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Abpstract

5 this paper we present 3 Time Deiay Neural Network (TDNN) approach 1o
pbonems rewgmuon which is characterized by two important properties: 1.}
Using 2 3 layer arrangement of sinple 'arzxpmmz gnits, a Hierstchy can be
sonstrucled t_h‘a.: ‘ailows for we formasion of arbitrary noniinear aer.zslpn stz
faces. The TDNN lsarns these decision surfaces automatically using erzor back-
ymnaga.:.mn{l 2: ) The time-dsiay arra.ggemen.. ‘enables the network Lo discover
acbusmc—pnonetlc feum and.- \.l'ie r.exrpcz-ai re.aa.lonsn..bs DE'EWE«'“..E Ihﬁ'ﬂ .nce-
pendent of position in tirne and hence not blurred by tempeoral shifts in the
input. ' '

As a recoguition task; the speaker-dependent :eéogni..idn «of the phonemes
"B",”D",.and "G in varying phozetic: contexis was chosen. For comparison,
several discrete Sidden Markov Modeis (BEMM) wete traified to pericrm the
same task. Pexfarmanca evaiuation over 1946 testing tokens from three speak-
ers showed that the TDNN achieves 2 recognition rate of 98,3 % correct while
the rate obtained by the best of our EMMs was-only 3.7 %. Closer inspection
reveais that the- ner.wark "invented” well-known acoustic-phonetic features (e.2.,
F2-tise, F2-fall, ku-«onse:) as useful abstractions. It also developed ‘alternate
ioternal representasions to ok different acoustic realizations to the same con-
‘CEpL.
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Abstract

[n this paper ‘we present a Time Delay Neural Network (TDNN) approach to
phoneme recognition which is characterized by two important properties: 1.}
Using a J layer arrangement of simple computing units. a hferarchv can be
constructed that allows for the formation of ‘arbitrary nonlinear decision sur-
faces. The TDNN learns these decision sucfaces dutomatically using errot back-
propagation{l]. 2.) The time-delay arrangement enabies the aetwork to discover
acoustic-phonetic features and the temporal relationships between them inde-
pendent of position in time and hence not blurred by temporal shifts in the
input.

As 4 recognition task, the speaker:dependent rccogmuon -of the phonemss
"B”, ?D", and "G" in varying, phonet;z contexts was chosen. For ‘comparison,
several discrete Hidden Matkov Models (HMM) were trained fo perform the
same task. Performance evaluation over 1946 testing tokens from three Spea.lx-.
ers showed that the TONN acl:uem 3a recognition rate of 98.5 % correct while
the rate obtained by the best of our EMMs was only 93.7 %. Cleser inspection
reveals that the netwerk "invented” well-known acoustic-phonetic features (e.g..
F2-rise, F2-fall, vowel-onset) as useful sbstractions. It also developed aiternate
:nr,e:nai representations to link different acoustic rezlizations to the same con-
cept. *
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1 Introducticn

In recent years, the advent of new learning precedum and the a;vzulabxhty of
mgh speed pau-aiiei supercomputers have given rise to a renewed interest in con-
riectionist models of intelligence(l]. These models are patticularly interesting
for cognitive tasks that require massive copstraint satisfaction, i.s., the parailei
evaluation of many clues and facts and their mterprer.a*mn in the I:ght of numez-
ous interselated constraints. Cognitive tasks, ‘such as vision. speech, language
processing and motor consrol are also characterized: by a hx'gl_i degree of uncer-
tainty and vzna.bl.irty and it has proved difficult to achieve good performance
for these tasks using standard serial programming methods. Compiex networks
composed of simple computing units are attractive for these tasks not only be
cause of their "brain-like” appeal. but because they offer ways for automatically
aemgnmg s?stems :ha.: can make use of multzpie mterac:mg cunstramts In gen-
immed angd require: the
use of automatic: Iez:mmg strar.eg:es Such iearmng algomhms nowexist (For an
“excellent review, see Llppman[?]) and have been demonstrated to discover inter-
esting internal abstractions, in their attempts to solve 2 gx'-'en groblem:l 34,31
Learning is most effective when used @ an architecture that is appropriate for
the task. Indeed, the experiments reported in this paper suggest that as much
prior knowiedge as possible should: be built into the network.

Narurally, these techniques will have far-reaching implications for the design
of automatic speech recognition systems; if’ proven successful in comparison to
already existing techmiques. I‘.lppma.nn[ﬁj has compared several kinds of neural
networks with other classifiers and evaiuated their ability to create complex
decision suzfaces. Other studies have investigated actual speech mmgumon-
tasks and eompared them to psychological evidence in speeqh percep::on{?"
to existing speech recognition techniques(g, 9l. ‘Speech recognition experiments:
using neural nets have so far mostly been aimed at isoiated word ‘fecogpition
{mostly the digit recognition task) {10,11,12.13] or phonetic recognition with
predefined constant{14,15] or variable phonetic contexis[lﬁ 14,170

A tiumnber of these studies report very encouraging tecognition performanc-[lﬁg,
but only few eomparisons to existing :ecogmt;an methods exist. Some of these
comparisons found perfsrmance similar to existing methods[8.11], but othezs
found that networks perform worse than other techniqiies(8]. One might argue
that this state of affairs is encouraging considering the amouat of fine-tuning
that has gone intc optimizing the more popular, sstablished techmques Nev-
ertheless, better comparative performance figures are needed befors neural net-
works can be considered as a viable alternative for speech recognition systems.

