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Abstract In this paper we present a Time Delay Neural Network (TDNN) approach to phoneme recognition
which is characterized by two important properties: 1.} Using a 3-layer arrangement of simple computing units,
a hierarchy can be constructed that allows for the formation of arbitrary nonlinear decision surfaces. The TDNN
learns these decision surfaces automatically using error back-propagation({1]. 2.) The time-delay arrangement
enables the network to discover acoustic-phonetic features and the temporal relationships between them
independent of position in time and hence not blurred by temporal shifts in the input. As a recognition task, the
speaker-dependent recognition of the phonemes "B”, "D"” and ”G” in varying phonetic contexts was.chosen. For
comparison, several discrete Hidden Markov Models (HMM) were trained to perform the same task. Performance
evaluation over 1946 testing tokens from three speakers showed that the TDNN achieves a recognition rate of
98.5% correct while the rate obtained by the best of our HIMMs was only 93.7%. Closer inspection reveals that the
network “invented” well-known acoustic-phonetic features (e.g., F2-rise, F2-fall, vowel-onset) as useful
abstractions. It also developed alternate internal representations to link different acoustic realizations to the
same concept.

recognition classifiers(2] and with other speech recogni-
tion techniques (see [3) for review). Although a number
of studies report encouraging recognition performance,
superior performance figures in comparison to existing

1 Introduction

In recent years, the advent of new learning procedures

and the availability of high speed parallel supercomput-
ers have given rise t0 a renewed interest in connectionist
models of intelligence[1l]. These models are particularly
interesting for cognitive tasks that require massive con-
straint satisfaction, i.e., the parallel evaluation of many
clues and facts and their interpretation in the light of
numerous interrelated constraints. Because of the far-
reaching implications to speech recognition, neural net-
works have recently been compared with other pattern

techniques are needed before neural networks can be
considered as a viable alternative for speech recognition
systems. One possible explanation for the mixed per-
formance results obtained so far might be given by the
inability of most neural network architectures to deal
properly with the dynamic nature of speech. Two im-
portant aspects of this are for a network to represent
temporal relationships between acoustic events, while at
the same time providing for invariance under translation



in time. The specific movement of a formant in time, for
example, is an important cue to determining the identity
of a voiced stop, but it is irrelevant whether the same
set of events occurs a little sooner or later in the course
of time. Without translation invariance a neural net re-
quires precise segmentation, to align the input pattern
properly. Since this is not always possible in practice,
learned features tend to get blurred (in order to accom-
modate slight misalignments) and their performance de-
teriorates.

In the present paper, we describe a Time Delay Neu-
ral Network (TDNN), which addresses both of these
aspects. We demonstrate through extensive perfor-
mance evaluation that superior recognition results can
be achieved.

2 Time Delay Neural Networks

To be useful for speech recognition, a layered feed for-
ward neural network must have a number of properties.
First, it should have multiple layers and sufficient inter-
connections between units in each of these layers. This
is to ensure that the network will have the ability to
learn complex non-linear decision surfaces(2]. Second,
the network should have the ability to represent rela-
tionships between events in time. These events could
be spectral coefficients, but might also be the output of
higher level feature detectors. Third, the actual features
or abstractions learned by the network should be invari-
ant under translation in time. Fourth, the learning pro-
cedure should not require precise temporal alignment of
the labels that are to be learned. Fifth, the number of
weights in the network should be small compared to the
amount of training data so that the network is forced to
encode the training data by extracting regularity. In the
following, we describe a TDNN architecture that satis-
fies all of these criteria and is designed explicitly for the
recognition of phonemes, in-particular, the voiced stops
"B”,”D” and "G”.

2.1 A TDNN for Phoneme Recognition

The basic unit used in many neural networks computes
the weighted sum of its inputs and then passes this sum
through a non-linear function, most ccmmonly a thresh-
old or sigmoid function(2,1]. In our TDNN, this basic
unit is modified by introducing delays D; through Dy
as shown in Fig.1. The J inputs of such a unit now
will be multiplied by several weights, one for each delay
and one for the undelayed input. For N = 2, and J =
16, for example, 48 weights will be needed to compute
the weighted sum of the 16 inputs, with each input now
measured at three different points in time. In this way
a TDNN unit has the ability to relate and compare cur-
rent input with the past history of events. The sigmoid
function was chosen as the non-linear output function
F due to its convenient mathematical properties[1,4].

