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Abstract

A traditional transfer system in ma-
chine translation maps between lan-
guage structures and an intermedi-
ate representation. Qur connectionist
transfer system maps from f-structures
of one language to f-structures of an-
other language. It encodes the interme-
diate representation implicitly in neural
networks’ activation patterns. The sys-
tem is learnable, therefore it does not
need any effort in hand-crafting the rep-
resentation and mapping rules. Experi-
ments show the system has good scala-
bility and generalizability performance.

1 Introduction

Most of the current machine translation systems
adopt an indirect strategy that maps between
languages and an intermediate representation.
The interlingua model (Witkam 83; S. Niren-
brug & Tuker 87) uses a language-independent
intermediate representation. Design of the repre-
sentation requires cross-linguistic expertise. The
intermediate representation in a transfer model
(White 87) is language-dependent. Tts design is
relatively easier. However, multiple such repre-
sentations are required for a multi-lingual trans-
lator. Both models rely upon hand-crafted map-
ping rules; which demand tremendous human ef-
fort.

The difficulties appeal to automatic learning of
intermediate representations and mapping rules.
(Chrisman 91) proposed a connectionist con-
fluent influence mechanism that acquired the
distributed inter-language representation of sen-
tences during its learning to achieve the tight cou-
pling between the representations of sentences in
two different languages. The approach was hard
to scale up for larger tasks or to generalize for
unseen inputs, mostly due to its over-simplified
representation of sentences.

In this paper, we present a connectionist map-
per. It can learn the transfer from a source lan-
guage (English) LFG f-structure (Bresnan 82)
into its corresponding target language (German)

f-structure. It does not need explicit interme-
diate representation or mapping rules. Instead,
the connection patterns of the neural networks
implicitly encode the rules and representation.

The domain of our task was the Conference
Registration Telephony Conversations. It cov-
ered a wide range of topics related to conferences,
such as registration, cancellation, hotel reserva-
tion, conference information inquiry, etc. Follow-
ing are some English sentences:

I’11 send you the registration form
immediately.

Can I join the city tour?

What papers will be presented on
August twenty second?

When will you check in?

The evening of May 2nd checking out
the morning of the 8th.

The lexicon for the task contained about 400
English and 400 German words in root forms.
About 300 pairs of f-structures of the English and
German sentences were available from parsers de-
veloped in other research tasks (Waibel & etal.
91; Osterholtz & etal. 92).

A machine translation system for the Confer-
ence Registration task consisted of three parts:
a parser deriving the f-structure from an input
source language sentence, a mapper generating a
target language f-structure from its source lan-
guage counterpart, and a text generator pro-
ducing a target language sentence from its f-
structure. According to our experience, map-
ping between f-structures was the most difficult
part, which required the hand-crafting of an in-
termediate representation and the rules that map
between f-structures and the intermediate rep-
resentation. An automatic transfer system is
thus desirable to generate the target language f-
structures. The system should have the following
properties:

Learnability: The system should be able to
learn the structure transfer automatically from
paired samples. It should not require hand-
crafting of any explicit representations and map-
ping rules.

Scalability: With limited retraining, the sys-
tem should be able to deal with larger tasks with
an expanded lexicon.



Generalizability: The system should have
satisfiable performance on unseen inputs.

2 F-structure Representations

An f-structure is a structured functional repre-
sentation of a sentence or a phrase. It 1s com-
posed of a head, several terminal features, and
some sub-structures. For the f-structure in [Fig-
ure 1(a)], *SEND is the head. The contents in
the inner brackets are the sub-structures, whose
grammatical relations or roles' are labeled next
to the brackets. The rest parts in [Figure 1(a)]
are the terminal features. A sub-structure can
be referred to with its grammatical relation or
its phrasal category (NP, VP, ...). Thus the sub-
structure [;up; ¥*YOU] can be called either a SUB-
JECT sub-structure or an NP sub-structure. The
SUBJECT, RECIP and OBJECT sub-structures
are the three immediate sub-structures of the top
level f-structure in [Figure 1(a)], because there
is no intervening structure between these sub-
structures and the top level f-structure. The
DET sub-structure is not an immediate sub-
structure of the top level f-structure. Instead,
it 1s an immediate sub-structure of the OBJECT
sub-structure. If A is an immediate sub-structure
of B, then B is the parent structure of A.