One possible explanation for the mixed periormance results obtained so far
may be limitations in computing resources leading to short-cuts-that imit per-
formance. Another more setious limitation, however, is the inability of most
neural network architectures to deal properly with the dynmamic nature of speech.
Two important aspects of this are for a network to represent temporal relation-
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ships between acoustic events, while at the same time providing: for invariance
under translation in time. The specific movement of a formant in time, for
example, is an important cue to determining: the identity of a voiced stop, but
it is irrelevant whether, the sarme set of events occurs a little sooner or later in
the course of time. Without translation invariance a neural net requires precise
segmema.uon. to align the input pdttern properiy. Since this is not always pos-
sibie in’ practice, learned features tend to get blurred (in order to accommodate
slignt mlsa.hgnmencs} and their petformance deteriorates.

In the present paper, we describe a Time Delay Neural ‘d’e;work (TBN\’} .
‘which addresses both of these- aspects and demonstrate through. ‘extensive per-
fcrmance eva.lua.nou ;har. supcnor reccgmt:lon results can be a.chleved usmg thls
and lea.mmg stm;egy of a TDNN a.u'ned at phoneme recogmuen. Next, we
compare the performance. of our TDNNs with one of the more popuiar cur-
rent recognition techniques. In section 3, we therefore describe several Hidden
Markov Models (EMM), under development at A‘I‘R{IS} Both techniques are
then evaluated over a testing database. We report the results'in section 4 of this
paper and show t:har. substantially hlghcr Tecognition. pe:forrna.nc: is achieved
by the TDNN than by ‘the best of our EMMs.' We also take a close look at
the internal representation that:the TDNN learns for this task. It discovers a
number of interesting linguistic a.bst:a.chons ‘which we show by way of- examples
The unphca:wns of these r:sults are :hen dlscussed and snmmanzed in. thc fmai_
section of this papes:

2 Time Delay Neural Networks (TDNN)

To be useful for speech recognition; & layered feed forward neural network must-
have a number of properties. First, it shouid have multiple layers and sufficient
interconnections between units in each of these layers. This is to'ensure that the
pecwork will ‘have the a.blhty tolesrn complex non-linear decision surfaces{2.61.
Second, the ‘network should have the ability to represent reia.tlunnhlps between
events in time. These events could be spectral coefficients, but might also be the
output of higher level feature detectors. 'I'h:.rd the actual features ot abstrac+
tions leazned by thc netwerk should be mmm: unde: transiatxon m trme’*

of !.he Iabels that are to be lea.rned Fifth, the number oi' weights in :he. network
should be small compated to the amount of training data so that the network is-
forced to encode the training data by extracting regularity. In the following, we
describe a TDNN architecture that satisfies all of these criteria and is designed
-explicitly for the recugnmnn of phonemes, in particular, the voiced stops "B",
"D"and "G, -

‘In vmou.wlunw mth- n.mzhrprohlmof Mbmwuhmhmpwpuedhy ime
of a "Neneegmr.m"[lQ}




2.1 A TDNN Architecture for Phoneme Recognition

The basic unit used in many neural getworks computes the weighted sum of its
mpur.s and then passes this sum thrGugh a: ncn-hnea.r funetion, maost commoa—lv .
a threshiold of sigmoid function{2.1}. In our TDNN, this basic unit is modified
by intraducing deldys Dy sh;ough ‘D as shown in Fig.L. The & inputs.af se;ch &
. unit mow will: be mumpheﬂ by several weights, one for 2ach delay and onefor the
undelaved input. For N's= 2.20d J = 16, for example; 48 weights will be neaded
ta compute ‘the Wexghzea sum oi the 16 mpu:.s w:th ea.ch mpu: now measured
re[a.r.e a.nd ccmpa.:c current’ mpur. wrth the pa.st h:sr.ory of even;s The s1gmmd'
funetion was chosen as the non-linear output function F'due 10 its convenient’

mathematical properties{20,5].

‘For the recognition of phonemes, a three’ laver net is cunstr.zctedz If.s overail-
architecture and a typical set of aétivities in the units are shown in Fig.2.

At the lowest level, 16 melscale spectral coefficients serve as input to the
network. Input speech, sampled at 12 kHz, was hamming windowed and & 256-
point FFT computed every 5 msec. Melscale coefficients were computed from
* the power spectrum as in[21] and adjacent coefficientsin time collapsed resulting
in an overall 10 msec frame rate. The coefficients of an: input token (in this case
15 frames of speech centersd around the hand-labeled vowel snse;) were thea
notmalized to lie between -1.0 and +1.0 with the average at 0:0. Fig.2 shows
the resuiting coefficients for the spesch token "BA” as input to the ner.wa:rk )
where positive valtes are shown as black and negative values as grey squares. -

This input layer is then fully interconnected to a layer of 8 time delay hidden
units; where J = 16 and N =2 (ie., 16 coefficients ovar three. frames.. mth-‘m&e
delay: 0, 1 and 2). An altern itive wa.y of seeing this is depicted in Fig.2. 1t
snows the mpurs to, these time' dcw.y \:mts exna.nded out sna.::ailv mw a 3

'ﬁrst. hidden la.yer ncw -ef:ews mput (ﬂa. 48 wexghted connecuons) fxem z.he
coefficients in the 3. fra.me window. The particular choice of 3 frames (30 msac).
, ; by earlier studies(22], that suggested that a 30 msec window
might be. snﬁc:ent to represent low level acoustic-phonetic events for phoneme
recognition. :-It ‘was also the optimal choice among 3. number of alternative
designs evaluated by Laag[23] on a similar tesk.

- In the second hidden layer; each of 3 TDNN units iooks at a.b frame wmdow-
of ‘activity leveis in ‘hidden layer 1 (e, J =8 N = 4); The choicecf a la:ge:_
5 frame window in this layer was motivated by the intuition that higher level
units should learn to make decisions over a wider range in time based on more
local abstractions at lower levels.