For the recognition of phonemes, a three layer net is
constructed. Its overall architecture and a typical set of
activities in the units are shown in Fig.2.

At the lowest level, 16 melscale spectral coefficients

Output Layer
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Input Layer

coefficients
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Figure 2: The TDNN architecture (input: "DA”)

serve as input to the network. Input speech, sampled at
12 kHz, was hamming windowed and a 256-point FFT
computed every 5 msec. Melscale coefficients were com-
puted from the power spectrum(3] and adjacent coeffi-
cients in time collapsed resulting in an overall 10 msec
frame rate. The coefficients of an input token (in this
case 15 frames of speech centered around the hand la-
beled vowel onset) were then normalized to lie between
-1.0 and +1.0 with the average at 0.0. Fig.2 shows the,
resulting coefficients for the speech token "DA” as in-
put to the network, where positive values are shown as
black and negative values as grey squares.
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“This input layer is then fully interconnected to a
layer of 8 time delay kidden units, where J = 16 and
N = 2 (i.e., 16 coefficients over three frames with time
delay 0, i and 2). An alternative way of seeing this
is depicted in Fig.2. It shows the inputs to these time
delay units expanded out spatially into a 3 frame win-
dow, which is passed over the input spectrogram. Each
unit in the first hidden layer now receives input (via
48 weighted connections) from the coefficients in the 3
frame window. The particular delay choices were moti-
vated by earlier studies{s,e].

In the second hidden laver, each of 3 TDNN units
looks at a 5 frame window of activity levels in hidden
layer 1 (i.e., J = 8,N = 4). The choiceof a larger 5 frame
window in this layer was motivated by the intuition that
higher level units should learn to make decisions over a
wider range in time based on more local abstractions at
lower levels.

Finally, the output is obtained by integrating (sum-
ming) the evidence from each of the 3 units in hidden
layer 2 over time and connecting it to its pertinent out-
put unit (shown in Fig.2 over 9 frames for the "D” out-
put unit). In practice, this summation is implemented
simply as another TDNN unit which has fixed equal
weights to a row of unit firings over time in hidden layer
2.

When the TDNN has learned its internal represen-
tation, it performs recognition by passing input speech
over the TDNN units. In terms of the illustration of
Fig.2 this is equivalent to passing the time delay win-
dows over the lower level units’ firing patterns. At the
lowest level, these firing patterns simply consist of the
sensory input, i.e., the spectral coefficients.

Each TDNN unit outlined in this section has the
ability toencode temporal relationships within the range
of the N delays. Higher layers can attend to larger time
spans, so local short duration features will be formed
at the lower layer and more complex longer duration
features at the higher layer. The learning procedure en-
sures that each of the units in each layer has its weights
adjusted in a way that improves the network’s overall
performance.

2.2 Learning in a TDNN

Several learning techniques exist for optimization of neu-
ral networks(1,2]. For the present network we adopt the
Back-propagation Learning Procedure(1,4]. This pro-
cedure iteratively adjusts all the weights in the net-
work so as to decrease the error obtained at its output
units. To arrive at a translation invariant network, we
need to ensure during learning that the network is ex-
posed to sequences of patterns and that it is allowed
(or encouraged) to learn about the most powerful cues
and sequences of cues among them. Conceptually, the
back-propagation procedure is applied to speech pat-
terns that are stepped through in time. An equiva-
lent way of achieving this result is to use a spatially
expanded input pattern, i.e., a spectrogram plus some
constraints on the weights. Each collection of TDNN-
units described above is duplicated for each one frame
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shift in time. In this way the whole history of activ-
ities is available at once. Since the shifted copies of
the TDNN-units are mere duplicates and are to look
for the same acoustic event, the weights of the corre-
sponding connections in the time shifted copies must
be constrained to be the same. To realize this, we first
apply the regular back-propagation forward and back-
ward pass to all time shifted copies as if they were sep-
arate events. This yields different error derivatives for
corresponding (time shifted) connections. Rather than
changing the weights on time-shifted connections sep-
arately, however, we actually update each weight on
corresponding connections by the same value, namely
by the average of all corresponding time-delayed weight
changes®. Fig.2 illustrates this by showing in each layer
only two connections that are linked to (constrained to
have the same value as) their time shifted neighbors.
Of course, this applies to all connections and all time
shifts. In this way, the network is forced to discover use-
ful acoustic-phonetic features in the input, regardless of
when in time they actually occurred. This is an im-
portant property, as it makes the network independent
of errorprone preprocessing algorithms, that otherwise
would be needed for time alignment and/or segmenta-
tion.

