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ABSTRACT 

To guarantee unrestricted natural language processing, 
state-of-the-art speech recognition systems require huge dic­
tionaries that increase search space and result in perfor­
mance degradations. This is especially true for languages 
where there do exist a large number of inflections and com­
pound words such as German, Spanish, etc. One way to 
keep up decent recognition results with increasing vocabu­
lary is the use of other base units than simply words. In this 
paper different decomposition methods originally based on 
morphological decomposition for the German language will 
be compared. Not only do they counteract the immense 
vocabulary growth with an increasing amount of training 
data, also the rate of out-of-vocabulary words, which wors­
ens recognition performance significantly in German, is de­
creased. A smaller dictionary also leads to 30% speed im­
provement during the recognition process. Moreover even 
if the amount of available training data is quite huge it is 
often not enough to guarantee robust language model esti­
mations, whereas morphem-based models are capable to do 
so. 

1. INTRODUCTION 

Continuous speech recognition systems suffer from vari­
ous problems. First, when trying to recognize unrestricted 
speech utterances the acoustic dictionary of a system has to 
be very large. Huge dictionaries increase the search space, 
slow down recognition speed and also result in performance 
degradations. Second, even a huge dictionary will not be 
able to foresee all new words occurring in the test text. As a 
consequence the:re will always appear some words unknown 
to the recognizer that cannot be recognized properly and 
might lead to successive errors within the recognition pro­
cess. Finally, in spite of large databases, there is still insuf­
ficient training material. This especially applies to the gen­
eration of statistical language models which need immense 
data to guarantee robust probability estimations. Hence a 
way has to be found to build robust language models even 
on the basis of insufficient training material. Decomposing 
the vocabulary into its morphem-based compounds is a way 
to solve at least some of these problems. 

2. THE DATABASE 

All data used for our experiments was taken from dialogues 
of the German Spontaneous Scheduling Task (GSST) and 
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English Spontaneous Scheduling Task (ESST). This task 
consists of human-to-human dialogues recorded at differ­
ent sites with various scenarios. Goal of every conversation 
is to arrange a meeting of two people within their given 
schedules. For comparing the vocabulary growth of English 
and German 146 English training dialogues with 1395 ut­
terances and 14 test dialogues were available. In German 
a total of 250 dialogues from 4 different sites were avail­
able for training and testing. 225 of them were used to 
train an overall language model, the rest of 25 was used for 
testing. Recognition experiments were performed with the 
JANUS-2 system [1] trained on only 200 dialogues. Table 1 
shows a detailed description of training and test material. 

! Training ! Testing I 
#dialogues 225 25 
#utterances 5629 378 

#words 117489 7803 
vocabulary size 3821 735 

Table 1. Used Training and Test Material 

3. THE GERMAN LANGUAGE 

Comparing various languages like English, Spanish and 
German, it can be easily seen that the German language 
differs from all other by an outstanding number of inflec­
tions. Consider the word "kommen" ("to come" in English). 
In German for almost every person in singular and plural 
there exists a different ending: 

• ich komm-e1 (I come) 
• Du komm-st (you come) 
• er/sie/es komm-t (he/she/it comes) 
• wir komm-en ( we come) 
• ihr komm-t (you come) 
• sie komm-en ( they come) 

So instead of 2 different endings as would be the case in 
English there are 4 of them in German. 

Moreover several prefixes can be attached to every verb, 
every time creating a new word. Here is an example: 

• hinein-gehen1 
( to go in) 

• aus-gehen ( to go out) 
• weg-gehen ( to go away) 
• 

1 Hyphens are used for clarification purposes as decomposition 
markers only and do not appear in the actual German spelling. 
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Also the German language has an uncountable number of 
compound words. Nouns can be concatenated to long noun 
chains, every chain creating a word with a new meaning, 
e.g.: 

• Sprach-erkennungs-modul2 

( speech recognition module) 
• Sprach-erkennungs-genauigkeit 

( speech recognition accuracy) 

#Utter- Vocabulary Coverage Vocabulary Coverage 
ances Size Size 

(Words) (Morpherns) 

500 1301 65% 925 72% 
1000 1696 70% 1151 76% 
1500 2015 75% 1344 82% 
2000 2271 78% 1485 84% 
2500 2468 79% 1612 85% 

3000 2793 81% 1814 87% 
3500 3032 83% 1930 88% 
4000 3331 85% 2087 89% 
4500 3563 86% 2236 90% 
5000 3658 87% 2293 90% 
5500 3791 88% 2376 91% 
5629 3821 88% 2391 91% 

Table 2. Vocabulary Coverage (German) 

#Utterances Vocabulary Size (Words) Coverage 

500 791 87% 
1000 1013 91% 

1395 1169 92% 

Table 3. Vocabulary Coverage (English) 

Naturally this fact leads to faster vocabulary growth 
when the amount of training data increases. As we are 
dealing with unrestricted spontaneous speech, an increasing 
number of training dialogues still results in a steady vocab­
ulary growth with no saturation to be expected. Compare 
figure 1 for the vocabulary growth of the German database 
with figure 2 which shows the increase of the English vocab­
ulary. In English 1395 utterances resulted in a vocabulary 
of 1169 words compared to 1971 words (168%!) in German 
after the same number of utterances. 