Finally, the output is ob tained bv integrating (smmmng) the evidence from
each of the 3 units in hidden layer 2 over time and connecting it to its pertineat

3L1.ppmnn{2.b‘} demonstrated: ru:endy that three liyers can encode ubamrrpm Tecsg-
nition decision suriaces



Figure 1: A Time Delay Neural Network (TDNN) unit
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Figure 2: The architecture of the TDNN
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sutput unit (shown in Fig.2 over 9 frames for the "B" output unit). [n practice,
this summation is implemented simply as another TDNN unit which has fixed
equal weights to a row of unit firings over time in’ hidden layer 23.

When the TDNN has learned its internal representaticn, it performs recog-
aition bv passing input speech over the TDNN units. [nterms of the iilustration
of Fi 82 2 this is equivalent to passing the time delay windows over the jower level

umits” firing patterns. At the lowest level. these firing patterns simply consist of

the sensory input, i.e.. the spectral coefficients.

Each TDNYN unit outlined in this section has the ability to encode temporal
relationships within the rangeof the N.delays. Higher layerscan atiend tolarger
time spans. so local short duration features will be formed at the lowet laver
and more compiex fonger duration features at the higher layer. The Jearning
procedure ensures that each of the units in each layer has its weights adjusted

" in a way that improves the natwork's overall performance.

2.2 Learning in 2 TDNIN

Several learning t.ecnmquea exist for optimization of neural networks{ 1‘2,24] For
the present network we adopt the Back-propagation Learning Procedure{20.3].

This procedure performs two passes through the nerwork. During the for.ward-
pass, an input pattern.is applied to the network with its current connection.
strengtbs {initially’ small random _weights). The outputs of all. the units at.

‘each level are computed sta.ttmg at the input layer and working forward to the

output layer. The output is then compared: with the desired output and its

errer calcula.ted During the backward pass, thé derivative of this error is thea
propa.ga.r.ed Da.ci: t.hrough ﬁht neuwmx, a.nd all r.he welghts are ad;us‘r.ad se a.s 10

I.n the previous section we d:scnded 2 method of’ expreﬁsmg temporal strue-
ture in a TDNN and contrasted this method’ to sraiming a network on a static
input pattern (spectrogram) which results in shift sensitive networks {‘ l.ei, poor

: penormance for shghtly misaligned input patterns) as well as less crisp deci-

sion ‘making in the units of the network (caused by misaligned tokens durnng
training).

To aghieve. the desired learning behavior, we need to ensure that the net
work is e:poeed r.o segucnm of pa.ttems and that it is aﬂowed {or cncouraged}

cepmali_y, the b;ck-pr_opa.gmou pro:_:edure 15 a.pphed to speech patterns zhat are
stepped through in time. An equivalent way of achieving this result is to use a
spatially expanded input pattern, Le., a specirogram plus some constraints on

INate, however, that as for all units in this network (except the input u.mu], the output

mumdmmc&edwawmmﬂymw(&uhddmt In this way, the dc-bias of

each output unit ¢an still be adjusted for optimal duuﬁcanm

11
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the weights. Each collection of TDNN-units described above is duplicated for
each one frame shift in time. [n this way the whole history of activities is avaik

~ able at once. ‘Since the shifted copies of the TDNN-units are mere duplicates

and are to look for the same acoustic event, the wéights of the corresponding
connections in the time shifted copies must be constrained to be the same. To
realize this. we first apply the regular back-propagation forward and backward
pass 1o all time shifted copies as if they ‘were separate events. This vields dif+
ferent error derz»‘a.tzm for corresponding (time shifted) connections: Rather
than changing the weights on time-shifted connections separately, however, we
actually update each weight on corresponding connections by the same value.

namely by the average. of all. correpondmg mme—delayed weight changest. Fig:2
1.}usr.ra.tes this by showing in each layer only two connections that are finked to
{consuramed to have the same value as) their time shifted. nezghbo' kourse.

this applies to all connections -and all tire shifts. In this way, the network is
forced to discover useful accustic-phonetic features in the input; regardless of

when in time they actually occurred. This is an Importa.nt property, as it makes

the network Inde.pen&cnz of errorprone preprocessing augomhms . that otherwise
would be needed for time alignment and/or segmentation. .In section 4.3, we
will show examples of grossly misaligned patterns that are properly :ecogmzed
due to this property.

"The p:ocedu:a aescnbad hereis computationally rathc:- expenswe, due to the

_ ma.nv iterations necessary for leazmng a compiex: multldxmenmoﬂal weight space

and the number of learning samples. In our ‘case, about & [t} Iea.rnmg samples
were used and be:ween 20,000 and 50, 0001 ne:a:.mns of the ba.ck—propa.ga.uon loop
were run over all training samples. Two steps were taken, to perform learning
within reasouabie m-ne. Fu-st, we ha.ve :mplemnred cm‘ 1earmng pmcedure = C

<an be .mproved cons:derabiv by compusmg the forwa:d and backwa-.rd sweeps

for several different training samples in pmﬂel on different processors. Further

- improverments can be gained by vectorizing operations: and possibly ‘assembly

coding the innermost loop. Qur present implementation achieves about a factor

of 9 spesdup over.a: VAX 8600, but still leaves room for further improvements

(Lang{23] for example reports a speedup of a factor of 120 over a'VAX11/780

for an implementation running on 2 Convex supercomputer). The second step
taken towards improving learning time is given by a staged learning strategy.