The procedure described here is computationally ra-
ther expensive, due to the many iterations necessary
for learning a complex multidimensional weight space
and the number of learning samples. In our case, about
800 learning samples were used and between 20,000 and
50,000 iterations (step-size 0.002, momentum 0.1) of the
back-propagation loop were run over all training sam-
ples. For greater learning speed, simulations were run
on a 4 processor Alliant supercomputer and a staged
learning strategy(3] was used to achieve faster conver-
gence and good generalization. Learning still took about
4 days, but additional substantial increases in learning
speed are possible(3]. Of course, this high computa-
tional cost applies only to learning. Recognition can
easily be run in better than real-time.

3 Hidden Markov Models

As an alternative recognition approach we have imple-
mented several Hidden Markov Models (HMM) aimed
at phoneme recognition. HMMs are currently the most
successful and promising approach [8,9,7) in speech re-
cognition as they have been successfully applied to the
whole spectrum of recognition tasks. HMMs’ success is
partially due to their ability to cope with the variabil-
ity in speech by means of stochastic modeling. In the
following sections, we describe the HMMs developed in
our laboratory. They were aimed at phoneme recogni-
tion, more specifically the voiced stops "B”, "D” and
"G”. More detail including results from experiments
with variations on these models are given elsewherefis,3)
and we will restrict ourselves to a brief description of

INote that in the experiments reported below these weight
changes were actually carried out each time the error derivatives
from all training samples had been computed{4).
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our best configuration.

The acoustic front end for Hidden Markov Mod-
eling is typically a vector quantizer that classifies se-
quences of short-time spectra. Input speech was sam-
pled at 12kHz, preemphasized by (1 - 0.97 27!) and
windowed using a 256-point Hamming window every
3 msec. Then a l2-order LPC analysis was carried
out. A codebook of 256 LPC spectrum envelopes was
generated from 216 phonetically balanced words. The
Weighted Likelihood Ratio augmented with power val-
ues (PWLR)(11] was used as LPC distance measure for
vector quantization. An HMM with four states and six
transitions(the last state without-a selfioop) was used in
this study. The RMM probability values were trained
using vector sequences of phonemes according to the
forward-backward algorithm(7]. The vector sequences
for ”B”, ”D” and "G” include a consonant part and five
frames of the following vowel. This is to model impor-
tant transient informations, such as formant movement
and has lead to improvements over context insensitive
models[io). The HMM was trained until convergence us-
ing about 250 phoneme tokens of vector sequences per
speaker and phoneme. Typically, about 10 to 20 learn-
ing iterations were required for 256 tokens. A training
run took about one hour on a VAX 8700. Floor val-
ues were set on the output probabilities to avoid errors
caused by zero-probabilitics. We have experimented
with composite models, which were trained using a com-
bination of context-independent and context-dependent
probability values[q], but in our case no significant im-
provements were attained.

4 Recognition Experiments

\We now turn to an experimental evaluation of the two
techniques described in the previous sections. To pro-
vide a good framework for comparison, the same ex-
perimental conditions were given to both methods. For
both, the same training data was used and both were
tested on the same testing database as described below.