While the number of words in the dictionary steadily 
grows, still not all out-of-vocabulary words that might ap­
pear in the recognition process can be foreseen. Tables 2 
and 3 both show vocabulary coverage of the German test 
text and the English test text. The smaller English vo­
cabulary already covers 92% of English words in the test 
dialogues whereas the fourfold amount of training data in 
German only covers 88%. As a logical consequence it is de­
sirable to work on smaller base recognition units than words 
to be able to compose new unseen words out of several parts 
already known to the dictionary. 

2 Hyphens are used for clarification purposes as decomposition 
markers only and do not appear in the actual German spelling. 
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Figure 1. Vocabulary Growth of Words and Morphems in Ger­
man 
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Figure 2. Vocabulary Growth in English 

4. MORPHEM-BASED LANGUAGE MODELS 

Morphem-based n-gram models allow more robust probabil­
ity estimates for small training databases and also limit the 
large vocabulary growth with increasing training material. 

Three different ways of decompositions can be performed: 

l. strictly morphem-based decomposition, e.g. : 
• weggehen --+ weg-geh-en2 

( to go away) 
• Spracherkennung --+ Sprach-er-kenn-ung 

( speech recognition) 

2. decomposition in root forms: 
• weggehen --+ weggeh@ 
• Dialoge --+ Dialog@ 

(to go away) 
( dialogues) 

3. combination of strictly morphem-based decomposition 
and root forms 

For the German Spontaneous Scheduling Task (GSST) 
the decomposition of training texts in strictly linguistically 
based morphems (MORPHl) results in a reduction of vo­
cabulary size by 37% ( see figure 1). Whereas the word dic­
tionary contains 3821 words, the corresponding morphem 
dictionary consists of only 2391 entries (see table 4). This 
reduction will certainly get bigger the more data will be 

Words Morphems 

#tokens 117489 146990 
vocabulary size 3821 2391 

Table 4. Comparing Word and Morphem Vocabulary 
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Figure 3. Reduction of New Words in German 

available. Moreover the number of new words within the 
test set decreases much faster when using morphems in­
stead of words (see figure 3). Finally, as it can be seen 
in table 2, the test set coverage of morphems almost ap­
proaches the 92% coverage found in the English language 
and exceeds German word coverage of 88% by 3% based on 
the same training data. 

Comparing the number of tokens in table 4, we see that 
on the average one word becomes 1.25 tokens within the 
morphem-based framework. All available 225 training dia­
logues were used for building two overall language models: 
One based on words, the other on their morphem decom­
positions. Smoothing was done by absolute discounting [2] 
in both cases. 

As to be expected the reduction in vocabulary growth 
leads to a significant perplexity reduction when comparing 
morphem-based language models with word models. Tak­
ing into account that only every fourth word has been de­
composed the perplexity results are surprising: Morphem 
bigram perplexity is 48% lower than word bigram, for tri­
grams there is a 51 % reduction (see table 5). 

4.1. Morphem-based Decomposition 
Even though perplexity reduction ( and also the restric­
tion of dictionaJry growth) is highest when using a strictly 
linguistic-based decomposition of words, recognition results 
(see table 6) are degrading compared to the word-based 
recognition process. Whereas the language model profits 
from a very small unit decomposition, the acoustic part of 
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the JANUS-2 speech recognizer - as expected - suffers from 
these small components. Hence a more balanced way of de­
composition has to be found which both yields a lower per­
plexity than the word-based bigram model and also guaran­
tees improved recognition performance. As a result a second 
- not strictly linguistically oriented - decomposition was 
created (MORPH2). The resulting vocabulary reduction 
is smaller and also the perplexity reduction is not as high 
as before but recognition results are slightly better than in 
word-based recognition assuming an open-vocabulary sce­
nario. Perplexity results for the second morphem decompo­
sition are 52 for the bigram and 39 for the trigram case. 

4.2. Root Form Decomposition 
Another way of reducing the number of different vocabulary 
words and building a stronger language model is decomposi­
tion in root forms (ROOT). In this experiment all words of 
the same root stem but different suffixes are reduced to their 
root form resulting in a vocabulary of 3205 words instead of 
the original 3821 words3

• The vocabulary reduction thus 
is only 16%. As a consequence perplexity reduction for bi­
and trigrams is much lower than in both experiments of the 
MORPH case: 79 and 59 respectively. Recognition results 
of this method are given below in section 5. 