A symbolic f-structure cannot be presented to
a neural network directly. [Figure 1(c)-(f)] illus-
trates how an f-structure can be coded as a net-
work’s input. Below are the terms used for the
representation.

A lexical vector is used to code a lexical
item. Assuming that every lexical item is an
entry in a two-dimensional space instead of a
one-dimensional word list, we need two indices
to specify the position of a lexical item in the
space. Lexical vector is a 0-1 vector with exactly
two elements being 1 (being activated). The po-
sitions of the two activated elements in the vector
specify the two indices for an item in the 2D lex-
icon[Figure 1(c)]?.

The terminal feature vector of an f-
structure codes the terminal features of the
f-structure. Each element of the vector cor-
responds to a feature-value pair like (TENSE
*PRESENT). The vector, again, is a 0-1 vec-

! Grammatical relation is the linguistic term for
subjects, objects, etc. We use it interchangeably with
the term role.

2Viewing the lexicon as 2D reduces the length of
the vector used to represent a lexical item. If there
are n lexical items in a lexicon, we need vectors of
length n to represent lexical items in the lexicon when
it is viewed as a one-dimensional word list, each with
exactly one element being activated. Viewing the lex-
icon as 2D, the vectors used to represent lexical items
only need to be of the length 2[+/n], with exactly two
elements being activated. Of course one may view
lexicon as of higher dimensions to further reduce the
vector length. However, we found that in this case
the network training became much more difficult, if
not impossible.

tor with the activated elements indicating that
their corresponding feature-value pairs are termi-
nal features of the f-structure [Figure 1(d)]. Since
there are altogether around 60 different values for
all the features used in the f-structure, the length
of the terminal feature vector is around 60.

The HF-Vector of an F-structure is the
concatenation of the lexical vector of the head
and the terminal feature vector of the f-structure
[Figure 1(e)].

Thus an f-structure can be represented by
its HF-vector and its sub-structures’ HF-vectors

[Figure 1(f)].

3 The Mapper

A mapper consists of

1. a symbolic controller that assigns an f-
structure transfer task to a neural network
and interpreting the network’s output. Ac-
cording to the interpretation, it recursively
assigns the sub-structure transfer tasks to
the related networks, and assembles these
networks’ results to the target f-structure;

2. seven neural networks that map phrasal f-
structures between two languages. FEach
network is constructed for a phrasal cate-
gory in the target language: IP(sentences),
VP, NP, AP, PP, DP(determiners), and
MP(miscellaneous, for phrases like “hello”,
“oh”, etc.).

3.1 Phrasal Networks

A phrasal network has four layers: input, feature,
hidden, and output layers [Figure 2(a)]. The in-
put layer consists of

1. Slots of the HF-vectors for an input f-
structure and its context (parent) structure.
Each slot corresponds to a fixed role.

An input f-structure
may have sub-structures of arbitrary depth,
but the networks must have fixed number of
input slots. Therefore we cannot include all
sub-structures’” HF-vectors in the networks’
input. Instead, we “peal off the shell” of an
f-structure — only include the HF-vectors
of the immediate sub-structures and their
immediate sub-structures in turn for the in-
put f-structure, and the HF-vectors of the
immediate sub-structures for the context f-
structure. Pre-analysis of the samples re-
veals the possible roles of the sub-structures
that can occur at these levels in f-structures
for the seven phrasal categories, and slots are
then added to the input and feature layers of
the corresponding phrasal networks to take
as input the HF-vectors of the sub-structures
with those possible roles.

