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ABSTRACT 

In this paper we report on our efforts to combine speech 

and language processing toward multi-lingual spontaneous 

speech translation. The ongoing work extends our JANUS 
system effort toward handling spontaneous spoken discourse 

and multiple languages. A major objective of this project 
is to maximize the number of modules, methods and data 

structures that are language-independent and extensible to 

other domains. After an overview of the task, databases 

and the system architecture we will focus on how speech 
decoding and natural language processing modules will be 
integrated in a large-scale multi-lingual speech-to-speech 

translation system for spontaneous spoken discourse. 

1. INTRODUCTION 

The goal of the JANUS project is multi-lingual ma- 
chine translation of spontaneously spoken dialogs in a 
limited domain: two people scheduling a meeting with 
each other. We are currently working with German, 
Spanish, and English as source languages and German, 
English, and Japanese as target languages. This paper 
reports on our efforts to make NLP robust over sponta- 

neous speech and to use NLP to constrain speech recog- 
nition. Towards this end we are investigating statis- 
tical, connectionist, and knowledge-based approaches 
to robust parsing and dialog modeling. We must also 
adapt plan based discourse processing (1, 2] to accom- 
modate less structured negotiation dialogs and inte- 
grate it with machine translation [3]. 

A major objective of this project is to maximize 
the number of modules, methods and data structures 
that are language-independent and extensible to other 
domains. Language-independent modules include the 
acoustic processing module, the search engine, the ro- 
bust parser, and the discourse plan tracking module. 
These are processors that use independently specified 
knowledge about different languages in order to pro- 
cess those languages. Language-independent methods 
include data collection protocols, transcription conven- 
tions, methods for building of acoustic models and lan- 
guage models, and grammar creation methods. Com- 
mon data structures include signal representation, lan- 

guage model specification, N-best word lattices, gram- 
mar rules, [LT (Interlingua), and discourse plan oper- 

ators. A complete description of JANUS can be found 
in [7]. 

2. THE SCHEDULING TASK DATABASE 

To be able to develop a system for spontaneous speech, 
we have started to collect a large database of human- 
to-human dialogs on the scheduling task. Several sites 
in Europe, the US and Japan have now adopted schedul- 
ing as a common task under several research projects. 
These projects include the German Government’s Verb- 
mobil project for German and English translation, the 
Enthusiast project for Spanish-to-English translation 
supported by the U.S. Department of Defense, and the 
activities of the C-STAR consortium of companies and 
universities in the U.S., Germany, and Japan for trans- 
lation of German, English, and Japanese. 

The data collection procedure involves two subjects 
who are each given a calendar and are asked to sched- 
ule a meeting. There are 13 different calendar scenarios 
differing from each other in what is scheduled and how 
much overlap there is in the free time of the two par- 
ticipants. Data has been collected in English, German. 
and Spanish using the same data collection protocols 
at Carnegie Mellon University, Karlsruhe University, 

and the University of Pittsburgh. 

The advantages of this experimental design using 
the same calendars for all languages is that it solicits 
similar domain-limited dialogs while ensuring a sponta- 

neous, natural (not read or contrived) speaking style. 
Thus techniques can be compared across languages. 
and have enabled us to explore automatic knowledge- 
acquisition and MT techniques in several languages on 
a comparable task. Table | specifies the amount of 
data collected in each language in terms of the number 
of dialogs and the number of utterances that have been 
recorded and transcribed. 

We have developed standard transcription conven- 
tions that are employed across languages, ensuring uni- 
formity and consistency. Words are transcribed into 
their conventional spelling. The transcription also in- 
dicates human non-speech noises, non-human noises, 

silences, false starts, mispronunciations, and some in- 
tonation. A sample of part of a dialogue is given in 
Figure |.



