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Abstract 
Previously we have reported on the extraction of prosodic cues (such as 
stress, pitch, duration) from continuous speech [l] and have reported on 
possible uses of some prosodic information (e.g., temporal cues [2 ] )  in 
large vocabulary word recognition systems. In this paper we extend 
these previous findings to a speaker-independent continuous speech 
recognition system. Speaker-independent knowledge sources (KS) 
were implemented that attempt to hypothesize words based on only 
prosodic cues found in the signal. The prosodic cues exploited were 
temporal cues (syllable durations, ratios of unvoiced segment durations 
to syllable durations, voiced segment durations), intensity profiles and 
likelihoods of stressedness. Each KS extracts the appropriate prosodic 
cue and searches its knowledge base for words  whose prosodic patterns 
satisfy the constraints found in the signal.  Usign a multispeaker 
continuous speechdatabase for evaluation, each prosodic KS is shown 
to hypothesize the correct word substantially better than chance. All 
prnsodic KSs were then combined and compared with a speaker- 
independent acoustic-phonetic word hypothcsizer. After applying the 
prosodic KSs, the correct word ranked on average 25th (out of  252 
words). The acoustic-phonetic KS alone yielded an average rank of 40 
(out of 252) without the addition of prosodic information. After 
prosodic and phonetic KSs were combined the average rank was 
reduced to 15 out of 252. The results indicate that prosodic information 
indeed adds complementary information that substantially improves 
word hypothesization in speaker-independent continuous speech 
recognition systems. 

1, Introduction 
To this day, the prosodic cucs in the speech signal, duration, rhythm, 
intensity, pitch, and stress, are frequently being ignored in the 
implementation of speech rccognition systems. I n  systems aimed at 
smnll  vocabulary  sizes,  most  research has centered around suitable 
representations of spectral information and around optimal search 
procedures used  to  align the unknown pattern with reference word 
template. In large  vocabulary continuous s p c h  recognition systems, 
atomic units of speech smaller than the word are usually chosen and 
rccognition is performed by detecting and asscmbling phonemic or 
phonc like units into strings of hypothesized words.  Several attempts at 
using prosodic cues in spccch recognition systems have mostly been 
linlited to aiding syntactic analysis by hvpothesizing phrase or clause 
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boundaries (from pitch excursions) and/or hypothesizing phonemically 
rcliable parts of thc uttcrance ("islands of reliability") from the amount 
of stress found in the signal [3]. Only a few studies have attempted to 
use  these cues to aid i n  the hypotimization or verification  of  words  in 
English, despite the known strong contributions of prosodic cues to 
human word pcrccption (see [4,5] for a review). For isolated large 
vocabulary  word rccognition it has been s!lown [2, 61 that temporal cues 
can indeed be used  effectively  to hypothesize words, even in the 
absence of phonetic information. Moreover. thcsc prosodic cues are 
shown tu be prcdictable such that all necessary reference information 
for particular word candidates could be synLhesized  from  text [2, 51. 
'These results, however, were limited to speaker dependent iso!ated 
word recognition and used only  the tcinporal information in the signal. 

In this paper we expand on these exouraging findings along several 
dimensions. First, we explore thrce separate prosodic paramctcrs. In 
addition to temporal cues, we will use intensity and stress patterns as 
descriptors of the word. Second, we  will be using  two continuous 
speech databases. 'fie former, a training and development database, 
consists of 5 0  Harvard scniences [7] and was recorded and  hand- 
!abelled zt C ? N .  The laxer, the testing database. ccnsists of two sets of 
these SO Harvard sentences, read by different speakers at MIT. The 
third dinlension, finally  is the spcaker dimension. All deve!opmcnt and 
testing will be performed using multiple speakers for our results to 
measure speaker  independen! performance. Each ten sentences in the 
training and testing databases were therefore read by a different 
speaker. 

The scctions of this paper are organized according to prosodic cues. 
For each cue, a KS was devclopcd that using only this cue attcmpts to 
hypothesize word candidates that are most likely  to  satisfy the detccted 
prosodic pattern. We will report below  the operation and performance 
of each of these KSs. We will then compare all prosodic KSs with each 
other and combine thcm into  and stztistically optimal comomd 
prosodic KS. The perfo1mance o f  these  prosodic KSs will then also be 
compared with a speaker-intle~cndcnt phonetic word hypothesizcr 
devcloped at CMb. We will show  that the perfomance of the prosodic 
KSs compares favorably with !he performance of the phonetic KS and 
that the combination of ths two results in dramatic overall 
improvements. 