2. Grammatical relation of the input source
structure in its context®. This input is a 0-

®Slot position only indicates the role of sub-
structures, not the role of the input structure, since
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Figure 1: F-structure Representation. (a) an f-structure. (b) abbreviation. (c). lexical vector. (d).
terminal feature vector. (e) HF-vector. (f) f-structure represented by HF-vectors.
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Figure 2: Phrasal Network. (a): the architecture of a phrasal network. An oval in the hidden layer may
represent multiple hidden units. (b): details of the lowest two layers. The unshaded slots represent
the input f-structure. The shaded ones represent the context f-structure.



1 vector with exactly one activated element
indicating the grammatical relation of the in-
put structure.

3. Lexical vector of the head of the output f-
structure’s parent structure (p-head). Some-
times, one input f-structure may be respon-
sible for the generation of multiple target f-
structures at different levels. For example,
[sentence GOODBYE] corresponds to both
[sentence AUF [op; WIEDERHOEREN]] and
its sub-structure [,5; WIEDERHOEREN] in
the training samples. This input serves as a
stack pointer, indicating the level at which
the output f-structure should be generated.

The HF-vectors at the input layer are the local
representations for the words and features in an
f-structure. The activation patterns of the slots
at the feature layer can be viewed as the au-
tomatically learned distributed representation of
the input HF-vectors (Miikkulainen & Dyer 89).
The input slots have one-to-one connections to
the feature slots [Figure 2(b)]. The slot-slot con-
nections share weights in such a way that the con-
nection from the #th unit in slot A at the input
layer to the jth unit in slot A at the feature layer
has the same strength as the connection from the
tth unit in slot B at the input layer to the jth unit
in slot B at the feature layer. The weight sharing
guarantees that the same HF-vector at different
input slots will result in the same pattern in their
corresponding feature slots.

The output layer of a phrasal network has
three parts:

1. the HF-vector of the f-structure to be gen-
erated. From this vector the head and the
terminal features of the target f-structure
can be recovered.

2. the Sub-Structures’ Input Specifiers. It
consists of slots of 0-1 vectors. Each slot has
at most one element being activated. And
each slot corresponds to a sub-structure of
a specific role of the target f-structure. The
role of the sub-structure 1s implied by the po-
sition of the slot in the output layer. Each
vector of sub-structures’ input specifier is of
the size (|| input layer slots|| + 1). For an
output slot in sub-structures’ input specifier,
if 1t has one activated element, then the sub-
structure with the corresponding role should
be included as a part of the desired output
f-structure. The position of the activated el-
ement in the slot indicates the input sub-
structure (as specified by the slot number in
the input layer) that is the counterpart of
(and therefore is responsible for the genera-
tion of ) the target sub-structure, or nil when
no input sub-structure is a counterpart of
the output sub-structure. If a network does
not activate any element in an output slot,

the HF-vector of the input f-structure with different
roles always occupies the first slot.

then the slot’s corresponding sub-structure
should not be expected as a part of the de-
sired target f-structure.

3. the Sub-Structures’ Categories. It con-
sists of slots of 0-1 vectors. There can
be at most one element being activated in
each slot, specifying one of the seven phrasal
categories for the corresponding target sub-
structure.

According to a network’s output, the controller
can build sub-structures recursively by assigning
subsequent sub-structure mapping tasks to the
networks of the categories specified in the output
of sub-structures’ categories at the output layer.
The input f-structures of those mapping tasks
are specified in the output of sub-structures’ in-
put specifiers. By combining the recursively built
sub-structures and the head and the terminal fea-
tures from the output HF-vector, the desired tar-
get f-structure can be produced.

4 An Example

The example in [Figure 4] illustrates how the sys-
tem works.