. -:In this approach, we start.optimizing the network based on 3 prototypical train-
ing tokens only®. In this case convergence is achieved rapldly, but the network

will have learned a representation that generalizes poorly to new and different
patterns. Once convergence is achieved, the network is presented with approx-
imately twice the number of tokens and learning continues until convergence.

¥Note that in the erperiments reported below these wqh: changes were actually carvied:
out sach time the error derivatives from all training samples had- been compuzed(s].

*Note that for optimal learning, the training daza is presented by always altemating tokens
for cach class. Hence we start the network off by presenting 3 tokens, one for each class.

13



Fig.3 shows the progress during a typical learning run. The measuted error is

1/2 the squared etror of all the output units, normalized for the numbsr of train-
ing tokens. In this run the number of ¢ training tokens used were 3.6.9.24.99.249
and 780. Ascan be seen from F ig.3. the erroribriefly jumps up: every time more

~variability is introduced by way of more training data. The netwotk is then
. {orced to imnprove its tepresentation to discover clues that generdiize better and

to desmphasize those that turfi out 1o be mereiy irrelevant ideosyncracies of 2

- limived sample set. Using the full training set of 780 tokens this particulaz run
‘was continued until iteration 33.000 (Fig:3 shows the learning curve ‘only up to
‘13,000 iterations). With this full training set small’ learning: steps have to be

taken and } learning progresses. slowiy. In this case a'step: size of 0.002 and 2
momentum(3] of 0.1 was used. The staged learning approach was found to ba

- useful to move the weigats of the network rapidly into the neighborhood of a
easonable soiumcn. berore r.he ratner slow fine’ bunmg over all- r.rammg ‘tokens:

begins.

Despite these: speedups. Iea.:nmg tuns s:ﬁl taket
A aumber of programming tricks(23] as well as modifications to the learning
procedure{ﬁﬁl are-not implemented yet and could yield another factor of 10
or mom in learnmg ume reduct:on It is mecn:an 10 acte, however t.har. tnc

and not for retogmiwa Rmogmuon r.an easxly be per’ormea. “‘Detter 'han

‘real time ‘ot a workstation or personal computer. The. ‘simple structure makes

'I'DNVs a]scr weII smted for s:andazdxze& VLSI—mpiemenmmn The deta.ned

then ciownleaded in Lhe form of we:ghts ontoa rea.l-m.m;: pmduc:mn netwsarh

_3 szden Markov Models (I-IM\'I)

As an a.itema:wc recoguition: anpzoac.n we have :mpnement.ed seve:af Hidden

Matkov Modals: (HMM) aimed at phoneme recognition. HMMs are currentiy the

most successful and promising a.ppma.ch 126,2f /28] in speech- recugmtwnaa thev

have been auccusfully zpphed to l:he whole spe:mm of mcg;nmon t:ash. Excei—'

it wo:d :etagmt.aan{:m 28] and. to contintious speer.h recomtm[ﬂ&}. KMMs’

success is partially due to their ability to cope with-the variability in speech
by means of stochastic modeling: In the following sections, we describe the
EMMs developed in our lzbaratory. They were aimed at phoneme recogmt:on.

-more specifically the veiced stops "B”, "D” and "G”. Several expenmems with

vanat.lomon these modeis are described. e]sewhere[lﬁ]

14
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Figure 4: Hidden Markov Model

3.1 .An HMM for Phoneme Recognition

" The a¢oustic front end for Hidden Markov Modeling'is typically a vector quan-
tizer that classifies sequences of short-time spectra. Such a representation was
chosen as it is highly effective for EMM-based recognizers{34].

" Input-spesch ‘was sampled at 12kHz, preempha.sized.bv {1 - 097 =71) aad

- windowed using a 256-point Hamming window every 3 msec. Then a 12-order
LPC analysis was carried out. . A codebook of 256 LPC spectrum envalopes
was generated from 216 phonetically balanced words. The Weighted Likelikcod
Ratio]35.36] augmented with power values (PWLR}{3T 35] ‘was ‘used as LPC
distance measure for vector quantization.

A typical HMM was a.ccpr.ed in this paper as shown m Fzg 4. It has four
state a.nd six u‘zns:tmns

3.2 Learning in an HMM

The HEMM probability values were irained using vector sequences’ df phonemes
according to the forward-backward algorithm[26). The vector sequences for *B”,

"D” and "G” include a consonant pars and five frames of the following vowel.
This is to model important transient informations, such 2s formant movement
and has lead to improvements over context insensitive models’ (18]

The EMM was trained using about 250 phoreme tokens of vector sequences
per speaker and phoneme (see details of ‘the training database below). Fig.d
shows for 2 typical training run the average log probability normalized By the

15
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Figure _5: Learning in 2 H-idden_ Markov Model

number of {rames. Training was continued until the increase of the average log
probability between iterations became less than 2 = 1073
Typically, about 10 to 20 learning iterations are required for 256 tokens. A
- training run takes about one hour on'a VAX 8700.. Floor values were set on
the cutput probabilities-to avoid errors caused by zao-pzoba.bmuﬁ We have
experimented with:composite models, which ware traired using a combination of
context-independent and context-dependent probability values as suggur.ed by
Schwartz st al [29.30]. In:our case; no s:gmﬁt:an: improvements were attained.

4 Recognition Experiments

We now turn to an eitperimtntai_eva'iuation of the two techniques described
in the previous sections. To provide a good framework for comparison, the
same experimental conditions were given to both met.hoda For both; the same
training data was used and doth were tested on the same testing database as

described below. . .

