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Abstract

In many practical situations, a desirable user
interface to a computer system should have a
model of where a person is looking at and what
he/she is paying aftention to. This is particu-
larly important if a system 1is providing multi-
modal communication cues, speech, gesture, lip-
reading, etc., [2, 3, 8] and the system must
identify, whether the cues are aimed at it, or at
someone else in the room. This paper describes
a system that identifies user focus of attention
by visually determining where a person is look-
ing. While other attempts at gaze tracking usu-
ally assume a fixed or limited location of a per-
son’s face, the approach presented here allows for
complete freedom of movement in a room. The
gaze-tracking system, uses several connectionist
modules, that track a person’s face using a soft-
ware controlled pan-tilt camera with zoom and
identifies the focus of attention from the orienta-
tion and direction of the face.

1 Introduction

One major impediment to user acceptance of
speech interfaces in many potential applications
is the fact that people need to wear head-sets,
gloves, etc. and operate push-buttons to control
the system. A commonly proposed solution to
this problem in speech is for the recognizer al-
ways to listen to all of the sounds within a room.
Typically keywords or phrases, and loudness are
used to identify the onset of speech for recogni-
tion. This in turn leads to very fragile user in-
terfaces, that ”turn-on” at odd places and times:
An always-listening recognizer, typically cannot
identify if an utterance or phrase is directed af it
or at someone else in the room, or even worse, if
the putative utterance was in fact a false recog-
nition to begin with (a noise or similar sounding
word for example). For robust and useful inter-
faces, a computer system must identify user in-
tent and focus of attention so that it can recognize
when it is being addressed, and/or who a person
in the room might be addressing or interacting
with.

In this paper, we propose a solution to this
problem by visually identifying where a person
18 looking and the direction of their attention.
Unlike systems that require considerable limita-
tion of movement to identify location or to track
gaze, our system allows for freedom of movement
around a room by tracking a persons face and
identifying the orientation and gaze from the im-
age of the whole face.

1.1 Overview of the Gaze Tracking
System

The gaze tracking system consists of three steps.
In the first step a human face is located and the
camera zooms on this face. This first step is
achieved with our Facetracker [5] which is intro-
duced in section 2. The Facetracker works at ap-
proximately 10Hz. The output of the Facetracker
18 a normalized face or more precisely the region
of the image, which contains the face. The sub-
sequent, steps in the function of the Gazetracker
use only this region of the image.

The second step of the Gazetracker consists of
two parallel procedures. The first procedure “in-
tensifies” all objects with face-color. Figure 1(b)
shows such a color-intensified image. Tn parallel
the second procedure adjusts the face-color to the
face in the image. Even though the face-colors of
many humans are relatively similar we have to
adjust the face-color, if we want to distinguish
this face properly from the background. This im-
portant part of the Gazetracker is described in
section 3.

In the third step the color-intensified image
is projected into the input-units of our artificial
neural network and a forward pass of the neural
network is calculated. The output of the neural
network gives directly the orientation of the head.
This third step, the design of the network and the
training of the network are described in section

4.

Section b summarizes some results from exper-
iments with the (Gazetracker.



2 Facetracker

This section briefly introduces the Facetracker,
considerably more detail has been published in
[6]. We also refer to [5] which describes the Fa-
cetracker in detail and can be easily obtained via
WWW!'.

The camera used in the system (Sony CCD-TR,
101) is mounted on two stepper-motors, allow-
ing horizontal and vertical turns. The stepper-
motors are controlled in a serial port. The re-
mote control of the zoom lens of the camera has
been engineered to allow control through a second
serial port. The camera images are obtained by
a frame-grabber, which digitizes the video-signal
into RGB-values. The entire computation is per-
formed on a single HP 9000/735 workstation.

To find a face the Facetracker searches for the
largest, moving object which is skin-colored. As
soon as a face is found the system tracks it (only
based on skin-color) at approximately 10Hz. This
processing is the average time needed by the sys-
tem and includes camera zooming and movement.
This 1s possible, since the Facetracker works on
a very low resolution and we can define a virtual
camera (e.g. half the size of the whole camera-
image) which can be “moved” and “zoomed”
much faster than the real camera. Neglecting the
time for zooming and moving the real camera, the
Facetracker operates af to 25Hz.