In step (0), the controller first activates the
IP network with the source input f-structure.
There 1s no context input for the IP network,
since the sentential f-structures are the top level
f-structures in our task. From the network’s out-
put, the controller knows that the head of the IP
is NIL7. It also generates the sentential feature
(MOOD *DECLARATIVE). And it interprets
the output as that the only sub-structure of the
sentence is a German VP, whose English counter-
part is the (non-proper) sub-structure with the
head WOULD?®. Therefore it builds the target f-
structure framework [ NIL (MOOD *DECLARA-
TIVE) [sentence ¥]], and activates the VP network
in step (1). Upon receiving the VP sub-structure
returned from step (1), it combines that sub-
structure with the f-structure framework, and
collapses the NIL-headed f-structure to form the
assembled f-structure shown as the output in step

(0).

*The sub-structure’s input specifier and category
are combined into a tuple here.

®The number in the parenthesis indicates the
subsequent, step of network activation for this sub-
structure.

5 P-head is the head of the target f-structure’s par-
ent structure

“NIL-headed f-structure happens only when there
is only one sub-structure or when there is an xcomp
sub-structure. The NIL-headed f-structure must col-
lapse into the only sub-structure in the first case,
or into the xcomp sub-structure in the second case.
All terminal features and other sub-structures are
moved into the collapsed-into sub-structure during
collapsing.

8The network actually specifies the slot at the in-
put layer instead of the lexical item WOULD.



Source Sentence: I would like to register for the conference
Source F-structure:  [sentence [subj 1] WOULD [eomp [subj I] LIKE [vcomp [subj 1]

REGISTER [pp—aqj FOR [o; [ae: THE] CONFERENCE]]]]]

Target Sentence: Ich wuerd mich gerne zur Konferenz anmelde

(0)

(1)

(2)

IP network
Input:
source:  [sentence [subj 1] WOULD [ycomp [subj 1] LIKE [zcomp REGISTER]]]
Output:
head: NIL
subs: sentence <WOULD VP>4 (1)5
features: (MOOD *DECLARATIVE)
F-structure assembled by the controller:
[sentence [subj PRONOUN] WERDE
[ccomp [subj PRONOUN] [44; GERNE] ANMELDEN [,;; PRONOUN]
lpp—adi FUER [op; [ae: DER] KONFERENZ]]]]

VP network
Input:
source:  [sentence [subj I] WOULD [seomp [subj I] LIKE [zcomp REGISTER]]]
context: NIL
role: sentence
p-head:® NIL
Output:
head: WERDE
subs: subj <1 NP> (2)
xcomp <LIKE VP> (3)

features: ((CAT V) (PERSON 1) (MODAL +) (FORM FIN) ...)
F-structure assembled by the controller:
[ [susj PRONOUN] WERDE
[ [supj PRONOUN] [.4j GERNE] ANMELDEN [,;; PRONOUN]
[pp—adi FUER [op; [4e¢ DER] KONFERENZ]]]]

NP network
Input:
source:  [sub; 1]
context: [sentence [subj I] WOULD [geomp LIKE]]
role: Subject
p-head: WERDE
Output:
head: PRONOUN
subs: NIL
features: ((CAT N) (PERSON 1) (NUMBER SG) (CASE N))
F-structure assembled by the controller:

[urj PRONOUN]

Figure 3: An example of connectionist transfer.



In step (1), the input source was determined
in step (0), since the sentence sub-structure’s
head was “WOULD” according to the IP net-
work’s sub-structure’s input specifier in step (0).
The context input is NIL because the source f-
structure does not have a parent f-structure. The
input role has the value sentence because the
slot position of the output sub-structure in step
(0) implies the grammatical relation of the sub-
structure 1s sentence. The input p-head is NIL
because the head of target f-structure in step (0)
was NIL as specified by the output HF-vector
there.