2. Prosodic  Knowledge Sources 
Conceptually, each 1<S described below consists of three major 
components: a prosodic parameter extraction algorithm, a knowledge 
base. and a matcher to search for suitable word candidates. The 
parameter extraction algorithm perfoms the appropriate nxasuremcnts 
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on the acoustic signal  to obtain the rclevant prosodic cues. The 
knowlcdge basc contains for each word candidate one or more (to allow 
for altcrnates) entries. Each entry consists of parametric dcscriptions of 
the word in terms of the KS-spccific prosodic  cue. ’To allow for such a 
knowlcdge base  to be expanded to larger vocabularies, it is also 
desirable that the prosodic representation of each word be valid across 
different speakers or that it  can be automatically predicted from text 
without user training. The matcher, finally, uses the prosodic cue 
measured by the extraction algorithm and searches the knowledge base 
for similar tokens. This search is  typically done by assigning a score to 
each word candidate based on the similarity of its prosodic pattern to 
the pattern found in the unknown signal. The list of word candidates is 
then ranked according to their scores.  At the absence of begin/end 
points in continuous specch, this analysis was performed by each KS 
rcpeatedly for each possible word anchor point, given  by each 
hypothesized syllable boundary. Using the hand-labclled speech 
databases described above. the ability  of each KS to hypothesize words 
based only on prosodic cues was then evaluated. The evaluations 
reported below will show the ratcs at which the correct word candidate 
will be found among the N top ranking candidates. 

2.1. Duration  and Rhythm 
Thrce measures of duration were explored in three KSs: the syllable 
durations in a word, the ratios of the duration of the unvoiced segments 
in a syllable to the syllable duration, and the duration of vocalic 
segments. A syllable boundary was defined to  lie at the onset of a rise 
in vocalic energy. The syllable boundaries and  the unvoiccd/voiced 
scgrncnt boundaries nccded for measurement of the relevant duration 
p a t ~ e ; ~ ~ ~  were detected by a set of segmentation and syllabification 
algorithms described in dctail clsewhcrc [2, 51. Two knowledge bases 
wcrc cvnluatcd. Thc first uscd duration mcasuremcnts obtaincd from 
h e  training databasc, i.c., thc CMU-Harvard databasc. For the sccond, 
all durations were synthetically gencratcd using a knowledge compiler 
developed earlier [2,6]. 
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Figure 1. Percent Corrcct for Given Rank and for Diffcrent 
Durational Knowledge Sourccs; Testing Data. 

Fig. 1 shows  thc results obtaincd by the thrcc durational KSs. For this 
evaluation the tcsting data (100 MlT-Harvard scntcnccs) was uscd. The 
knowlcdgc  basc consistcd of mcasurcd durations. AI1 thrcc durational 
mcasurcmcnts yicld comparablc pcrfonnance with the syllable duration 
Incastirc lagging bchind somewhat. I;ig 2 sl~ows ~ C ~ I L I I I I I ~ I I C C  rcsults 
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Figure 2. Percent Correct for Given Rank in Training and 
Testing Data; Knowledge Bases of Measured and 

Synthetic Durations. 

for the combination of the mree durational KSs using a simple 
geometric mean of each KS’s  rank orderings. Here the effect of 
measured vs. synthetic knowledgc base  was evaluated. Also both 
evaluation runs were performed for both the testing and the training 
database. The performance degradation due to 
segmentation/syllabification errors can bc inferred in  this figure from 
the lcss than pcrfect pcrformance obtaincd when the training data was 
used for both  the knowledge base and  as evaluation data. The inherent 
variability of durational cues is rcflected by the additional decrement in 
pcrformnnce when evaluation was performed using diffcrcnt, e.g., the 
testing data. Further dcgradation can be observed when measured 
durations wcre replaced by the synthetically generated durations. 
Despite these performance degrading factors, however, it is clear from 
this evaluation that better-than-random word hypothesization can be 
pcrformcd based on durational cues only. 

2.2.  S t r e s s  
Similar in spirit to the previous subsection, a KS based on stress 
patcerns  was implemcnted and tested. The KS uses stress probabilities 
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Figure 3. Perccnt Corrcct for Given Rank Using a Strcss 
Based Knowledgc Source; Testing Data. 
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obtaincd from a probabilistic stress detector [l, 51. Thus stress 
probabilities rather than discrete stress assignments were used. This 
provided a finer grain and hencc a continuum of similarities between 
tckens. 
The knowlcdge base therefore contained strcss probability as n~easured 
in the training data. Fig. 3 shows the pcrformance obtaincd when this 
KS was  cva1u;ltcd ovcr the 100 MI'I'-Harvard tcst scntcnccs. Although 
word hypothesization can be bettcr than random, thesc pcrformance 
results are inferior to those obtained by the durational KSs. This is due 
to  the great variability  in stressedncss that is indccd found in 
continuous speech. Considerable disagreement about the levels of 
strcsscdncss was found in  this data even for groups of human 
subjects [5]. 