English German Spanish 
dialogs | utterances | dialogs | utterances | dialogs | utterances 

Tecorded 383 4000 451 4628 146 2920 
transcribed | 328 3300 215 2293 68 1080 

Table 1: State of Data Collection March 1994 

Speaker 1: /h#/ /um/ when can we get together 
again {comma} < on our 
{m(eeting)] > {comma} /um/ to discuss 
our project {period} {seos] 
/um/ how's Qhow is@ {comma} /um/ Monday 
the eighth {quest} around two 
thirty {quest} 
#key click# #paper-ruffie# {seos} 

#keyclick# /ls/ /h#/ /uh/ 
Monday afternoon's Qafternoon #6@ 
no good {period} {ses} 
I've QI have@ got a meeting from two to 
four {comma} {seos} 
that's @that is@ not gonna Qgoing to@ 
jive us enough jee to get together 
{comma} {esos 
/n#/ Vie) fee ‘Tuesday afternoon {comma} 
the ninth {comma\ 
would be okay for me though {comma} 
#key click# /h#/ {seos} 

/\a/ /h#/ unfortunately I'll QL will 
be out of town {comma 
from {comma} the ninth {comma} through 
the eleventh {period} {seos} 
Jum/ checking my calendar {comma} 
Jim] /hi#/ Friday's OFriday is@ no 
good {comma} either {period} {seos} 
let's Glet us@ see {comma} maybe next week 
comma} {seos} /h#/ fen /h#/ that's 
that is@ bad {comma} {secs} 

< my class schedule's Qschedule is@ 
[t] {comma} {seos} > 
Seay {oa yA) haw Galion 
‘Tuesday the sixteenth {comma} 
‘any time after twelve thirty period 
#keyclick# /h#/ /h#/ {se0s} 

Speaker 2: 

Speaker 1: 

Figure 1: Sample Transcription: Text con- 
tained in slashes represent human noise; hash 
marks-non-human noise; curly braces-intonation (ex- 
cept {seos}); angle brackets-false starts; square brack- 
ets-mispronunciations; @-contractions; {seos}~end of 
semantic sentence unit. 

Figure 2 shows the growth of vocabulary as the size 
of the database increases. The vocabulary for Spanish 
and German is higher than that of English, presumably 
because of the greater amount of inflectional morphol- 
ogy. 

Recent studies [9] and our own observations show 
that there is a significantly higher rate of disfluen- 
cies in human-human dialogs, compared to human- 
machine database queries. Table 2 compares disflu- 
encies in human-human spontaneous scheduling tasks 
(SST) in German, English, and Spanish and human- 
machine queries (ATIS). The table shows the utterance 
length in words as well as human noises (filled pauses, 
laughter, coughs, etc. but not intelligible words such 
as “okay”, “well”) and false starts (chopped words and 
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Figure 2: Development of Vocabulary Size 

repetitions, deletions, substitutions and insertions of 
words, but not filled pauses) as percentages of the total 
number of words in the transcripts }. Table 2 suggests 
that human-human dialogs lead to longer utterances 
which are more disfluent. 

ATIS | GSST | ESST | SSST 
Utterance Length 10 22 30 48 
Human Noises 0.5 9.1 13.8 | 15.7 
False Starts 0.9 14 1.8 3.5 

Table 2: Disfluencies in ATIS vs. Scheduling 

In addition, Table 3 in Section 4.2 shows perplex- 
ities for bigram and trigram language models for En- 
glish, Spanish, and German scheduling dialogs as well 
as English ATIS dialogs. Comparison across languages 
reveals that spontaneous human-human dialogs yield 
different perplexities, again presumably due to differ- 
ing amounts of morphological variation in each lan- 
guage. Comparison with ATIS suggests, that a human- 
human dialog task (albeit limited) leads to larger per- 
plexities than human-machine database queries. 

1 To exclude artifacts from differing data collection set-ups 
we didn’t consider non-human noises (e.g. clicks, paper rustle) 
in this statistics.



3. SYSTEM ARCHITECTURE 

The main system modules are speech recognition, pars- 
ing, discourse processing, and generation.” Each mod- 
ule is designed to be language-independent in the sense 
that it consists of a general processor that applies in- 

~dependently specified knowledge about different lan- 
guages. Therefore, each module actually consists of 
a processor and a set of language-specific knowledge 
sources. A system diagram is shown in Figure 3. 
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Figure 3: System Diagram 

We employ a multi-strategy approach for several 
of the main processes. For example, we are exper- 
imenting with TDNN, MS-TDNN, MLP, LVQ, and 
HMM’s for acoustic modeling; n-grams, word cluster- 
ing, and automatic phrase detection for language mod- 
cling; statistically trained skipping LR parsing, neural 
net parsing, and robust semantic parsing for syntactic 
and semantic analysis; and statistical models as well 
as plan inferencing for identification of the discourse 
state. The multi-strategy approach should lead to im- 
proved performance with appropriate weighting of the 
output from each strategy. 