4.1 Experimental Conditions

For performance evaluation, we have used a large vo-
cabulary database of 5240 common Japanese words(3).
These words were uttered in isolation by three male na-
tive Japanesc speakers (MAU, MHT and MNM, all pro-
fessional announcers). All utterances were recorded in
a sound proof booth and digitized at a 12 kHz sampling
rate. The database was then split into a training set
and a testing set of 2620 utterances each, from which
the actual phonetic tokens were extracted.

The phoneme recognition task chosen for this exper-
iment was the recognition of the voiced stops, i.e., the
phonemes "B”, "D” and "G". The actual tokens were
extracted from the utterances using manually selected
acoustic-phonetic labels provided with the database[3].
For speaker MAU, for example, a total of 219 "B”s, 203
"D”s and 260 "G"s were extracted from the training
and 227 "B"s, 179 "D”s and 252 "G"s from the testing
data. Both recognition schemes, the TDNNs and the

HMMs, were trained and tested speaker-dependently.
Thus in both cases, separate networks were trained for
cach speaker.

In our database, no preselection of tokens was per-
formed. All tokens labeled as one of the three voiced
stops were included. It is important to note, that since
the consonant tokens were extracted from entire utter-
ances and not read in isolation, a significant amount
of phonetic variability exists. Foremost, there is the
variability introduced by the phonetic context out of
which a token is extracted. Second, the position of a
phonemic token within the utterance introduces addi-
tional variability?. Both of our recognition algorithms
are only given the phonemic identity of a token and must
find their own ways of representing the fine variations of
speech. Since recognition results based on the training
data are not meaningful, we report in the following only
the results from open testing, i.e., from performance
evaluation over the separate testing data set.

4.2 Results

Table 1 shows the results from the recognition exper-
iments described above. As can be seen, for all three
speakers, the TDNN yields considerable performance
improvements over our HMM. Averaged over all three
speakers, the error rate is reduced from 6.3% to 1.5%,
a more than four fold reduction in error.

number | TDNN | TDNN HMM i UMM
speaker lortokens | # errors | @ correct | ¢ errors | correct ||

1 w227 4 18|

MAU d(179) 3 98.8 6 | 929
g(252) )} 23 |
b(208) 2 8 |

MHT [ d(170) [ 99.1 3 972
2(254) r 7 |
b(216) 11 | 27 |

MNM 1 d0178) 1 | 97.5 13| 909
§1256) 4 | 19 ]

Table 1: Recognition results for three speakers over test
data using TDNN and HMM

Fig.3 and Fig.4 show scatter plots of the recogni-
tion outcome for the "D”s in the test data for speaker
MAU, using the HMM and the TD NN. For the HMM
(Fig.3), the log probability of the next best matching in-
correct token is plotted against the log probability (nor-
malized by number of frames) of the correct token,”D".
In Fig.4, the activation levels from the TDNN's output
units are plotted in the same fashion. The most striking
observation that can be made from these plots is that
the output units of a TDNN have a tendency to fire with
high confidence as can be seen from the cluster of dots
in the lower right hand corner of the scatter plots. Most
output units tend to fire strongly for the correct phone-
mic class and not at all for any other, a property that
is encouraged by the learning procedure. One possible
consequence of this is that rejection thresholds could be
introduced to improve recognition performance. If one
were to eliminate among speaker MAU'’s tokens all those

2In Japanese, for example, a "G" i¢ nasalized, when it occurs
embedded in an utterance, but not in utterance initial position.




whose highest activation level is less than 0.5 and those
which result 1n two or more closely competing activa-
tions (i.c., dots near the diagonal of the scatter plots;
see3] for complete set), 2.6% of all tokens would be re-
jected, while the remaining substitution error rate would
be less than 0.46%.
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Figure 3: Scatter plot showing log probabilities for the
best matching incorrect case vs. the correctly recog-
nized "D”s using a HMM
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Figure 4: Scatter plot showing activation levels for the
best matching incorrect case vs. the correctly recog-
nized "D”s using a TDNN

