E), Ger- 
man (G) and Spanish (S). As can be seen the 
identification of the two languages English and 

Spanish seems to be easier than German vs. En- 

glish, a fact often mentioned in other studies. For 

all language tests the incorporation of dictionary 
and language models leads to significant improve- 
ments. The WpostLM system is not effective in 

identification between Spanish and English. The 
hardest task seems to be the separation of German 

and Spanish. For this task the system WpostLM 
improves the performance drastically. The effec- 

tiveness of the WpostLM system depends on the 

number of words in an utterance. Since we are 
working with bigrams a sentence has to contain 
at least two words to benefit from the WpostLM 

system. Therefore the results given in the figure 
5 are for those hypotheses which contain more 

than 3 words. Figure 6 shows the tests on En- 
glish an German input in which we examined how 
the performance improves as the number of words 

increases. 
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Figure 6: LID performance depending on the num- 
ber of words 

When the number of given words is increased 

to 6 words, the system identification error is re- 

duced by 5% for data recorded in Karlsruhe and 

20% for data recorded at CMU. 

6. CONCLUSION 

In this paper a new approach to language identi- 

fication on LVCSR task is presented. We devel- 

oped five systems with different levels of know- 

ledge sources. Overall the incorporation of higher 
linguistic knowledge such as the dictionary and 

language models leads to a reduction in the iden- 
tification error of about 50%.
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