- 4.1 Experimental Conditions

For performance evaluation, we have used: 2 large vocabulary database of 5240
common Japanese words{38]. These words were uttered in isclation by three
male native Japanese speakers CI‘-LAU, MET and MNM, all professional an-
ncunccrs} All utterances were recorded i ina sound proof booth and digitized
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at a 12 kBz sampling rate; The database was then split into a training set
(the even numbered files) and a testing set {the odd numbered files). Both the
training and t.he testing data, therefore, consisted of 2620 utterancesieach, frem
which-the actual phonetic tokens were axtracted. -

Thephoneme recognition task x:hosen for this experiment was the 'ecogmt,.on
of the voiced stops. i, the phonemes "B”, "D” and "G". The actual tokens
were extracted from tie utterances _uﬁing._m'a.n:u:a.ﬂ_y selected acoustic-phonetic
labels provided with the database[38]. For speaker MAU, for example, a total
of 219 "B"s, 203 "D"s and 260 "G"s were extracted from the training and 227
"B"s. 179 "D"s and 252 "G"s from the testing data.. Both recognition schemes,
the TDNNs and the EMMs, were zramed and tested spcaker-aependemly Thus
in both cases, separate networks were trained for each speaker. :

In our database, no:preselection of tokens was performed. All tokens iabeied i
as one of the three voiced stops were inciuded. It is important to note, that
since the consonant tokens were axtracted from entire utterances and not read
in isolation, a s:gmﬁ cant.amount of phonetic varnability exists. Foremost, there
is the variability introduced by the phonetic context out of which a token is
extracted. The actual signalof a "BA" will therefore look significantly different
from a "BI” and so on. Second, the position of a phonemic token within the:
utterance introduces adéitional variability. In Japanese, for examplé, 3 TE is
nasalized, when it occurs embedded in an utteran¢e, but not in ‘utterance ini-
“tial position. Both of our recognition a.lgonr.hms are only given the phonemiz
identity of a token and must find their own ways of rcpresentmg the fine vari-
ations of speech. Since reccgnmon results based ou the training dara are not

-mcamngful‘ we report in the following only the results'fom open testing, ie.,

from per:fo:mance evaluation over the separate tmng data set.

4;2_ 'R:esu‘its

T:'éblg_l shows the results from the recbgniaiqqg-up.égiimn@;;jiac#-ibed above, As
can be seen, for all three speakers, the TDNN yields considerable performance
improvements ovar our HMM. Averaged over all three. speakers, ‘the error rate

 is reduced from 6.3% to 1.5%, a mote thag four fold reduction in error.

Fig6 tl'n:ou;h Fig.11 show scatter plots of the recognition outcome for the

| test data for speaker MAU, using the EMM and the TDNN. ‘For the EMM (see

Fig6 through. Fig, 8), the log. probability of the next best matching acorrect
toketi is plotted against the log probability” of the correct token; e.g., "B".
"D” and "G”. In Fig.9 through Fig.1l, the activation levels from the TDNN's
output units are plotted. in the same fashion. We should caution the reader
that these plots aze oot eaSﬂv comparable, as the two recognition methods have

SParticularly, ﬁfmﬂmwrhm:hmﬁu would bBe gromiy misleading since good

'mﬂwdmmhmﬁwmdmm‘wm.m«

than by generalization.
Tnormalized by number of framies

17



number | number | recognition sy | Dumber | recognition b g

il i £ o T : Y 1 Ea¥ii)

,SPEAREL | sftokens | oferrors |  rate Taa & oferrors |  rate | .
| b@2n) & | 882 bo3s | sg1

MAD -Fogflgey ke TR r e |wBB&ak g v g6y | 9238

toheoom J 3 T ggg ] ot R @ wps

MHET. “f 4(170), g. o 4- 160 89.1 3 8g2 | =52
-gi2o4) 3 4 ] 8B4 | g | il i
- BE%ae) ot o 11 o4 049 _ 2% Bis

SRR AR IR e R T 13 1 ey b 809

Table 1: B,ecog;m.mn m-ui.s mr three speaxm over test da:a usmg TDNN and -
BMM i

been trained in-quite m!ferent. wavs. We ptasent ‘this-result here to show some
interesting properties of the two techmques The most, scnk:.ng observation that
can be made from these plots is that the cutput units of a TDNN havea: nandencv.
to fire with high confidence as can be seen from the cluster of docs in the iower
ng}xt hand corner of the scatter plots. Most output units: tend to fire strongly
for the correct phonemic class and pot at. all for any: 'other, a property that'is
encmaged bv the Ieammg procedure Gne pmibia consequmce of: r.t:us is tnat

I one were to e.hmma.:e among speaxer MAU’s :okens all those Whose hxghe:st
activation level is less'than 0.5 and those which result in two or mare closely

; competing activations (iie., are near the dxa.gbnaf?m' the scatter plots), 2:6% of
all tokens would be rejected, while the remaining suhsmunon error rate would
be less tha.n 0.46%. : :

4.3 The Learned Internal Representations of a TDNN

Given the encouraging performance. of our TDNN&. a closer look at the learned
iriternal representation of the network is wa:rmted Whaz Are: t-he properties ‘or

18




‘abstractions that the network has learned that appear to yvield a very powerful
description of voiced stops 7 Fig.13 and Fig:12 show two typical instances of
a "D out of two different phonetic contexts {("DA™ dnd "DO”, respectively].
In both cases, only the correct unit, the "D-output unit” fires strongly, despite
the fact that the twoinput. snectmgra.ms differ considerably from each other. If
we study the'internal ‘Ermgs in‘these two cases we can see that the network has
learned 1o use aiternate internai representations to link variations in the sénsory
‘input to the same higher level concepts. A good: example is given by thie firings
of the third and fourch hidden unit in the first laver above the input fayver. As
can be seen from Fig,13. the fourth hidden unit fires particulariy. strougiv aft.e.
vowel onset in the case of "DO”", while the third unit shows’ stronger activation
after vowel onset in the case of "DA”,

