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Abstract 

In this paper we present a Time. Deiay Neural Network (TDNN) approach to 

phoneme recognition which is characterized by two important properties: 1.) 
Using a 3 laver arrangement of sirnple computing units, a Hiererchy can be 
constructed that allows for the formation of arbitrary nonlinear decision: sur- 
faces. The TDNN learns these decision surfaces automatically using error back- 
propagation[1i 2:) The time-delay arrangement enables the network:to discover. 
acoustic-phonetic features''and the temporal reletionships between them inde- 
pendent of posivion in time and hence not blutred by temporal shifts ic the 

imput. 

As a recognition task, the speaker-dependent recognition of the phonemes 

"B", 7D", and "G” in varying phonetic: contexts. was chosen. For corsparison, 
several discrete Hidden Markov Models (HMM) were trained to periorm. the 
same task. Performance evaiuation Over 1946 testing tokens from three:speak- 
ers showed ‘that the TDNN achieves a recognition rate of 98.5 % correct while 
the rate obtained by the best of our EMMs wasioniy 95.7 %. Closer inspection. 
reveais that the network “invented” well-known acoustic-phonetic features (é.z., 

FQ-tise, P2-fall, vowel-onset) as useful abstractions. It also developed ‘aluernate 
internal representations to link different acoustic realizations to the same con- 
cept. 
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Abstract 

In this paper-we present a Time Delay Neural Network (TDNN) approach to 

phoneme recognition which is characterized by two important properties: 1.} 
Using a 3 layer arrangement of simple computing units, a hierarchy ‘can be 
consttutted that allows for the formation of ‘arbitrary nonlinear decision sur- 
faces. The TDNWN learns these’ decision surfaces automatically using error back- 
propagation(l]. 2.) The time-delay arrangement enables the network to discover 
acoustic-phonetic features and the temporal relationships between them inde~ 
pendent of position in time and hence not blurred ‘by temporal shifts in the 
input. 

As 4 recognition task, the speaker-dependent recognition of the phonemes 

"B", *D”, and "G” in varying phonetic contexts was chosen. For comparison, 
several discrete Hidden: Markov Models’ (HMM) were:trained to: perform the 

same task, Performance evaluation over 1946 testing tokens from three speak- 
ers:showed that the TDNN achieves a recognition rate of 98.5 6 correct while 
the rate obtained by the best of our HMMs was only 93.7 %. Closer inspection 
reveals that the network “invented” well-known acoustic-phonetic features (¢.z.. 
F2trise, F2-fall, voweirenset) as useful abstractions. It also developed alternate 
internal representations to link different acoustic realizations to the same con- 

cept. * .
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1 Introduction 

In recent years, the advent of new learning procedures and the availability of 

high speed parallel supercomputers have given tise to a renewed interest im con- 
Hectionist models of intelligence{l], Thesé models are: particularly interesting 
for cognitive tasks that require massive constraint satisfaction. i.e. the. parallel 
evaluation of many clues and facts and their interpretation in the light of numer- 
ous interrelated constraints. Cognitive tasks, ‘such as vision. speech, angtage 
processing.and motor control are also characterized’ by a high. degree of uncer- 
tainty and variability and it bas proved difficult to achieve good performance 
for these tasks using standard serial programming: methods. Complex networks 
composed of simple computing units are attractive for these tasks ‘not only-be 
cause of their "brain-like” appeal. but because they offer ways for automatically 
designing systems that can make use of multiple interacting constraints. In gen- 
eral, such. constraints are too complex to be easily programmed and require the 
use of automatic learning strategies. Such learning algorithms now'exist (For an 
excellent review, see Lippman[2|) and have been demonstrated to discover inter- 
esting internal abstractions, in their attempts to solve a given problem{1.3.4.5]. 
Learning is most effective when used in an architecture that is appropriate for 
the task. Indeed, the experiments reported:in this paper suggest that as much 
prior knowledge. as possible should: be built into the network, 

Naturally, these techniques will have far-reaching implications for the design 
of automatic speech recognition systems, if proven successful in. comparison to 
already existing techniques. Lippmann(6) has compared several kinds’ of neural 
networks with other classifiers and evaluated their ability to create-complex 
decision surfaces. Other studies have investigated actual speech recognition 
tasks and compared-them to psychological. evidence in speech perception{7] or 
to existing speech recognition, techniques(8,9]. Speech recognition experiments: 
using netral nets have so far mostly been aimed at isolated word recognition 
{mostly the digit recognition task) {10,11,12.13] or phonetic recognition with 
predefined constant{14,15] or variable phonetic contexts[16,14.17]. 