Processing starts with speech input in the source 
language. Recognition of the speech signal is done with 
the acoustic modeling methods mentioned above, con- 
strained by the language model, which is influenced by 
the current discourse state. This produces a list of the 
N-best sentence candidates, which are then sent to the 
translation components of the system. 

2Discourse processing has not yet been implemented. In this 
paper we are reporting our plans for this component. 

At the core of our machine translation system is 
an interlingua, which is intended to be a language-in- 
dependent representation of meaning. The parser out- 
puts a preliminary interlingua text (ILT) or some ILT 
fragments corresponding the source language input. 
Multi-sentence conversational turns are assumed to be 
broken down into separate sentences or sentence frag- 
ments before parsing. After parsing, the ILT is further 
specified by the discourse processor. The discourse 
processor performs functions such as disambiguating 
the speech act or discourse function, resolving ellipsis 
and anaphora, and assembling ILT fragments into full 
ILTs. It also updates a calendar in the dynamic dis- 
course memory to keep track of what the speakers have 
said about their schedules. Based on the current dis- 
course state, a flag is set, which is used by the parser to 
resolve ambiguities in the next sentence to be parsed, 
and by the recognizer to dynamically adapt the lan- 
guage model to recognize the next utterance. Once the 
ILT is fully specified, it can be sent to the generator to 
be rendered in any of the target languages. 

4. INTEGRATION OF SPEECH 
RECOGNITION AND NATURAL 
LANGUAGE PROCESSING 

In building a machine translation system for sponta- 
neously spoken discourse, our tasks include the devel- 
opment of NLP techniques that are robust over speech 
errors and recognition errors, and the adaptation of 
speech recognition components to make use of the dis- 
course context and domain-specific knowledge. Be- 
cause we are working on a multi-lingual task, the tech- 
niques we are developing must be generalizable across 
languages. 

4.1. ROBUST PARSING OF SPOKEN 
INPUT 

Coping with spontaneous discourse phenomena and 
acoustical recognition errors requires robust language 
parsing. Our approach is to develop language-indepen- 
dent mechanisms, coupled with language and task spe- 
cific data structures (semantic grammars, augmented 
by statistical training). Methods employed include ex- 
tending the Augmented-LR parsing method to work on 
sentence fragments and to skip over incomprehensible 
segments, and a pattern—based semantic parser. 

4.1.1. THE GLR* PARSER 

GLR‘* is an extended robust version of the Generalized 
LR Parser, that allows the skipping of unrecognizable 
parts of the input sentence (10, 11]. It is designed to en- 
hance the parsability of domains such as spontaneous 
speech, where the input is likely to contain deviations 
from the grammar due to noise, extra-grammaticalities 
and limited grammar coverage. If the complete input 
sentence is not covered by the grammar the parser at- 
tempts to find maximal subsets of the input that are



parsable. Some sentences and the corresponding parser 
output can be seen in Figure 4. 

Transcription: Checking my calendar Friday's no good either 

((ADVERB ALSO) 
_ (WHEN ((FRAME *SIMPLE-TIME) (DAY-OF-WEEK FRIDAY))) 
(SPEECH-ACT (*MULTIPLE* "REJECT 

*STATE-CONSTRAINT)) 
(WHO ((FRAME *1))) 
(FRAME “BUSY) 
(SENTENCE-TYPE “STATE)) 

Skipped: CHECKING, CALENDAR 

Figure 4: Example for the GLR* Skipping Parser 

To select the “best” parse we use an integrated eval- 
uation heuristic that combines several different mea- 
sures, including a statistical component. The parse 
evaluation heuristic uses a set of features of both the 
candidate parse and the ignored parts of the original 

input sentence, by which each of the parse candidates 
can be evaluated and compared. The features are de- 
signed to be general and, for the most part, grammar 
and domain independent. For each parse, the heuristic 
computes a penalty score for each of the features. The 
penalties of the different features are then combined 
into a single score using a linear combination. The 
weights used in this scheme are adjustable, and can be 
optimized for a particular domain and/or grammar. 