2.3. Intensity 
An intensity based KS  was also implemcnted and evaluated. The peak- 
to-peak amplitude of the signal  waveform was choscn as a mcasure of 
intensity. The knowlcdgc base contained coarsc amplitude patterns for 
the words in tile vocabulary. Matching was done by measuring the 
similarity bctwcen the incoming patterns and thc pattcrns in the 
knowledge base.  Allowance was made for slight misalignmcnts of 
corresponding patterns. 
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Figure 4. Percent Correct for Given Rank Using an Intensity 
Based Knowledge Sourcc; Testing Data. 

Fig. 4 shows the results from an evalgation run using the testing 
database. It can be seen that word hypothcsization performance 
considerably better than random can be obtaincd from this KS. 

3. Combination of Prosodic and Phonetic 

In the prcccding scction we have dcrnonstrated that prosodic cues can 
indeed be used at the  word level to rank appropriate word hypotheses 
better than chancc and spcakcr indcpcndcntly in continuous spccch. In 
this scction wc would likc  to combinc and cv;llrlatc all prosodic KSs 
and compare their pcrformancc with a spcakcr indcpcadcnt phonetic 
word hypothesizer. Fulthermore, we would like to experimentally 
determine whether prosodic KS do lead  to complementary information, 
that would bc useful in addition to a phonetic word hypothesizer. 

Knowledge Sources 

We start with the combination of prosodic KSs. 'To obtain a statistically 
optimal combination of the 211 five KSs described in the prcvious 
scctions, we have collcctcd variances and covariances of the scorcs 
obtained from each KS. ?'hc rcsulting covariance matrix was then used 
to compute a Mahalanobis distance  as a combined prosodic similarity 
measure. In this fashion the contributions from each KS were wcighted 
according to their relative merit in  the  light of the performance of the 
other competing KSs. The resulting pcrformancc graph (using the test- 
database) is shown in Fig. 5 .  Note, that the intensity KS appcars to be 
yielding near optimal performance. 
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Figure 5. Combination of Prosodic Knowledge Sources 

Figure 6. Comparison of Prosodic and Phonetic Knowledge Sources 

Using  ten  test sentences a more detailed evaluation of these prosodic 
KSs and  a speaker-independent phonetic word hypothcsizcr was 
subscqucntly carricd out. The pcrformancc results arc shown in Fig 6 
in thc form of a bar graph. For each KS the avnn.qe rank of the corrcct 
word  in the list of word candidate is givcn as a percentagc of vocabulary 
size. Thus, for cxample, an average rank  of 65 (for the syllable duration 
KS) is given  as 26%, based on a vocabulary  size of 252 words. From 
Fig. 6 we can SCC again that intensity patterns were the most useful 
prosodic cue for word identification (lowcst rank). 'I'his can  in part be 
cxplaincd by the comparatively robust prosodic parametcr cxtraction in 
this case. Following thc five bars rcpresenting each prosodic KS, Fig. 6 
then shows the combination of a11 five prosodic KSs as  discusscd 
before. It is worth noting that not only was the averagc rank of the 
combincd prosodic KSs better than each individual KS by itself, but 
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that the standard deviation of the combination (not shown in this 
graph) was found to be considerably lower. More robust performance 
can thcreforc be expected from the exploitation of all cues. This 
combincd prosodic performance measure was then compared with a 
spcakcr-indcpcndcnt wo:d hypothcsizer dcveloped at CMU. It should 
be mcntionned, that this word hypothcsizcr was only a preliminary 
version of a more advanced word hypothesizer that is currently under 
development. Fig. 6 shows that thc rank  of the combincd prosodic KSs 
is actually lower than the phonetic word hypothesizer. Finally, 
combination of prosodic and phonetic KSs leads to substantially 
reduccd hypothesization rank. It can be sccn that adding prosodic 
information to the phonetic word hypothcsizer rcduccd the average 
rank of the corrcct word hypothesis to about 1/3. 

4. Conclusion 
In this paper we have demonstrated that the prosodic cues of duration, 
intensity, and stress can be effectively used in  word hypothesization. 
Using prosodic cues only, perfom~ancc comparable or better than a 
spcakcr-independent phonetic word hypothcsizer was obtained. 
Moreover, the combination of prosodic and phonetic KSs leads to 
dramatic improvements over phonetic word hypothesization alone. 
This result clearly demonstrates, that prosodic cues yield 
complcmcntary information. Spccch recognition systems  can thcrcfore 
benefit considerably from thc exploitation of these cues.  ‘f’his paper has 
shown only one strategy towards achieving effective integration of 
prosodic analysis. Alternate stratcgics, such as top down verification of 
confusable word hypotheses are conceivable and work along these lines 
is  in progress. 
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