4.3 The Learned Internal Representa-
tions of a TDNN

Given the encouraging performance of our TDNNs, a
closer look at the learned internal representation of the
network is warranted. Additional examples illustrat-
ing the observations in the following can be found in
[3). Fig.2 and the left side of Fig.5 show two typical in-
stances of a " D" out of two different phonetic contexts
("DA” and "DO”, respectively). In both cases, only
the correct unit, the ” D-output unit” fires strongly, de-
spite the fact that the two input spectrograms differ
considerably from each other. If we study the internal
firings in these two cases we can sce that the network
has learned to use alternate internal representations to
link variations in the sensory input to the same higher
level concepts. A good example is given by the firings of
the third and fourth hidden unit in the first layer above

the input layer. As can be seen from Fig.5, the fourth
hidden unit fires particularly strongly after vowel onset
in the case of "DO”, while the third unit shows stronger
activation after vowel onset in the case of "DA”.

Fig.6 shows the significance of these different firing
patterns. Here the connection strengths for four of the
eight moving TDNN units are shown, where white and
black blobs represent positive and negative weights, re-
spectively, and the magnitude of a weight is indicated
by the size of the blob. In this figure, the time delays are
displayed spatially as a 3 frame window of 16 spectral
coefficients. Conceptually, the weights in this window
form a moving acoustic-phonetic feature detector, that
fires when the pattern for which it is specialized is en-
countered in the input speech. In our example, we can
see that hidden unit number 4 (which was activated for
”DO") has learned to fire when a falling (or rising) sec-
ond formant starting at around 1600 Hz is found in the
input (see filled arrow in Fig.6). As can be seen in Fig.5,
this is the case for ”DO” and hence the firing of hidden
unit 4 after voicing onset (see row pointed to by the
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Figure 5: TDNN Activation patterns for centered and
misaligned (30 msec) "DO”

Figure 6: Weights on connections from 16 coefficients
over 3 time frames to four of the § hidden units in the
first layer



filled arrow in Fig.5). In the case of "DA” (see Fig.2)
in turn, the second formant does not fall significantly,
and hidden unit 3 (pointed to by the filled arrow) fires
instead. From Fig.6 we can verify that TDNN-unit 3
has learned to look for a steady (or oniy slightly falling)
sccond formant starting at about 180C Hz. The connec-
tions in the second and third layer then link the different
firing patterns observed in the first hidden layer into one
and the same decision.

Another interesting feature can be seen in the bot-
tom hidden unit in hidden layer number 1 (see Fig.2
and Fig.5, and compare with the weights of hidden unit
1 displayed in Fig.6). This unit has learned to take on
the role of finding the segment boundary of the voiced
stop. It does so in reverse polarity, i.e., it is always on
cxcept when the vowel onset of the voiced stop is en-
countered (see unfilled arrow in Fig.5(left) and Fig.2).
Indeed, the higher layer TDNN-units subsequently use
this "segmenter” to base the final decision on the oc-
currence of the right lower features at the right point
ia time. The right side of Fig.5, finally, demonstrates
the shift-invariance of the network. Here the same to-
ken "DO" is misaligned by 30 msec. Despite the gross
misalignment, the correct result was obtained reliably.
A close look at the internal activation patterns reveals
that the hidden units’ feature detectors do indeed fire
according Lo the events in the input speech, and are not
negatively affected by the relative shift with respect to
the input units.

5 Conclusion

We have presented a Time Delay Neural Network for
phioneme recognition. By use of two hidden layers in
addition to an input and output layer it is capable
of representing complex non-linear decision surfaces.
Three important properties of the TDNNs have been
observed. First, our TDNN was able to invent with-
out human interference meaningful linguistic abstrac-
tions in time and frequency such as formant tracking
and segmentation. Second, we have demonstrated that
it has learned to form alternate representations link-
ing different acoustic events with the same higher level
concept. In this fashion it can implement trading rela-
tions between lower level acoustic events leading to ro-
bust recogmtion performance despite considerable vari-
ability in the input speech. Third, we have seen that
tlie network is translation-invariant and does not rely
on precise alignment or segmentation of the input. We
have compared the TDNN’s performance with the best
of our HMMs on a speaker-dependent phoneme recogni-
tion task. The TDNN achieved a recognition of 98.5%
compared to 93.7% for the HMM, i.e., a fourfold reduc-
tion in error.
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