The current set of evaluation features includes the 
number and position of skipped words, the fragmenta- 
tion of the parse analysis and the statistical score of the 
disambiguated parse tree. Parses that are more frag- 
mented, or require the skipping of more input words 
receive higher penalties. 

The statistical module attached to the parser is 
similar in framework to the one proposed by Briscoe 
and Carroll [12], in which shift and reduce actions 
of the LR parsing tables are directly augmented with 
probabilities. Training of the probabilities is performed 
on a set of disambiguated parses. The probabilities of 
the parse actions induce statistical scores on alterna- 
tive parse trees, which are then used for parse disam- 
biguation. 

However, we also use the statistical component of 
the parser to evaluate competing parse candidates that 
correspond to different skipped words. The statistical 
score (sscore) is first converted into a confidence mea- 
sure, such that more “common” parse trees receive a 

lower penalty score: 

penalty = (0.1 * (—logi9(sscore))) 

Thus, a parse candidate with a significantly higher sta- 
tistical score may be selected, even if it is not maximal 
in word coverage. 

The utility of a parser such as GLR* obviously de- 
pends on the semantic coherency of the parse results 

that it returns. Since the parser is designed to suc- 
ceed in parsing almost any input, parsing success by 
itself can no longer provide a likely guarantee of such 
coherency. We therefore use a filtering heuristic which 
attempts to filter out incoherent parses. The filtering 
heuristic attempts to classify the parse chosen as best 
by the parser into one of two categories: “good” or 
“bad”. The current heuristic is extremely simple and 
takes into account both the actual value of the parse's 
combined penalty score and a measure relative to the 

length of the input sentence. Although it is reasonably 
successful, we are working on developing a more so- 
phisticated heuristic, to improve the reliability of the 
GLR* parser. 

4.1.2. ROBUST SEMANTIC PARSING 

The PHOENIX [13] parser processes semantically sig- 
nificant chunks of information and is free of syntactic 
constraints. Constraints are introduced at the phrase 
level (as opposed to the sentence level) and regulate 
the semantic rather than syntactic category. Thus, 
ungrammaticalities that often occur between phrases 
can be ignored, reflecting the fact that syntactically in- 
correct spontaneous speech is often semantically well- 
formed. The parser fills frames which contain slots 
tepresenting pieces of information. Each slot type is 
represented by a separate Recursive Transition Net- 
work which specifies all ways of saying the meaning 
represented by the slot. These networks are used to 
perform pattern matches against input word strings. 
This general approach has been described in earlier 
papers (14], [15]. Figure 5 in Section 4.3.1 shows an 
example of output from the PHOENIX parser. 

When the RTN’s recognize a phrase, the phrase is 
assigned to slots in any active interpretation that it can 
fill. If the parser cannot match words between recog- 
nized phrases, the words are simply skipped. From the 
resulting beam of possible interpretations, the highest 
scoring interpretation is selected when the utterance 
terminates. The scoring algorithm gives higher scores 
to interpretations that include more of the input words 
and to interpretations that use fewer RTNs. The re- 
sulting parse is a list of top-level slots, representing for 
instance statements of availability and suggestions of 
time, and their associated subnet values (i.e. the ac- 

tual time that is being suggested). Since information 
chunks (slots) can stand alone as well as be nested, 
short sentence fragments are handled in the same way 

as are semantically correct sentences. 

Generation can be accomplished by mapping the 
resulting parse onto either an ILT, which is then input 
to a generation grammar, or directly onto patterns in 
the target language. We have begun work on the latter; 
each “concept” (slot) has a single phrase translation 
that is retrieved from a lookup table. Only variables 
such as numbers are translated directly. 