The VP network maps the input f-structure
to its German counterpart by specifying (a) the
head of the German VP structure WERDE and
the terminal features of the German VP structure
in the output HF-vector, and (b) the input spec-
ifiers and the categories of the sub-structures of
the target German VP f-structure. To build de-
tailed sub-structures for this VP f-structure, the
controller will activate the NP network with the
input of the English sub-structure with the head
“I” and the VP network with the input English
sub-structure with the head “LIKE” in step (2)
and (3), and combine the sub-structures returned
from step (2) and (3) into the f-structure frame-
work [[sus; *] WERDE [zcomp *]]. The combined
structure is then returned to step (0) to be in-
tegrated into the top level f-structure framework
there.

Step (2) works in the similar way to generate
the NP subject f-structure [,,,; PRONOUN] as
the sub-structure of the VP f-structure frame-
work in step (1). We do not go into the details for
this step here, and we omit the further steps in
the process of generating the target f-structure.

5 Training, Testing and
Performance

From the 300 sentential f-structure pairs, we
extracted all the German NP sub-structures,
their grammatical relations and their parent
structures’ heads. We labeled their English
counterparts®. These were all the information re-
quired for the training of the NP network. About
700 samples for the NP networks were created
this way. The training samples for the other net-
works were prepared in the same way. The NP
network had the most samples, while the MP net-
work had the least of 89 samples. Standard back-
propagation was used to train the networks. We
also tried the information-theoretical networks
(Gorin et al. 91) to generate the head of a tar-
get structure in the HF-vector, which required
less training time and achieved comparable per-
formance as the network trained with pure back-
propagation algorithm(Wang 94). The training
took 500 to 2000 epochs for different networks,

°An NP’s counterpart is not necessary to be an

NP.

and the training time ranged from one hour to
three days on DECStation 5000. The mapper
achieved 92.4% accuracy on the training data!®.
Learnability: The connectionist f-structure
mapping described above did not require any
hand-crafted rules or representations. The struc-
ture transfer was learned automatically. By clus-
tering the distributed representations of words
learned by the networks, 1.e., the activation pat-
terns of a feature slot when a lexical item was pre-
sented to its connected input slot, we had some
interesting findings about what was learned by
the networks. One of them was that the fea-
ture patterns for English nouns in the DP net-
work were clustered into three classes, which re-
flected the three genders of German nouns: the
German translations of the words in each class
were roughly of the same gender. Another find-
ing was about the classification of verbs. When
we clustered the feature patterns for verbs in the
VP networks, we found some intransitive verbs
like registerin the same class as most of the tran-
sitive verbs. This seemly strange classification is
not odd at all if we consider the fact that the
German translation for register, “anmelden” | is a
transitive verb. These two independent findings
reveal the networks’ ability to discover some lin-
guistic features of the target language and use it
in the representation of an entity of the source
language which does not possess those features.
This is exactly what a symbolic transfer are sup-
posed to do: using an intermediate representa-
tion which reflects the linguistic features of the
two languages in question (even if one of the lan-
guages may have degenerated form for a specific
feature,) and thus being able to make a “trans-
fer” at both the lexical and structural level into
corresponding structure in the target language.
Our system learned the intermediate representa-
tion automatically, although it was not expressed
explicitly in symbolic forms but encoded in the
networks’ activation patterns. Because the devel-
opment of this representation was integrated into
the process of automatic learning of f-structure
mapping, it tended to include in the intermediate
representation the important language specific
linguistic features which were directly relevant
for the ultimate purpose of structure transfer. In
the other words, the learning of the intermediate
representation was focused on the purpose of im-
proving the transfer performance. This is one of
the biggest advantage of this approach over the
hand-crafted intermediate representation.
Scalability: We did a preliminary scalability
experiment. We extended the source and tar-

YA source language f-structure is said to be ac-
curately mapped if the generated target language f-
structure is exactly the same as desired in the sam-
ple. We understand that it is not appropriate to talk
about accuracy of translation. There might be many
different but correct translations. We report the ac-
curacy here to asset the networks’ performance on the
mapping to the f-structure of a specified translation.