Fig.14 shows the mgmﬁcauu of these different ﬁ.n:rg patterns. Here the con-
nection strengths for the eight moving TDNN units are shown, where white and
bla.ck blobs repr&cnt pcxsmve a.nr} neg;anvc welg}:ts. respectweiv, a.nd !‘.he ‘mag-
-deia.\'s are dupla.ved spazlaliv s 3 &ame wmdow of 16 spee:ral coeﬁiqcnts
Conceptually, the weights in this window form a moving acoustic-phonetic fea--
ture detector, that fires when the pattern for which it is specialized is encoun-
tered in the input speech. In our example, we can ses that hidden unic number
4 {wiuch was activated for DO") has learned to fire when:a falling (or nsmg 3
second formant starting at arund 1600 Bz is found in'the input (See filled arrow

_in Fig:14). As can be seen in Fig.l3, this is ‘the case for "DO” and hence the
firing of hidden unit 4. after voicing onset. (sea row painted to by the filled: ‘arrow
‘in Fig.13). In the case of "DA” (see Fig. 13) in ‘turn, the second formant does -
aot fall significantly, and ‘hidden umit 3 (pointed to by the filled arrow) fires
instead. From Fig.14 we can verify that TDNN-unit 3 has learnad 2o look for'a
steady (or ouly shightly falling) second formant starting at about 1800 Hz. The
‘connections in.the second ‘and third layer then link the different firing patterns
observed i the: ﬁrst_ ‘hidden laye.t into one and the same decision.

‘Another interesting feature can be seen in the bottom hidden unit in hidden
layer number 1 (see Fig.12; Fig.13 and compare with the weights of hidden unit
1 displayed in Fig.14). This unit has learned to take on the role of finding
‘the segment ‘boundary of the voiced stop. It does so in reverse polarity, Le.,
it is always on ezcept when the vowel onset of the voiced stop is encounw-cd
{see unfilled arrow in Fig.13 and Fig.12). Indeed, the higher layer TDNN-units
subsequently use this "segmenter” to base the final demlnn on the occurrence
of the right lower features at the right point in time.

In the previous cxample ‘we have seen that the TDNN «<an account for varia-
tions in phonetic'¢ontext. Fig: 15 azid Fig.16 show examples of variability caused
by the relative position of 2 phoneme within a word. In Japanese. 2 "G” em-
bedded in a word tends to be nasalized as seen in the spectrum of 2 "GA”
in Fig.15. Fig.16 shows a word initial "GA". Despite the striking differences
between these 1wo input spectrograms, the network’s internal alternate repre-
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sentations manage to produce in both cases crisp output firings for the right
category.
Fig.17 and Fig.18, finally, demonstrate the shift-invariance of the network.
They show the same token "DO" of Fig.13, rmsahgned by +30 msec and -
30 msec, respectively. Despite the gross Jsatxgnmen:, {note that significant
: t-anmu nal information is lost by the msalxgnmem in: Fig.18) the correct result’
was obtained rehabﬁ A ciose. Iook at:the internal act vation patterns reveals
that the hidden units’ feature detectors do indesd fite aceording to the svents
in the input speech. and are not negatively affected by the relative shift wich
respect to:the input unics:
Three important properties of the TDNNs have .here*ore been observed,
-First, our TDNN ‘was able to learn without Auman- interfersnce meaningful
hng;msc c abstractions such as formant tracking and segmentation. Second. we
nave demonstrated that it has'learned to form alternate representations linking
different acoustic events with the same inghar level concept. In this fashion
it'can implement trading relations between lower level acoustic events Iea.cmg-
+10.robust recognition performance. . Third, We have seen-that. the network.is
shift-invariant and: csces not rely on precise ahgnmen: or sagmenta.r.wu of the
mput.. : A

. 5 Goncluslon and Summary

a.bie pmpErr-ms r:lz.ted to the dyna.:mc s:mc:nxe t'.speech irsy, it can ieam oh
temporal structure of acoustic events and: the: temporal :eia*}onsmps berwee!'.

such events. Second it is translation: mvanan:, shat is, the features learned by
the network ‘are ‘msensitive to shifts in_ time.. Exampies demonszrate that the
~network was indeed -able to learn acoustic phonetic. fa-.a.tm'ts, such as formant

i :movemenr.s and ‘segmentation, and use them effectively as m;emal abstractions
of spesch. .

The TDNN. -presented here ha.s two hldden layt:s and has ‘the ability to learn
_compiex non-linear decision surfaces. This could be .seen from the network’s
“ability to use alternate internal representations -a.n& ' telations among
lower level acoustic-phonetic features, in order e tobustly at the correct
final decision. Such alternate representations have been. ularly useful for
representing tokens that vary considerably.from each othet due to their different
phonetic environment or their position within the: ongmal pesch utterance.