This type of parser is particularly well suited to 
spontaneous speech, as it ignores most conjunctions



and prepositions which are difficult for the speech rec- 
ognizer to extract. It is robust over the fragmented 
sentence structure that native speakers frequently use 

and produces a meaningful parse by processing only 
the part of the utterance relevant to the scheduling 
task. 

4.2. LANGUAGE MODELING 

In this section we describe methods that attempt to 
take advantage of natural equivalence word classes and 
frequently occurring word sequences/phrases, and that 
also try to take into consideration the acoustic confus- 

ability of hypothesized words. The perplexity of these 
methods was compared on three languages, English, 
German, and Spanish, using the Spontaneous Schedul- 

ing Task databases (ESST, GSST, SSST). As a control 
experiment, we repeated our experimentation on the 
well-known ATIS database. In addition, we report pre- 
liminary recognition results on the English databases 
(ESST). 

The standard word bigram and, even more, word 
trigram models need very large databases to obtain 
robust probability estimates. To collect such large 
amounts of data is a costly and time consuming pro- 
cess. Models based on word classes can be trained 
on smaller amounts of data. An automatic word class 
cluster algorithm was developed to find natural classes 
of words (see also (16]). Beginning with some initial as- 
signment of words to classes, the clustering algorithm 
moves words to classes to minimize the perplexity on 
some development test data. To prevent the optimiza- 
tion from getting stuck in a local optimum, a simulated 
annealing method is employed. 

Beyond word classes, sequences of words can also 
be bundled into frequently occurring phrases if these 
reduce test set perplexity. A word phrase bigram lan- 
guage model is proposed to reduce perplexity as well 
as automatically define common word phrases or id- 
ioms in a given task. The resulting word phrases in- 
clude such common expressions for scheduling dialogs 
as “out-of-town”, “do-you-have”, “in-the-next”, “what- 
about”, “a-meeting-from”. 

Esst GSST_T SSST ATIS Nov9T 
ford Bigrame x 37 77 20 

Word Trigrams 35 81 70 15 
Cluster Bigrams 37 4 3 20 
Word Phrases 35 82 70 18 
Cluster Word & Bigrams | 34 3 30 15 
Cluster Word & Phrases | 34 66 49 18 
Cluster Word & Trigrams | 31 63 46 14 

Table 3: Perplexities for ESST, GSST, SSST and ATIS 

Table 3 summarizes our results. Compared to a 
baseline word bigram model, all methods yield perplex- 
ity reduction, especially when interpolated with the 
word bigram model. Some additional improvements 
can be obtained when using the word trigram model, 

Word Bigrams 
ESST 61 

Word Phrases 
66.4 

Cluster Bigrams 
59.2 

Table 4: Preliminary Recognition Results for ESST 

at the expense of greater computational requirements 
in the speech decoder. The word phrase model ob- 
tains modest perplexity reductions. It can, however, 

be improved by adding a training method for acoustic 

models which accounts for coarticulation within word 
phrases. It can also be used for automatic grammar 
acquisition. The cluster bigram model obtained the 
highest perplexity reductions, especially when interpo- 
lated with either a word bigram or word phrase model. 
Although basing models on classes is in general an 
information-losing process the clustering reduces per- 
plexity because of the sparsity of training data; it can 
be viewed as a kind of smoothing. As an interesting 
side effect, words with similar meanings are put in the 
same clusters. 

Preliminary recognition results were obtained on 
the English database (ESST). Table 4 shows the word 
accuracy on a 14 dialog evaluation set. The higher per- 
formance of the word phrase model can be attributed 
to the fact that it builds word phrases including easily 
misrecognized function words. 

4.3. USING DISCOURSE TO CONSTRAIN 
SPEECH RECOGNITION 

In this section we describe the use of discourse knowl- 
edge in the system’s speech decoder to improve per- 
formance. We have conducted two preliminary exper- 
iments on statistical dialog modeling, once involving 
the ouput of the PHOENIX parser and one involving 
the ILTs that are produced by the GLR* parser. We 
also describe how linguistic knowledge from a plan in- 
ference system can be used to predict possible next 
utterances. 