get language lexicon by 2%, and made 30 new f-
structures with these new lexical items. Trying to
scale up from what was already learned, we froze
all but the input-feature connections, trained the
network for about 40 epochs with the new data,
then fine-tuned all the connections with old and
new data for a few epochs. In doing so, we let the
networks first learn the new words to derive their
distributed representations, and then learn the
structure mapping for the new data later. This
approach was based on the observation that a big
portion of the new English words were translated
to some German words already in the lexicon,
which in turn was translated from some English
words in the old training data. These old English
words were mostly the synonyms of the new En-
glish words. By freezing the other connections
and training only the input-feature connections,
we hoped the networks to be able to develop the
distributed representation for a new word simi-
lar to the already-learned representations of its
synonyms.

This approach greatly reduced the learning
time for new words, since the one layer back-
propagation was much fast than the full-blown
learning. The mapper with the new phrasal
networks that were retrained this way achieved
83.3% accuracy on the new data, without affect-
ing the performance on the old data.

Generalizability: A separate set of data was
used to test the generalization performance of the
system. The testing data was collected for an in-
dependent connectionist parsing task (Jain 91)
from people not associated with our researches.
The data was compared with the training corpus,
and the sentences that appeared in the training
data were removed. An LR parser (Tomita 90)
parsed the sentences to English f-structures. The
English were translated into German manually,
and the translations were parsed by a German
LR-parser. We picked the most probable struc-
ture when a parsing result was ambiguous. There
were 154 f-structure pairs after we eliminated the
wrongly-parsed sentences. The mapper achieved
61.7% accuracy on the testing data. Considering
the limited number of training samples, this per-
formance was encouraging. Previous research as
in (Chrisman 91) did not generalize to deal with
unseen data.

6 Discussion

The application of the connectionist transfer de-
scribed in this paper has its restrictions. First,
it requires well-formed f-structures for both the
input and output sentences. This greatly limits
the applicable domain of the approach to well-
structured “clean” languages. We have tried
to apply the approach to our spoken language
scheduling data (Suhm et al. 95) recently. Since
the data is pervasive with ungrammatical utter-
ances, noises, false starts, etc, it is almost im-
possible to automatically derive the well-formed

f-structures from the utterances with a parser.

Another restriction is that this approached can
only achieve satisfiable performance when the in-
put and output languages are similar, in the sense
that the translation equivalents in the two lan-
guages mostly have similar recursive f-structures.
Although the system can deal with structurally
different input/output sentences, like the afore-
mentioned example of [sentence GOODBYE] and
[sentence AUF [op; WIEDERHOEREN]], we be-
lieve that the performance would drop signifi-
cantly if drastic structure differences'! between
translation equivalents are pervasive for the two
languages in question. Fortunately, as shown by
our data, the structural difference between En-
glish and German is not so drastic to ruin our
system’s performance.

Although we had done some scalability exper-
iment, it is unclear how the system will perform
if we increase the lexicon significantly instead of
by 2%. Because of the limitation of available
data, we found it very difficult to conduct scala-
bility experiments with much more expanded lex-
icon. We hope that with stable incremental per-
formance, the system can be gradually and easily
retrained to deal with more complicated prob-
lems.

We did not address the problem of ambiguity
in this research. The networks were trained to
map from the most probable f-structures of En-
glish sentences to the most probable f-structures
of their German counterparts. Therefore it is nec-
essary to have a mechanism to dissolve the ambi-
guities and feed the most probable f-structures of
input sentences to the mapper. This was done
by hand-picking the most probable English f-
structures in our research.

7 Conclusion

Aiming at the difficulties in symbolic transfer,
we have proposed a connectionist transfer sys-
tem that maps between f-structures of two lan-
guages. It can discover meaningful linguistic fea-
tures by learning. Its performance is promising
with respect to learnability, scalability and gen-
eralizability.
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