Actiumber of these studies report very encouraging tecognition performance/16}, 
but only few comparisons to existing recognition methods exist. Some.of these 
comparisons found performance similar to existing methods(9.11], but othets 
found. that networks perform worse than other techniques(8]. One might argue 
that this state of affairs is encouraging considering the amount of fine-tuning 
that has gone into optimizing the more popular, established techniques. Nev- 
ertheless, better comparative performance figures are ‘needed before neural net- 

works can be:considered as a viable alternative for Speech recognition systems. 

One possible explanation for the mixed performance results obtained so far 
may be limitations in computing resources leading to short-cuts:that limit per- 

formance. Another more setious limitation, however, is the inability of most 
neural network architectures to deal properly with the dynamic nature of speech. 
Two important aspects of this are for a network to represent temporal relation~



ships between acoustic events, while at the same time providing for invariance 
under translation in. time. The-specific movement of a formant in’ time, for’ 
example, is an important cue to determining the identity of a voiced stop, but 

it is irrelevant whether. the same setof events occurs a little sooner‘or later in 
the Course of time: Without translation invariance a neuralnet requires‘precise 

segmentation, to align the input pattern properly. Since this is not always pos- 

sibie.in practice, learned features tend to get blurred (in order to accommodate 
slight misalignments) and their performance deteriorates, 

In the present paper, we describe a Time Delay Neural MM (TDNN), 
which addresses both of these-aspects and demonstrate. through extensive pet- 
formance evaluation that superior recognition results can be achieved: using this 
approach. In the following section, we begin by introducing the architecture 
and. learning strategy of a TDNN aimed at phoneme recognition. Next, we 
compare the performance of our TDNNs with one of the more popular cur- 

rent recognition techniques. In-séction 3, we therefore describe several Hidden 

Markey Models (HMM), under development at ATR[18]. Both: techniques are 
then evaluated over a testing database. We report the resuits:in section 4 of this 

paper and show that substantially higher recognition. performance. is achieved 
by the TDNN than by ‘the best.of our HMMs. We also take a close look at 
the internal representation that-the TDNN learns for this task. It discovers a 
numberof interesting linguistic abstractions which we show by way of examples. 

The implications of these results are then discussed and summatized in the final 
section of this paper. 

2 Time Delay Neural Networks (TDNN) 

To be useful for speech recognition, a layered feed forward neural network must 
have a number of properties. First, it should have multiple layers and sufficient 

interconnections between units in each of these layers. This'is to'ensure that the 
network will have the ability to learn complex non-linear decision surTaces[2.6|、 
Second, the network should have the-ability to represent telationships between 
events in time.’ These events could be spectral:coefficients, but might also be the 
output of higher level feature detectors. Third, the actual features or abstrac~ 

tions learned by the network should be invariant under translation: in time’. 
Fourth, the learning procedure should not require precise. temporal. alignment 
of the labels that are to be learned. Fifth, the number of weights in the network 

should be small compared to the amount of training data so that the network is: 
forced to encode the training data by extracting regularity. In the following, we 
describe 2 TDNN architecture that satisfies all of these-criteria and:is designed 

explicitly for the recognition. of phonemes, in particular, ‘the voiced stops ”B”, 
"D" and "G". 

‘In vision, solutions to the similar problem of abift-invarisnce have. been proposed by ime 
of & "Neocognitron”{19].