4.3. Combination 
For our last experiment methods MORPH2 and ROOT 
were combined (COMB) yielding a lower perplexity than 
word models but higher than morphem decomposition only. 
Perplexity results of all four newly created language models 
are summarized in table 5. 

Dictionary Word Speed 
Size Accuracy Acceleration 

Word Bigram Model 
3085 66.9% -

(closed-vocabulary) 
Word Bigram Model 

3062 64.7% -
(open-vocabulary) 
Mo:rphem Bigram 

Model 2204 65.4% ~ 30% 
(open-vocabulary) 
Mo:rphem Bigram 

Model 2204 65.8% -
(trigram rescoring) 

Table 6. Recognition Results 

5. RECOGNITION RESULTS 

Recognition performance was tested on the conventional 
word-based speech recognizer as well as on the four de­
composition methods described above. Acoustic training 
of the speech recognizer was done on less dialogues than 
training for language models, resulting in a smaller acous­
tic dictionary of 3085 words. Recognition results are 64. 7% 
with conventional word bigram models. In this experiment 
the test set contained 9% new words regarding training vo­
cabulary. The average percentage of unknown words in an 

3 Note that of course this only applies to the language model 
vocabulary, the acoustic dictionary still has to contain full form 
words. 



unseen test text was determined through cross validation 
on all available text data. As a desirable baseline, word 
accuracy was also tested on a closed-vocabulary scenario 
yielding a performance of 66.9%. 

Vocabulary Acoustic Dictionary 
(based on acoustic 2204 

LM Dictionary 

2204 training data) 

JffiS ~r-· I f I 
kommen / [ MORPH 

~~~-he_n _ _JK 308~-----------iszROOT-
I ~ kommen komm@ 

gehen ll"h@ 

Figure 4. Mapping of Acoustic and Language Modeling Dic­
tionaries during Recognition Process 

5.1. Morphem-based Decomposition 

Pure morph em-based recognition ( as described in 
MORPH2) measured on word basis slightly outperforms the 
result achieved with word bigram models by 0.7% (table 
6). As the vocabulary size of the acoustic dictionary used 
within the recognition process is much smaller than on word 
basis, recognition speed is accelerated by one third. 

5.2. Root Form Decomposition 

Using root forms only reduces the original language model 
dictionary from 3821 words to 3205 root forms. This means 
a 16% reduction in the vocabulary used as basis for lan­
guage modeling. The relatively small decrease results in a 
10% perplexity improvement and thus a slightly stronger bi­
gram language model. However, root forms cannot be used 
as acoustic dictionary for the recognizer since the suffixes of 
all inflections also have to be recognized acoustically. Dur­
ing the recognition process these full forms are mapped to 
their root forms and this information is passed on to the 
language model module, as it is shown in figure 4. There­
fore the acoustic dictionary for the recognizer has to consist 
of all 3085 full forms. When determining the achieved per­
formance of this experiment, suffixes of recognized words 
are ignored, thereby measuring root form accuracy instead 
of word accuracy. As the recognizer output is supposed to 
be input into a semantic-based parser, good recognition of 
root forms would be sufficient for the following parsing pro­
cess (3, 4] leaving good translation accuracy untouched. For 
comparison the root form accuracy of the open-vocabulary 
word bigram model case has been taken: 66.2%. The corre­
sponding experiment for root form decomposition results in 
63.5%. Obviously a full form word-based language model 
better supports the recognition process than a root form 
based one. 

5.3. Combination 
Regarding the combination of morphem decomposition and 
root form reduction the same fact applies. The achieved 
performance outperforms the root form only language 

D1ct10nary Root F'orm 
Size Accuracy 

1m ahon 
of Root Form 3062 66.2% 

Decomposition Words) 

3085 63.5% 

2998 65.1% 

Table 7. Recognition Results (Root Forms) 

model, but with 65.1% accuracy still stays below our as­
sumed baseline of 66.2%. 

In several preliminary experiments trigram rescoring has 
been applied to the so far best performing morphem-based 
speech recognition systems. Table 6 shows that even though 
trigram perplexity is much lower, surprisingly only a small 
improvement could be achieved, resulting in an overall per­
formance of 65.8%. 

6. CONCLUSIONS 

As can be seen morphem-based language models yield much 
better bigram and trigram perplexity results than conven­
tional word n-gram models. Still, with the so far used semi­
automatic decomposition methods only little improvement 
in the recognition performance has been achieved. Even 
higher-order n-gram models could not improve performance 
significantly. For future work further evaluations are in 
progress to find more efficient, less acoustic confusable de­
compositions automatically. 
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