4.3.1. SLOT-BASED LANGUAGE 
MODELING 

Our first experiment on statistical dialog modeling ex- 
tends work by Pieraccini et al [17] and Ward [6]. We 
used the PHOENIX parser to automatically label dif- 
ferent parts of a sentence with frames and slot fillers 
and then trained stochastic models similar to [17]. In- 
stead of using these models to find the conceptual struc- 
ture of utterances we suggest to dynamically adapt 
the language model, similar to an approach described 
in (6). 

In the training phase, we extract the sequence of 
top-level slots and the corresponding sequences of words 
for each slot from the output of the semantic parser 
(see Figure 5). A junk slot absorbs all words which are 
not covered by the semantic grammar.



Transcription: Again Tuesday morning's not very good for me 
I'm busy from nine to twelve Let’s see What about Wednesday 
on the sixth 

give.info. | TUESDAY MORNING'S NOT VERY GOOD 
FOR ME I'M BUSY FROM NINE TO TWELVE 

interject LET'S SEE 
sxggesttime WHAT ABOUT WEDNESDAY ON THE SIXTH 

Figure 5: Extracting the Slot Sequence from the Se- 
mantic Parser’s Output 

Such sequences of words labeled with their respec- 

tive slots can be used to estimate slot transition prob- 
abilities P(S; | S;-1) and slot-dependent word bigram 
probabilities P(w; | w;-1,5;). 

In the speech decoding process, the language model 
can be dynamically adapted by interpolating the slot- 

dependent bigram models according to the current pre- 
diction of the next slot P(S; | S;-1). One can imag- 
ine the search for word sequences as a hidden Markov 

process with its states being the top-level slots, repre- 
senting the current dialog state. 

In a preliminary experiment, we trained such a 

model on 143 dialogs of the ESST database and tested 
it on a 14 dialog evaluation set. Perplexities didn’t 
differ much, but we expect better results by using slot 
trigrams instead of slot bigrams, changing the defini- 
tion of a slot transition from each word to once per 
slot and by utilizing information about which speaker 

is speaking in the slot transitions. In addition, work 
is underway to incorporate this model in the search 
engine to measure the recognition performance. 

ILT-BASED DISCOURSE 
MODELING 

4.3.2. 

Work is also underway to model the discourse by mak- 
ing predictions of subsequent ILTs based on the previ- 
ous ones, using a connectionist implementation. The 
ILT generated by our LR parser is a language inde- 
pendent frame structure containing three main slots, 
speech-act, sentence-type and semantic frame along with 
a few other secondary slots. The speech-act refers to 
the action performed by the sentence, e.g., suggest, ac- 
cept, and reject. The sentence type refers to the surface 
form of the sentence, e.g., statement, yes/no question, 
wh-question, directive. The semantic frame refers to 
main semantic content of the sentence, e.g., busy, free, 

out-of-town. Other slots in the ILT are who, which is 
the person referred to by the frame, what, a possible 
non-person object, and when and topic, a representa- 
tion of any temporal component of the utterance. 

The top level slots of the most recent ILT are en- 
coded into a pattern of binary inputs. This informa- 
tion along with a bit indicating whether the next utter- 
ance comes from the same or different speaker is fed 
into a multi layer neural network utilizing the back- 
propagation learning algorithm. The input vectors are 

Transcription: Actually the twenty sixth and the twenty sev- 
enth I'll be at a seminar all day. 

((SPEECH-ACT *REJECT) 
(SENTENCE-TYPE *STATE) 
(FRAME “SCHEDULED) 
(WHO ((FRAME *1))) 
(TOPIC 

((FRAME *TIME-LIST) 
(CONNECTIVE AND) 
(ITEMS 

(*MULTIPLE* 
((FRAME *SIMPLE-TIME) 
(DAY 26)) 
((FRAME "SIMPLE-TIME) 
(DAY 27)))))) 

(WHAT ((FRAME *SEMINAR) 
(SPECIFIER INDEFINITE))) 

(WHEN 
((FRAME “SPECIAL-TIME) 
(SPECIFIER WHOLE) 
(NAME DAY))) 

( ADVERB ACTUALLY)) 

Figure 6: Example for the ILT representation 

associated with a representation of the subsequent ILT. 