2.1 A TDNN Architecture for Phoneme Recognition 

The basic unit used in many neural networks computes the weighted sum of its 
inputs.and then passes this sum through a-non-linear function, most commonly 
a threshold of sigmoid function{2.1]. In our TDNN, this basic:unit is modified 
by intraducing delays D; through’ Dyas shown in Fig-l. The J inputs.¢f such e 
unit now will be multiplied b¥ several weights, .one-for each delay and one:for the 

undelaved input. For Ns 2. and J = 16, for‘example; 48 weights will be needed 
vo compute the weighted sum of the 16 inputs, with each input now measured 
at three different-points:in time. In this’way'a:TDNN: unit: has:the ability to 
relate and compare current input with the past History of events. The sigmoid 
function was chosen’ as the non-linear output function F due to: its convenient” 
mathematical properties(20,5]. 

For the tecognition of phonemes, a three‘layer net i construcved?. Its overail- 
architecture and a typical set'of activities in the units’ are shown in Fig.2. 

At the lowest: level, 16 meliscale spectral coefficients serve as input to the 
network. Input speech, sampied at 12 kHz, was hamming windowed and < 256- 
point FFT computed every 5 msec. Melscale coefficients were computed ftom 

* the power spectrum as in[21] and adjacent coefficients in time collapsed resulting 
jn an overall 10 msec frame rate. The coefficients of an input token (im this case 

15 frames of speech centered around the hand-labeled vowel onset) were then 
normalized to lie between -1.0 and +1.0 with the average at 0.0. Fig.2 shows 
the resulting coefficients for the speech token “BA” as input to the network. © 
where positive values are shown as black and negative values as grey squares. 

‘This input layer is then fully interconnected to:a layer of 8 time delay hidden 
units; where J = 16 and N ニス Ge:。 16 coefficients over three frames with time 
delay 0, 1 and 2). An Us way of seeing this is depicted in Fig.2. It 
shows the inputs to. these time’ delay units expanded out: spatially into-a. 3 

frame ‘window, which-is; passed over the input spectrogram... Each unit in the 
first hidden layer now eceives: input (via 48 weighted connections) fromthe 
coefficients in the 3 frame window. The particular choice of 3 frames (30 msec} 
was motivated..by, earlier: studies(22], that suggested that.a 30 msec window 
might be sufficient: to represent low level acoustic-phonetic events for phoneme 
recognition. » It. was also the: optimal choice among a: number: of alternative 
designs evaluated by: Lang(23}-on a similar task: 

Im the’second hidden layer; each of 3 TDNN units iooks at a 5 frame window. 
of ‘activity levels in hidden layer 1 (ie. J = 8,.N = 4). The:choice.cfa larger 

5 frame window in this layer was motivated by the intuition that higher-level 
units should learn to make decisions over a wider range in time based on more 
local. abstractions at lower levels. 

Finally, the output is obtained by integrating (summing) the evidence from 
each of the 3 units in hidden layer 2 over time and connecting it to its pertinent 

3 Lippmann{2,6] demonstrated recently that three layers can'encode arbitrary pattern recog- 
nition decision surfaces
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Figure 1: A Time Delay Neural Network (TDNN) unit 
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output unit (shown in Fig.2 over 9 frames for the "B” output unit). In practice, 
this summation is implemented simply as another TDNN unit which has fixed 
equal weights to a row of unit firings over time in’ hidden layer: 2°. 

When the TDNN has learned its internal. representation, it performs recog- 

nition by passing input spesch over the TDNN units. In‘terms of the illustration 
of Fig.2 this is equivalent to passing the time delay windows over the lower level 
units’ firing: patterns, At the lowest level. these firing patterns simply consist of 

the sensory. input, i:e.. the spectral coeficients. 
Each TDNN unit outiined in this section hes the ability to encode temporal 

relationships within herangeofthe N.delays. Higher layers'can attend to-larger 
time spans. so localshort duration features will be formed at’ the lower layer 

and more compiex longer duration features at the higher layer. The learning 
procedure ensures that each of the units in each layer has its weights adjusted 
in a way that improves the network's overall performance. 