Finally, we have evaluated the TDNN on the recognition of three acoustically

similar phonemes; the voiced stops "B” "D” and "G”. In extensive performance
evaluation over- test,mg; data from three speakelsftha I‘E‘NN a-!:hieved an ‘average
recognition score of 38,5 %.. For comparison, we have applied various Hidden
‘Markov Modals to the same task and cnly been able to :ea:h recognize 93.7 %
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of the tokens correctly. We would like to note, that many variations of HMMs
have been acte—npted and many more variations of both HMMs and TDNNs
are conceivable. Some of these variations couid potentially lead to significant
improvements over the results reported in this study. Qur goal hereis to presént
TDNNs as a new and successiul approach for speech recognition. Their power
lies in their abiiity to develop shift-invariant internal abstractions of spesch
and use them in trading relations for making optimal decisions. This aolds
significant promise for speech recognition in general as it could overcome the
representational weaknesses of existing techniques when faced with uncertamty
and variability in real life signals:
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Figure 15: TDNN Activation patterns for "GA" embedded in an utterance



CENEENX -

I.---u‘-'....-

jwm W ‘:.“‘,..:

L
1
iE

BEE R -
- e - - | as
‘a W l'- u ‘.;-___ 787
-"l‘.""?ﬁ_?z
- m N 8 & | & _;25-{’
l -.‘..-.:!922

(o8

sl 0 0 0 -5

o BT

Figuze 16: TONN Activation patterns for "GA” in'utterance initial position

32



o = @ BB W Mow e e

I’"‘ b "..'I 5 ..‘ -:: .
e - i.--'—.—.:-.-'--
LRI S S § § 8§ 8 § e

{Hz)

2 ﬁ'-:”;

it oA

ll.
e

n
oW om
om oo .

R W

3 1 A

i .
it
1 MR i
R T 8
N ow
i

L]
LR

Hep s4
i

it

.

i
SRRt

S ==

& W
4 g i
i

L
“m g
(L

woow e Wl

R R R
RN ML e oW

5437 ’
:45;3
3787
3187
26712
2250
1822
1681
- 1405
1218
1031

B&4
. 656

M| ae2

- 281
147

33

Figure 17: TDNN- Activation patierns for "DO™ misaligned by +30 msec



jm e x M MM w «
- & "W ..‘..a
N W e w ..

s = aaom - sowmom oo oy
P o e [ § 4 {f
B ARE RS § B
!---I-I'-l e B {8
L B SRR S T E

- - . W mele r-‘“!' 4

Wt

o i, m

B« B

£ L -
U ERUET R

B LERF LTI ER bRy

L RTINS BT

MEN . BEWEN

[emw mwwnn . .
1w

LN
B ;
Bt

L
i

= 5 80 & |
M E & a8 8§
Howm s x oM ow NN WM 22 .
* xW EmoE - RN WE N 4

~Figure ' 3 TDNN Activation patterns. for "DO" miisaligned by -30 msec

34



References

{1

D.E. Rumeihart and J L. McCleliand, Parailel Distributed Processing; Ez-
plorzztmus in'the Micrastructire of Cogniltion. Volume ['and I, MIT Press,

: Cambr:dge 'MEAL 1986.

-155? 11’zaazmc 4—2"’ Apnl 1987.

DiC. Plaut, S.J. Nowlan, and G.E. Hinton. Erperments on Eemmg by

Back Pmpagaimm Techmcai Reporr. C\H.--CS-SB 126, Carnegie-Mellon

_ University, June 1986.

f4]

-

(5]

T3 Se]nows:ﬂ and C.R. H.osenbezg NETtalk: A Parallel Network that

Ledrs té Read Alowd. Technical Repcrt JHU f EECS—&&! 01, Jokns: Eopx:n;s

University, June 1986. g i
D.E. Rumelhart, GiE. Hinton, and R.J. Wilhams Learning: repre:ent_a.nons

by baak-propagatmg errors. Hatur:, 323 a33—a36 QOctober 1986,

6] Huang W.Y. and L;ppma.nn REP. Compaxﬁon bekween peural pet and

!

10}

{1
¥ 121

{13]

conventional classifiers. In [EEF International Con_ference on Neural Net-
‘works, June 1987 2

J.L. McClelland and J.L. Elman. Interq‘cﬁa'c--?ﬁbc:sses in Speech P'g'rcep:. =

tion: The TRACE Model, chapter 13; pages 58-121.. MIT Press, Cam-
bridge, MA, 1988, ;

§.M. Peeling; R-K. Moore, audM,.J “Tomlinson. The mulu—la.verperceptmn

as a tool for speech pattern processing rasr.a.:ch 1In Proceedings It oA Attumn
Cony fmm:c on Spécck and Hecr-du_q', 1686

H. Bourlard and C.J. Wezlekms Mult:la.yer perceptrons and. a.nwmat:c
speech reccgmuon I IEﬂ Iniemnt:onct Coufercnce on Neural Neiwor:s,
June 1987. .

B. Geld, Lippmann R.P., and M.L. Malpass Some: neural net reﬁogmzmn

results on isolated wazds. In IEEE International Canfcmnce on Neurnu'

Netwerks, June 1987.

Lippmann. R.Piand- B. Gold. Neural-net classifiers useful for: Speech recog-:
nition. In JEEE International Conference on Newral Networks, J une 195?

D.J. Burz. A neural network digit recognizer. In JEEE Interaat:onai Cau-
ference on Systems, Mms, and C’yﬁcmet;cs October 1986. it

D: Lubensky. Learning spectral-temporal dcpende.nmes using: wnnecuoms:
networks. In TEEE International Conference on Acoustics, Speech, and
Signal Processing, April 1988, to be published.



{14} R.L. Watrous a.nd L.Shastri. Learning phoneticfeatures using connection:
ist networks: an experiment inspeech recognition. In JEEE Tnternational
: Car:fercnce on. Neural Ast!wrh June 1981

{15} RW Pragar, T:D. Harrison. and F. Fallside. Boltzmann machines For
sneech tecoguition: Computer, Speech and Language, 3-27, Marth 1986.