The output of the Facetracker is a normalized
face or more precisely the region of the image,
which contains the face. The precision of the
Facetracker varies strongly with the velocity of
the head movements. Tt 1s usually in the range
between 10% and 20% (variation in position and
size). The subsequent steps of the Gazetracker
have to cope with this imprecision, since they use
only the region provided by the Facetracker.

Tt should be pointed out, that the (Gazetracker
uses a second frame-grabber (connected with
the same camera) and works on a second HP
9000/735 workstation. This enables the Gaz-
etracker to work at a higher resolution and in-
dependent of the Facetracker.

3 Self-adjustable Face-color
Intensifier

The intensification of face-color (of a particu-
lar person) in an image (as in figure 1(b)) has
three main advantages: First of all we can dis-
tinguish the face and the background. Secondly

Thttp:/ /www.cs.cmu.edn:8001 /afs/cs.cmu.edu/
user/clamen /mosaic/reports/1994 . html

we can find features within the face in the color-
intensified image. Such features are for example
the eyes and the mouth, these features are differ-
entiated because they don’t have face-color. The
third advantage is that we obtain the shape of
the face in the image. These three advantages
together make it possible to use the face-color-
intensified image as input to neural network. We
have that the network generalises very well with
respect to different backgrounds and different in-
dividual faces (namely for white faces, faces of
Asian people and also for most Tndian people).
The first
Intensifier calculates and adjusts a color-map to

procedure of the Face-Color-
a particular person. This procedure is described
in the first part of the section and 1s similar to
the Face-Color-Classifier which is used for the Fa-
cetracker. Based on color-maps we obtain a bin-
ary image (see figure 2(c)) where we can distin-
guish regions with face/skin-color from the rest
of the image. The second part of the section ex-
plains in more detail how to use such a color-map
in order to intensify face-color in an image. The
result of the Intensifier is an image with differ-
ent grey-levels, where higher values correspond
to frequent colors in the face and low values to
infrequent colors. Such an image is shown 1n fig-

ure 1(b).

3.1 Color-maps
The red (R), green (G) and blue (B) values of

a pixel of the video-camera signal can be trans-
formed into different representations. Since the
intensity or brightness of a given pixel value
doesn’t contain information about the color of
the pixel, we want explicitly to ignore intensity.
Chromatic colors provide such a representation
by normalizing the R(GGB-value by its intensity.
The chromatic colors are defined as [1]:

R
R+G+ B
G
R+G+ B
B

R+G+ B

All subsequent steps of the Gazetracker are
based on these two-dimensional representations
(r,g) of chromatic colors (The third value b can
be neglected, since the values always sum to one:
r+ g+ b = 1). Using this (r, g)-representation
we calculate a probability density function of the
chromatic color of an image (or only part of an
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Figure 1: Face-Color-Tntensifier: (a) grey-scale
image, (b) face-color-intensified image, (¢) ANN- (c)

input
Figure 2: Applying the general color-map



image):

. g) = h(r, g)
p( 7(]) - an h(?“, (])

where h(r,g) represents the histogram of the
number of pixels in the image with the chromatic
color (r,g). Tn the following we will call p(r,g)
the color-map.

By analyzing the color-maps of many human
faces all possible face-colors (or better skin-colors
of all available faces: faces of Asian people, Tn-
dian people and white people) are located in a
relatively small bandwidth of the (r, g)-values [5].
Therefore we can construct a general color-map
which contains most of the possible face-colors.
This is done basically by averaging the face-colors
of the available people. Figure 2(b) shows the ap-
plication of the general color-map to an image. In
this image a certain pixel with the chromatic color
(r,g) has the value p(r,g) of the general color-
map. Brighter regions therefore correspond to
chromatic colors with a high value p(r,g) in the
general color-map. Darker regions correspond to
low value p(r, g) in the general color-map. This
application of a color-map to an 1mage is the basic
procedure of the Face-Color-Intensifier.