2.2 Learning ina TDNN 

Several learning techniques exist for optimization of neural networks{1,2.24]. For 

the present network we adopt the Back-propagation Learning Procedure{20:5]. 
This procedure performs two passes ‘through the network. During the forward. 
pass, an input pattern.is applied to the network with its curtent connection 
strengths: {initially’ smiail random weights). The: outputs of all. the units at 
‘each level are computed starting atthe input layer and working forward to the 
output layer. The output is then compared with the desired output and its 
error calculated. During the backward’ pass, thé derivative of this error is then 
propagated back through the network, and all the weights are adjusted so. as'to 
decrease the errori20.3]、 This is repeated many timies for all the training tokens 
until the network converges to‘ producing the desired output. 

In the previous section we described a method of expressing temporal struc- 
ture in a TDNN and contrasted this -method to staining a network on: 2 static 
input pattern (spectrogram), which results in shift sensitive networks {i-e:, poor 

performance for slightly misaligned input patterns) as well as less crisp deci- 
Sion making:in the units of the network (caused. by misaligned tokens during 
training). 

To achieve the-desired learning behavior, we need to ensure that the net- 
work is exposed to sequences of patterns and that it is allowed (or encouraged) 
to learn about the most powerful cues and sequences of cues among them. -Con- 
ceptually, the back-propagation procedure is applied to speech patterns that are 
stepped through in time. An equivalent way of achieving this result is to: use a 
spatially expanded input pattern, ie., a'spectrogram plus some constraints on 

3Note, however, that as for all units in this network (except the input units), the output 
units are also connected to a permanently active threshold unit. In this way, the de-bias of 
each output unit can still be adjusted for optimal classification. 
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the weights. Each collection of TDNN-units, desctibed above’ is duplicated for 
each one frame shift in time: In this: way the whole history of activities is avail- 
able at once. ‘Sincé the shifted copies of the TDNN-units ate mere duplicates 
and are to. look for the same acoustic event, the weights of the corresponding 
connections in the time shifted copies must be constrained to: be the same: To 
realize-this. we first. apply the regular back-propagation forward。and backward 
pass to all time shifted copies as if they were separate events: This yields: dif- 

ferent error derivatives for corresponding (time shifted) connections: Rather 
than changing the weights on time-shifted connections separately, however, we 
actually update each weight on corresponding connections. by the same value. 
namely by the everage of all. corresponding time-delayed weight changes*.. Fig-2 
illustrates this by showing in each layer only two connéctions that are linked to 
(constrained to have the same value as) their time shifted neighbors. Of course. 
this applies to all connections and all time shifts. In this way, the network is 
forced to discover useful acoustic-phonetic features in the input, regardless of 
when in time they actually occurred. This is an important property, as it. makes 

the network independent of errorprone preprocessing aigotithms, that otherwise 
would be needed for time alignment and/or segmentation...In section 4.3, we: 

Will show ‘examples of grossly misaligned patterns that are properly recognized, 
due to this property. 

The procedure-described here is computationally : rather expensive, due to the 
many iterations necessary for learning a compiex multidimensional weight space * 
and the number of learning samples. In our case, about 800 learning samples 
were used and between 20,000 and 50,000 iterations of the back-propagation loop 
were run over all training samples. Two steps were taken. to perform learning 

within reasonable time. First, we have implemented our learning procedure in C 
and FORTRAN on a-4 processor Alliant supercomputer. ‘The speed-of learning 

can be improved considerably by computing the forward and backward sweeps 
for several different training samples in parallel on different processors. Further 

improvements can be gained by vectorizing operations: and: possibly ‘assembiy 
coding the innermost loop. Our present implementation’achieves about'a factor 
of 9 speedup:over:a: VAX 8600, but still leaves room for further improvements 
(Langi23] for example reports a speedup of a factor'of 120 over a: VAX11/780 
for an implementation running-on a Convex supercomputer). The-second step 

taken towards improving learning time is given by..a staged learning strategy. 
In this approach we start.optimizing the network’ based on’ 3 prototypical train- 
ing tokens only®.. In this case: convergence is:achieved rapidly, but-the network 
will have learned-a representation that generalizes-poorly to’ new and different 
patterns. Once convergence is.achieved, the network is presented with approx- 
imately twice the number of tokens and learning continues unti] convergence. 