18] J.L. Eiman and D. Zipser. Learning the Hidden Structure of Speech. Tacn-
nical B.eparr University of California, San D!ego Februa.r:r 1987.

nation usmg r:onnecr:omst ner.works In F‘umycuu Confcmcc on Speecn
Technology, pages 377-380; Edinburgh, September 1987,

18] T. Hanaza.wa. T. Kawabata, and K. Shikane,  Discrimination of japanese
* voiced stops tising aidden markov model. In Conference of ﬂ'xc -1causttca!
Society of Japan, pages 19-20, October 1987. (in Japanese).

{19l K. F!ﬁmshlmz.. §. Miyake, and 1 It_o'..--. 'Neotogmtron:_ a geural network
model for 2 mechanism of visual Ppattern recognition. [EEE Transactions on
System, A’sfan ‘and Cybmai:cs SMC—I3(0} 826-834, Septemue:{()ctoner

- 1983, -

" [20] D.E. Rumeihart, G.E. Hinton, and R.J. W’!Ilmms £eammg Internal Rep-

- résentations by Error Prupcgat:on cha,pter 8, pa.ges 318-362. MIT Press,
Cambridge. MA, 1986:

21} A. Waibel and B, Yegnanaravana. Gﬁn}fgmtiu St_nir.';?{'-of N_onfz'ﬁear Time
Warpmg Techniques in Isolated Word Speech Recognition Systems, Tech-
aical Report, Cérﬁegié-'\{e'ilan ('fni‘ir'efsi:}'r, June 1981. :
i22] S. Makinoand K. Kido. Phonsme recognmun using time spec..mm patzern..
Speeck: Cammnmc&twn 225-237, June 1986

*'23} K. Lang. Connectionist speech’ recogmnon July 1987. PhD--_'r-.hesi_s pro-
posal, Cameglt—'t{eﬂon University.

[24] G:E. Hmson. Gcnnecmms: lea.mms procedms Amﬁmd Iuiefl:gence
1987. (in press).

(25] M. JL F:a,nzxm Speec.h recogx:.ltmn mt.h bar.k ptopaganon In Nmih An-

' Novembzr 1987' =

5[25} F.J ehnzx Conf.muous speech. recogmtlon by statistical methods. Proceed-

ings of ﬂac IEEE 64(4):532-536, April lg?ﬁ

[27] 3. K. Baker. Stochastic Moddmg as @ Means. of Autamut:c Spcech Recog-
nition. PaD thesis, Cmeg:e-Me!;lon University, April 1975.

(5]



- —

v

{28] L. R. Bahl, S. K. Das, P. V. de'Souza, F. Jelinek, S. Katz. R. L. Mercer. and
M. A. Picheny. Some experiments with lazge-vocabulary isolated-word sen-
tence recognition. ln: [EEE friernational Conference on Acousiics, Speech,
and Signa! Processing, April 1984,

{29} R.Schwarsz. Y. Chow. 0. Kimball. S. Roucos, M. Krasner. and J; Makhoul.
Gontexr.:-depgadent- modeling for acoustic-phonetic recognition of continu-
ous speech in !E.'c.E mtemat:o‘:i'ﬂ' Conference on Acoustics, Speech, and

[39} A.~M. Dersuauit. Conte.xt-dependba: phonetic markov models for largs vo-
'cabula.ry speech recognition. In JEEE international Conference on Acous-
‘tics. Speech, ond Signal Processmg, pages 360~3; April 1987.

{311 K. F. Lee and . Hsiao-Wuen, Speaker-independent phoneme recoguition
using hidden mackov models. In JEEE ‘International Conference on Acous-
tics, Speech, and Signal Pracessmy, April 1987,

{32] P. Brown.. The Acoustic-Modeling Problem in Automatic Speech Recogni
tion. PhD thesis, CarnegiexMellon' University, May 1987. :

~ [83] 'L. R. Rabiner, B. H. Juang, S. E. Levinson, and M. M. Sondhi. Recogriticn

of isolated digits using Hidden Markov Models with eonginuous mixsure
. densities. ATET Technical Journal, 64(6):1211-33, July-August 1985.

(34] Y.L. Chow, M.O. Dunham; O.A; Kimball. M.A. Krasoer, G.F. Kubala. J.
Ma.khoul S. Roucos, a.nd R.M_ Sd:wa.ru B-- ; LQS tne HB‘HF coatmLous

Spczch, a.nd Szgmu' Proces.smg, pa.g,cs 39-'-92 Aprl 198?

[85] M. Sugivama and K. Shikano. LPC peak weighted spectral matching mea-
m In.mmte of Efedﬁf&i ‘and Communicaifon Engineers of Japan. 54

[36] K.Shikano: Evaluation of LPC Speciral Matching Measures for Phonetic
Unit Recognition. Technical Report, Carnegie-Mellon University, May
1985.

{37] K. Aikawa and K. Shikano. Spoken word reccgnition. using vector quaati-
~ zation in power-spectrum.vector space. Institute of Electrical and Commu-
nication Engineers of Japan, 68-D(3), March 1985. in Japanese.

{38] Y. Sagisaka, K. Takeda, S. Katagiri, and H. Kuwabara. Japanese Speech
Database with Fine Acoustic-Phonetic Transcriptions. Technical Report,
ATR Interpreting Telephony Research Laboratories, May 1987.



TR-I-0006

Phoneme Recognition
Using Time-Delay Neural Networks

A, Waibel, T. Hanazawa, G. Hinton,
K. Shikencand K. Lang

¥ i POy

- Y ] & T - Hys = - P
TE Rk, BIRENY. BV Y. ENRE 757

r

g

T T ]

- WTATA

ATR Irternratina Teleohonv