By smoothing and thresholding we obtain a
binary image (see figure 2(c)). This binary image
is used (at the beginning together with a motion
detector) to find the largest object in the image
with face-color. This object is then used to ad-
just the general color-map to a particular human
face. The adjustment can be formulated as:

H’djn-l—1 (7”7 q) =

{ L (0bjn(r,g) + 2adjn(r, ) if gen(r,g) > min

0 otherwise

where gen 1is the general color-map, adj, 1s
the adjusted color-map at time n and obj, is the
color-map of the largest object in the image with
face-color (initialization: adjy = gen).

3.2 Face-Color-Intensifier

The described Color-maps are also used to in-
tensify the face-color in an image. Since the color
in a human face varies considerably between dif-
ferent regions of the face, we increase the val-
ues of the color-map relatively to their histo-
gram. This is a change in the shape of the face-
color-histogram rather than in the region of the
face-color. This mainly increases the color-values
which occur with higher frequency in the face
and strengthen the distinction from the back-

ground colors.  An image with this enhanced

Color-Tntensifier is shown in figure 1(b). One can

see the quality of this color-intensified image.
Figure 1(c) shows the final color-intensified im-

age. It is obtained by normalizing the image of

figure 1(b).

This normalization procedure pro-

Jects the highest 5% of values onto the highest

grey-value and projects the lowest 5% of values
in the image onto the lowest grey-value. The rest
of the values are then linearly distributed between
these two extremes. This normalization ensures
that the Color-Intensifier 1s independent of differ-
ent humans and different lightening conditions.
Tt also distributes the values of the 1image more
uniformly onto the input of the neural network.

4 Network architecture

Before we can use an artificial neural network
we have to decide which architecture and which
training-algorithm to use. Tn this case we have
found that our problem could be solved with a
Multi-Layer-Perceptron (MTLP) trained by stand-
The architecture, the
input. and output representation and the inter-
pretation of the output are described in the fol-

ard back-propagation [4].

lowing sections.

Figure 3: Network architecture

The MI.P-architecture is summarized in fig-
ure 3.  The input consists of 32 x 32 neur-
ons. The color-intensified image 1s projected
onto these input-neurons. We are using one hid-
den layer with 50 hidden units (the number of
hidden units was determined empirically). For
output we used on the one hand side 3 output-
units (namely for the directions left,straight and
right) and on the other hand 15 output-units
which correspond to the possible head directions

—70,—60,...,460,+70 degree.



4.1 Input representation

The input to the MLP is a 32 x 32  color-
intensified image (Fig. 1(c)). The relatively low
resolution of the input-image makes it possible
to apply the Gaze-tracker in real-time. Tt also re-
duces the training-time and the amount of train-
ing data needed (since the size of the training-
data should be at least in the range of the free
Unfor-

tunately the low resolution has the disadvantage

parameters of the neural network [7]).

that features such as the eyes and the mouth are
difficult to find in the 1mage. But the traming-
results show that the neural network is still able
to determine the direction of the head with suffi-
cient accuracy (see section 5).

4.2 Output representation and
interpretation

We used two different configurations for the
output-units. The first configuration consisted of
3 output-units corresponding to the three discrete
directions of the head: left for the angles of the
interval [—70, —30], straight for the angles of the
interval [—20, +20] and right for the angles of the
interval [+30,470]. The second representation
used 15 output-units where each unit corresponds

to one of the angles —70, —60, ..., +60,4+70.

An important question concerning the output-
representation was how to project a desired
output (here the direction of the head) onto
the output-units. The 3 output-units indicate
whether the person is looking straight, left or
right. The projection therefore is a choice of one
from three possibilities. Only one unit is sup-
posed to be “on” and the other two are supposed
to be “off”.

The second solution has 15 output-units. Here
we tried two different representations. The first
18, as for 3 outputs, an 1 from 15 decision. But the
better results were obtained with a gaussian rep-
resentation (see figure 4). Here not only the unit,
which corresponded to the desired output is “on”,
the units close to this desired unit are to a certain
degree “on”. The main advantage of the gaussian
representation is that the output-unit learning is
not only based on the input-images which cor-
respond exactly to the angle of the output. In-
stead a output-unit learns also from images which
are similar and which correspond to nearby units.
Nevertheless a necessary condition for this repres-
entation 1s that similar input-images correspond
to similar outputs.

o D

-60 -30 0 +30 +60

Figure 4: the gaussian output representation

5 Results

This section gives an overview of the performance
of our Gazetracker. TIn order to give the train-
ing and test results we first describe our image-
database and the production of the sample-sets.
The following sections gives the off-line results on
the training and test-set.