‘Note that in the experimentsireported below these weight changes were actually carried 
ut each time the error derivatives from ail training samples had been compured{5}. 

*Note that for optimal learning, the training data is'presented by always altemating tokens: 
for each class. Hence-we start the network off by presenting 3 tokens,.one for each class. 
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Fig.d shows the progress during a typical learning run, The measuted error is 
1/2 the squared error of ail the output units, normalized for the number of train- 
ing tokens. In this-run ‘the number of training tokens used were 3.6.9.24.99.249 
and 780.. As can be seen from: Fig.3. th -or briefly jumps up every time more 
variability. is introduced: hy way of more training data. The: network is thes 
forced to imprdve its tepresentation to discover clues that generalize better and 

to.deemphasize those that.turii out to be merely irrelevant ideosyneracies of 2 
limived sample set. Using the full training Set:of 780'tokens this particular run 
was continued until iteration 35.000 (Fig.3 shows the learning curveionly up.to 
15,000 iterations). With this full trainingiset small learning steps have to be 
taken and learning progresses‘slowly.. In this case a:step:size of 0.002 and を 
thomentum/5] of 0.1 was used The staged learning approach was found to be 
useful to move the weights of the network capidly into the neighborhood of a 
teasonable solution, before the rather slow fine tuning:over all training tokens 
begins. 

Despite these speedups, learning runs still take in the order of several days. 
A number of programming tricks(23] aswell as modifications to the learning 
procedure[25] are'not ‘implemented yet and could yield another factor of 10 
or mote in learning time reduction. It is important to note; however, that tite 

amount of'computation considered here is necessary only for learning ofa TDNN 
and not for recognition. Recognition can easily be performed in ‘better than 
réal time od a workstation or personal computer. The simple structure. makes 
TDNNs also weil suited for standardized-VLSLimpliementation. The detailed 

knowledge could: be learned’ off-line” using substantial computing power and 
then downloaded in the form of weights onto a real-time production network. 

3 Hidden Markov Models (HMM) 

As an alternative recognition approach we have implemented several Hidden 
Markov Models (HMM)-aimed-at phoneme recognition. HMMs are currently the 
most:successful:and promising approach {26,27,28] in speech recognition as they 
have been successfully applied:to the whole spectrum of recognition tasks. Excel- 
lent performance was achieved at all levels from the phonemic level[29,30,31,32] 
to word cecognition[33.28] and: to continiious speech ‘recognition[34}. HMMs" 
success is partially due to their ability to cope with: the variability in speech 
by. means of stochastic modeling: in the following sections,:we describe the 
EMMs developed in our laboratory. They were aimed at phoneme recognition, 

more specifically the veiced stops "B”, "D” and "G”. Several experiments with 

variations on-these models:are described elsewhere(18]- 
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3.1 .An HMM for Phoneme Recognition 

‘The acoustic front end for Hidden’ Markov Modeling ‘is typically a vector quan- 
tizer that classifies sequences of short-time spectra. Such a tepresentation was 
chosen as it is highly effective for HMM-based recognizers[341: 

Input-speech ‘was sampled at 12kHz, preemphasized by (1 - 0.97 =~") and 
windowed using a 256-point Hamming window evety 3 msec. Then a 12-order 
LPC analysis: was carried out: A codebook of 256. LPC spectrum envelopes 
was generated from 216 phonetically balanced words. The. Weighted Likelihood 
Ratioi35.36] ‘augmented with power values (PWLR)[37,36] was used as LPC 
distance measure :for vector quantization. 