In preliminary work, the network was trained on 24 di- 
alogues of hand coded ILTs from the ESST database. 
The network learned some characteristics of discourse 
behavior, and is good at making some predictions of 
likely fillers for the speech-act and sentence-type slots 
of the subsequent ILT. The relative strength of the out- 
put units can be used to determine the relative proba- 
bility of competing fillers for a particular slot. 

There are drawbacks with this experiment that are 
easy to solve: Twenty-four dialogues is not sufficient 
for good modeling of discourse. Increasing data for 
training is easy and should yield improved results. In 
addition, interjections often disrupted the context of a 
sentence; for instance small utterances, such as Well 
between two full sentences interfere with the associ- 
ation of the ILTs for the two sentences. Using the 
previous content bearing ILT to predict the next ILT, 
rather than just the previous ILT, increases context, 
and should boost results. Additionally, experiments 
with network architecture are called for. With im- 
proved results, the predictions would be used to aid 
speech recognition by interpolating language models 
appropriate for sentences containing the predicted slots. 

4.3.3. USING PLAN INFERENCE TO 
CONSTRAIN THE NEXT UTTERANCE 

We are also implementing a more traditional approach 
to discourse modeling, using a plan inferencing system 
to model the discourse between the two speakers. We 
are using a tripartite model that distinguishes between 
the domain level, problem solving level, and the dis- 
course level (1, 2]. This model takes ILTs for sentences 
as they are uttered and incorporates them into a plan 
tree. The plan tree indicates the function of each sen- 
tence at each plan level. For example, it will indicate



that the sentence Are you free on Tuesday is a yes-no 

question functioning as a suggestion at the discourse 
level. At the problem solving level, it is an attempt 
to instantiate a variable, namely the day of a meeting, 
and at the domain level it is part of a plan to have a 
meeting. The plan tree also shows how sentences are 

_ related to each other. For example, /’m free at 2:00 

p.m. could function as an acceptance of the suggestion 
to meet on Tuesday. It could also be an implicit rejec- 
tion of a suggestion to meet at one p.m., a suggestion 
itself, or simply background information, depending on 
the context in which it appears. The rule based dis- 
course tracker identifies the correct speech-act for the 
utterance using domain knowledge from a temporal ex- 
pert program and the current plan tree. Determining 
the correct speech-act can be vital for correct transla- 

tion [18]. 
A focus stack identifies nodes of the plan tree to 

which children nodes can be attached. Nodes that are 
not in focus represent conversational segments that are 
closed or finished. The plan tree together with the fo- 
cus stack constitute a discourse state. By modeling the 

discourse state, we can set constraints on what the next 
utterance might be. In order to use this information 
to constrain speech recognition, we will train several 
language models based on different discourse states. 
The speech recognizer will then interpolate the lan- 
guage models according to the current discourse state. 
Should the next utterance appear to be a non-sequitur, 
that is, not have an appropriate place to attach to the 
plan tree, we could attempt to rerecognize the utter- 

ance (19], or initiate an interactive repair module that 
would query the speaker in order to properly interpret 
the utterance [20]. 

5. CONCLUSION 

Integration of speech and natural language process- 
ing is an important aspect in a multi-lingual speech 
translation system. Our work has focused on robust 
parsing of spoken language and using discourse knowl- 
edge to constrain the speech decoder. We have sug- 
gested statistical, knowledge-based and connectionist 
approaches to model the dialog structure. Although we 
are far from our ultimate goal of general-purpose accu- 
rate machine translation of spontaneous discourse, we 

have made significant initial strides. In particular, the 

inter-communicating modular design of JANUS, cou- 
pled with the complete separation of processing mod- 
ules and data sources gives us a high degree of language 
and domain independence. The language or domain 
specific information is all encoded in data structures. 
This architecture enables us to enhance each module, 
as well as retain feedback and inter-module commu- 
nication and integrated testing over time. We believe 
that such a cooperating modular architecture is the 
best way to address a problem as complex as transla- 
tion of spontaneous spoken discourse. 
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