5.1 Training and Test data

As training data we use four sets of 15 images
of 7 different people. The 15 images correspond
to the directions —70, —60, ...+ 60,470 degrees
of a person’s head. The people were asked to
sit in front of the camera and to look in the
specified directions —70,—60,... 4+ 60,470 de-
grees. The images were taken with a blue-screen
background. The blue-screen enabled us to pro-
ject an arbitrary background behind the heads of
the people. During the production of the training
and test sets we replaced the blue-screen with a
randomly chosen background from our lab. This
forces the neural network to learn independent of
the background.

In order to learn the neural network shift-
invariant we shift each of the 1mages artificially
by +15% in = and y direction with a step-size
of 3%. The training-set contains therefore 4 x
15 x 7 x 112 = 50820 images. The test data con-
tains four sets of 15 images of 2 people. The test
data i1s independent of the training data. That
means that neither of the two people are included
in the training data. The test data contained then
4 % 15 x 2 x 112 = 14520 images.

5.2 Results

Training the network was time-consuming activ-
ity due to the size of the training set. But the
number of iterations was been always within the
range 100 150. Table 1 and figure 5 show the
training- and test-results of the neural networks
described in the previous section.

Table 1 corresponds to the neural network with
3 output-units and the 1 from 3 representation
(see section 4). This table shows the capability
of the network architecture to distinguish between
the three head-directions right, straight and left.



99.72% of the training data and 99.65% of the

independent test set were classified correctly.

[ Error [T/units] [ 0 [ 1 [ 2 [ av. |
% training 99.72 | 0.27 | 0.01 | 0.0028
% test 95.65 | 4.35 | 0.0 | 0.044

Table 1: Training results with 3 output-units

The figure 5 correspond to the neural network
with 15 output-units and the gaussian output-
representation (see section 4). The performance
of this neural network i1s encouraging especially if
you consider that the average error less than 10
degrees on the training data and 12 on the test
data. There is some inaccuracy in the training
data, since the gaze in a certain direction is only
partially correlated with orientation of the head.
Considering this we can conclude that the Gaz-
etracker is able to determine the head-direction
with a high accuracy.

50
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result on test set ----
45 |- .

40
35
30

25 |/

percentage of set

0 25 30
error of angle

Figure 5: Training results with 15 output-units

5.3 Runtime results

At the moment we have two setups for the Gaz-
etracker. The first setup works without the Fa-
cetracker. This system can be used, when a per-
son 1s sitting in a certain place, as e.g. in front of
a computer. This setup has a typical cycle time
of 93ms (on a workstation HP 9000/735) so that
it works at approximately 10Hz.

The second setup, as initially described, uses
the Face-tracker as pre-processing step. This
setup 1s used when a person is walking or mov-
ing around in the room. The Facetracker then
finds and tracks the person and provides the GGaz-
etracker with a “normalized face” (see section 2).
Both processes run independently on two work-
stations. This setup has a typical cycle time of

134ms, due to the communication needed with
the Facetracker.

To measure the precision of the first setup we
analysed the results of image sequences, where
one person looked every five seconds at different
predefined positions in the room. The precision
for this setup is the same as for the test-set, i.e.
about 12 degrees. To measure the performance of
the second setup we defined 5 different positions
in the room with 4 different points to look at
(with arbitrary angles). One person was asked
to move to this locations and to look at one of
the predefined points. As long as the person was
standing at this location, we recorded the output
of the Gazetracker. Tn this setup the Gazetracker
works with a slightly lower precision (about 15
degrees), due to the delay of about 200ms which
18 needed for the Facetracker and the Gazetracker
for calculation (after the movement to a new loc-
ation).

6 Conclusion

We described one further step towards a multi-
modal human-to-computer interface. We intro-
duced a component of our vision system, namely
the real-time connectionist Gazetracker which de-
termines the angle of a human head relatively to
the camera. Training and runtime results show
the capability of the (Gazetracker.
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