A typical HMM was adopted in this paper as shown in Fig:4. It has four 
States-and six transitions: 

3.2. Learning in an HMM 

The HMM probability values were trained using vector sequencés’of phonemes 
according to the forward-backwatd algorithmi26|、 The vector sequences for “B”, 
"D” and ”G” include a.consonant part and five frames of the following vowel. 
This is to model important transient informations, such as formant movement 

and has lead to improvements over context insensitive models [18]- 

The HMM was trained using about 250 phoneme tokens of vector sequences 
per speaker and phoneme (see details of the training database below), Fig.d 
shows for a typical training run the average log probability normalized by the 
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Figure 5: Learning in a Hidden Markov Model 

number of frames: Training was continued until the increase of the average log 
probability between iterations became less tban 2* 1079.) _ : _ 

Typically; about 10:to 20 learning iterations are.required for 256 tokens. A 
training rin takes about one hour on'a VAX 8700. Floor values were set on 
the output probabilities to avoid errors caused by zero-probabilities. We have 
experimented with:composite models. which were trained using combination of 
context-independent and -context-dependent probability values as suggested by 
Schwartz 4tal.[29,30].: In‘our case::no significant-improvements were attained. 

4 Recognition Experiments 

We now turn to am experimental evaluation of the two. techniques. described 
in: the previous sections. To provide a good framework for comparison, the 
same experimental: conditions were given to both methods: For both, the same 

training data was used and Doth were tested on the same testing database as 
described. below. 

4.1 Experimental Conditions 

For performance evaluation, we have used'a large vocabulary database of 53240 
common Japanese words{38]. These words were utteréd in isolation by three 
male native Japanese speakers (MAU, MHT and MNM, all professional an- 
nouncers). All utterances were recorded in a sound proof booth and digitized 

16



at a 12 KHz sampling rate: The database was then split into a training set 
(the even numbered files) and a testing set (the odd numbered files). Both the 
training and the testing data, therefore, consisted of 2620 utterances’each, from 
which:the actual phonetic tokens were extracted. 

‘The phoneme recognition task.chosen for this experiment was the recognition 
of the voiced stops. i.e., the phonemes "B”, "DP and "G". The actual tokens 
were eXtracred from the uttetances: using manually selected acoustic-phonetic 
labels provided with the database(38}. For speaker MAU, for example, a total 
of 219 "B"s, 203 "D"s and 260 "G"s were-extracted from the training and 227 
"Bs. 179" D"s and 252. "G"s from the testing data. Both recognition schemes, 
the TDNNs and the HMMs, were trained and tested speaker-dependently. Thus 

in both cases, separate networks were trained for each speaker. 

In our database, no preselection of tokens'was petformed. All tokens labeled 
as one of the three voiced stops were inciuded., It is important to note, that 
since the consonant tokens were extracted from entire utterances and not read 
in isolation, ‘a Significant.amount of phonetic variability exists. Foremost, there 
is the variability introduced by the phonetic context out of which a token is 
extracted. The-actual signal-of a” BA” will therefore look significantly different 
from a “BY? and soon. Second, the position’ of a phonemic token within the: 
utterance introduces additional vatiability.. In Japanese, for example, 2."G” is 
nasalized, when-it occurs embedded. in an. utterance, but not in utterance ini- 
“tial position. Both of our recognition algorithms are: only given the phoner 
identity of a token and must find their own ways of representing the fine vari- 
ations of speech. Since recognition results based on the training data are not 
meaningful®, we report in the following only the results 'from open testing, i.e:, 
from performance evaluation over the separate testing dataset. 

4:2 Results 

Table1 shows. the‘results from the: recognition experiments described above. As 

can be. seen, for, all three speakers, the TDN yields. considerable performance 
improvements over our HMM. Averaged over all three.speakers, the-error rate 
is reduced from 6.3% to 1.5%, a mote than four fold reduction. in error. 

Fig.6 through Fig.11 show scatter plots of the recognition outcome for the 
test data for speaker MAU,.using the HMM and the TDNN. For the HMM (see 
Fig.6 through Fig.8), the log probability of the next best matching tacorrect 
token is plotted against the log probability” of the correct token; e.g., "B”. 
*D? and "G”. In Fig.9 through Fig.11, the activation levels from the TDNN’s 
output units ate plotted. in.the same fashion. We should caution the reader 
that these plots are not easily comparable, as the two retognition methods have 

®Particularly, for neural networks such remilts would be gromiy misleading’ since good 
performance could in prindple be achieved by memorization of the training patterns, rather 
than by generalization. 
Tnormalized by number of frames 
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Table 1: Recognition results for three speakers over test data using TDNN and = 
EMM 

been trained in quite different ways. We present: this:result here to ‘show some 

interesting properties of the two techniques. The most striking observation that 

can beimade from these plots is that the output units ofa TDNN have atendency 
to:fire with high confidence as can be seen from the clustet-of dots in the lower 
tight hand corner of the scatter plots. Most output units tend to fire strongly 
for the correct phonemic class and not: at./all for anyother, a property. that is 

encouraged by the learning procedure. One possible consequence lof this is that 
rejection thresholds could be introduced to’ improve recognition: performance. 
If one were to eliminate among speaker MAU’s tokens all those whose highest 
activation level is less than 0.5 and those which result in two or mote’ closely 

‘ competing activations (ie, are near the diagonal in the scatter plots), 2.6% of 
all tokens would be rejected, while the remaining substitution etror rate would 
be less than 0.46%. 

4.3. The Learned Internal Representations of a TDNN 

Given the encouraging performance of our TDNNS, a closer look at the learned 
ititernal representation of the. network is warranted. What are-the properties or 

18



abstractions that the network has learned that appear to yield a very powerful 

description of voiced stops ? Fig.13 and Fig,12 show two typical instances of 
a"D” out of two different phonetic contexts: (7DA” and "DO", respectively). 
In both cases, only the correct unit, the "D-output unit” fires strongly, despite 
the fact that the two input. spectrograms differ considerably from each other. If 
we study the internal firings ithese two cases we can.see that the network has 

learned to use alternate internal representations to'link variations in the sensory 
input to the same higher level concepts. A good ‘example is‘given by the firings 
of the third and fourth hidden unit in the first laver above the input laver. As 
can be-seen from Fig,13, the fourth hidden unit. fires particularly strongly after 
vowel onset in the case of "DO" while the third unit'shows stronger activation 
after vowel onset in the case-of "DA”. 

Fig.14 shows the significance of these different firing patterns. Here the con- 
nection strengths for the eight moving TDNN units are shown, where white and 
black blobs represent:positive and negative weights, respectively, and the -mag- 
nitude of a weight is indicated by the size of the blob: In this figure, the time 
delays are displayed spatially as 4 3 frame window of 16 spectral. coefficients. 
Conceptually, the weights in this window form a moving acoustic-phonetic fea- 
ture detector, that: fires when the pattern for which it is specialized is encoun- 

tered in the input speech. In our example, we cam see that hidden unit number 
4 (which was activated for "DO”) has learned to’ fire whenra falling (or rising) 
second formant starting at around 1600 Hz is found in the input (See filled arrow 

in Fig.4). As can beseen in Fig.13, this is the-casefor' "DO" and hence the 
firing of hidden unit 4 after voicing onset (see row pointed to by the filled arrow 
in Fig.13). In the case of "DA” (see Fig.12) in turn, the second formant does: - 
not fall significantly, and hidden unit 3 (pointed to by the filled arrow) fires 
imstead. From Fig:14 we can verify that 下 DNN:unit 3 has learned to look for を 
steady (or only shghtiy falling) second formant starting’at-about 1800 Hz. The 
connections in.the second -and third layer then link the different firing patterns 
observed in the first: hidden layer:into one and the same‘decision. 

Another interesting feature can be seen in the bottom hidden unit in hidden 
layer number 1 (see Fig:12, Fig.13 and compare with the weights of hidden unit 
1 displayed in Fig.14). This unit has learned to take on the tole of finding 
the segment boundary of the voiced stop: It does so in reverse polarity, ie., 
it is always on except'when the vowel onset ‘of the voiced’stop is encountered 
(see unfilled arrow in Fig.13 and Fig.12). Indeed; the higher layer TDNN-units 
subsequently use this "segmenter” to base the final decision on the occurrence 
of the right lower features at the right point in time: 

In the previous example, we have seen that the TDNN can account for varia- 

tions in phoneti¢'context. Fig.15 and Fig.16:show examples of variability caused 
by the relative position of a phoneme within 2 word. In Japanese. 2 "G” em- 
bedded in a word tends to be nasalized. as seen in. the spectrum of a “GA” 
in Fig.iS) Fig.16 shows a word initial "GA". Despite the striking differences 
between. these two input spectrograms, the network's internal alternate repre- 
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sentations. manage to produce in both cases crisp output firings for the right 
category. 

Fig.l? and Fig.18, finally, demonstrate the shift-invariance of the network, 
They: show, the same token "DO" of Fig:13; misaligned by +30 msec and - 
80 msec, respectively. Despite the gross misalignment, (note that significant 
transitional information js lost by the misalignment i in Fig.18) the correct result’ 
was obtained teliably. A close look at the internal activation patterns reveals 
that the hidden units’ feature detectors do indeed fire according to the events 
in the input speech, and-are not negatively affected by-the-relative shift wich 
respect to.the input units: 

Three important properties of the TDNNs have therefore been observed. 
First, our TDNN: was able to learn without human-interference meaningful 
linguistic abstractions such as formant tracking and ségmentation. Second. we 
have demonstrated that'it hes'learned ‘to form alternate representations linking 
different acoustic events with the same higher. levei concept. In this’ fashion 
it’can- implement trading relations: between lower level acoustic events leading 
to.robust recognition performance. . Third, We have seen that. the network: is 
shift-invariant and does not rely on precise alignment or segmentation of the 
mput.. 

5. Conclusion and Summary 

In this paper we have presented a Time Delay Neural. Network (TDNN) 
proach to. phoneme recognition. We have shown that this TONN has two di 
able properties related to the dynamic structure ofspeech. ‘First, it can learn the 
temporal. structure of acoustic events and the: temporal relationsiips between 

such events. Second, it is translation invariant, that is, the features learned by 
the network are. insensitive to shifts in.time.. Examples:demonstrate that ‘the 
metwork was indeed able to learn acoustic: phonetic: features, such as formant 

Tovements and.seginentation,.and use them effectively’ as internal abstractions 
of speech. ・ ‘3 

The TDNW presented here has two hidden layers and:has the ability to learn 

complex non-linear decision surfaces. This could be.seen from the network's 
ability to-use alternate. internal representations and trading telations among: 
lower level acoustic-phonetic features, in order to arrive robustly at the correct 
final. decision. Such alternate representations have been particularly useful for 

Tepresenting tokens that vary considerably.from each other due to their different 
phonetic environment or their position within the original speech utterance. 

Finally, we have evaluated the TDNN on the recognition of three acoustically. 
similar phonemes;-the voiced stops ”B",”D” and ”G”. In extensive performance 
evaluation over vesting data from three speakers, the TDNN achieved an average 
recognition score.of 98,5 %. For comparison, we have applied various Hidden 
Markov Models to the same task and only been able to reach recognize 93.7 % 
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of the tokens correctly. We would like to note, that many variations of HMMs 

have been attempted and many more variations of both HMMs and TDNNs 
are conteivable. Some of these variations couid. potentially lead to significant 
improvements over the results reported in this study. Our goal here is to Present 
TDNNs as a new and successiul approach for speech: recognition, ‘Their power 

lies in their ability to develop shift-invariant. internal abstractions of speech 

and use them in trading relations for making optimal decisions. This holds 

significant promise for speech recognition in general, as it could overcome the 
representational weaknesses of existing techniques when faced with uncertainty 
and variability in real life signais: y 
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Figure:6: Scatter plot showing log probabilities for the best matching incorrect 
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Figure 8: Scatter plot showing log probabilities for:the best matching incorrect 
case vs. the correctly recognized "G"s using a HMM 
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Figure 9: Scatter plot showing activation levels for the best matching i incorrect 
case vs. the correctly recognized "B"s using a TDNN 
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Figure 10: Scatter plot'showing activation levels for the best RI incorrect 
case vs. the correctly recognized "D?s/using.a TDNN 
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Figure 15: TDNN Activation patterns for”"GA” embedded in an utterance
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