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ABSTRACT public demonstration in spring 1993. Independently, other

We present first results from our efforts toward transla-
tion of spontaneously spoken speech. Improvements in-
clude increasing coverage, robustness, generality and speed
of JANUS, the speech-to-speech translation system of
Carnegie Mellon and Karlsruhe University. Recognition
and Machine Translation Engine have been upgraded to
deal with requirements introduced by spontaneous human
to human dialogs. To allow for development and evalua-
tion of our system on adequate data, a large database with
spontaneous scheduling dialogs is being gathered for En-
glish, German and Spanish.

1. OVERVIEW

JANUS [1, 2] has been among early systems to attempt the
translation of spoken dialogs. It had initially been built
based on a speech database of 12 read dialogs of the confer-
ence registration task, encompassing a vocabulary of around
500 words. It was designed as a speaker-independent sys-
tem which translates spoken utterances from English and
also from German into one of German, English or Japanese.
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Figure 1. Overview of the System

In cooperation with partner efforts at ATR [3] and
Siemens, feasibility and potential of multilingual speech
translation on limited task has been demonstrated by a

To appear in Proc. ICASSP-94

speech translation systems [4, 5] have been presented, show-
ing the growing interest in the field.

To begin extending our system to spontaneous human-to-
human dialogs, however, improvements and changes along
several dimensions of our earlier system are necessary to
increase speed, robustness and coverage of the system in the
face of ill-formed and ungrammatical spontaneous input.
In the following, we will report on the state of these most
recent efforts.

2. THE SCHEDULING TASK DATABASE

We have started collecting a large database of human to
human dialogs centered around the scenario of appointment
scheduling. In each recording session, two subjects are each
given a calendar (one of 13 scenarios) and asked to schedule
a meeting with the dialog partner. The recording setup
allows only one person to speak at a time by way of a push-
to-talk switch. Data is being collected in similar fashion
in German, English and Spanish using the same setup at
Karlsruhe University and Carnegie Mellon.

Dialogs recorded | transcribed |
German 450 150
English 200 140
English (phone-quality) 70 70
Spanish 75 30

Table 1. The Spontaneous Scheduling Task Database

On average, the resulting dialogs cover about 10-12 utter-
ances, each up to 50 seconds long. The test set perplexities
using smoothed bigrams on an initial set of dialogs were
found to be around 45 for English and 88 for German; the
vocabulary size (Fig. 2) for German is about 40% larger
than for English, mostly due to the larger number of inflec-
tions and compound words.

After recording, the dialogs are transcribed following the
same conventions at all sites. The transcription format
covers a set of spontaneous effects like mispronunciations,
restarts, human and nonhuman noises as well as pauses.

A first training and evaluation set for English and Ger-
man consists of about 90 dialogs for training and 20 dialogs
set apart as development test set. 20-40 new dialogs are
reserved as independent evaluation set.
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Figure 2. Development of Vocabulary Size

3. RECOGNITION ENGINE
3.1. Acoustic Modeling

For acoustic modeling, several alternative algorithms are
being explored including TDNN, MS-TDNN, MLP and
LVQ [6, 7]. In the main JANUS system, an LVQ algo-
rithm with context-dependent phonemes is currently used
for speaker independent recognition. For each phoneme,
there is a context independent set of prototypical vectors.
The output scores for each phoneme segment are computed
from the euclidean distance using context dependent seg-
ment weights.

Recent changes include the introduction of noise mod-
els as well as the improvement of the training algorithms;
the 1993 results in table 2 were obtained using triphone
clustering, corrective training and feature weights. Further
improvements using cross word triphones are possible but
not evaluated here.

1991 1993
Conference Registration 9.1 % 3.7 %
Resource Management 24 % 7.5 %

Table 2. Comparison of error-rates

3.2. Search

The search module of the recognizer builds a sorted list of
sentence hypotheses. Speed and memory requirements have
been improved considerably (table 3).

1991 1993 |
Time for N-best 3-5 min 3-10 sec
Memory usage 50Mbytes | TMbytes
Maximum Vocabulary Size 500 10000
Maximum Perplexity 5-10 120

Table 3.  Recent Improvements of the Search Module.

Timings and memory usage are given for the English CR Task.

This was achieved by using the word dependent N-best
algorithm [8] as a backward pass in the forward backward
pruning algorithm.

Recent experiments with the Wall Street Journal Task
show, that the recognizer can handle vocabularies of up to
10000 words at a perplexity of 110.

3.3. Language Models

The most successful language model so far used for the
scheduling task is a model that interpolates a cluster based
model with smoothed bigrams. The cluster based model
is using automatically build classes. The optimization cri-
terion is to minimize the leaving-one-out perplexity on the
training set [9]. The results shown in table 4 were obtained
using 150 word classes.

ESST | GSST
Smoothed Bigrams | 46.8 88.2
Cluster 42.3 71.8
Interpolated 39.2 62.1

Table 4. Perplexity Reduction due to automatic clustering

3.4. Between Word Noise Models

Noises, filled pauses, and restarts, are much more frequent
. 1 .

in spontaneous speech compared to read speech’, particu-
larly as our domain involves human-to-human negotiation:

| Noise | English | German |
human
breathing 2166 1017
lip smack 992 144
laugh 36 41
hm 21 9
mmm — 14
ahm — 75
eh — 136
um 546 —
uh 514 —
glottal 92 —
ah 49 —
oh 47 —
non-human
key click 1028 477
paper rustle 148 13
finger hitting headset 50 13
copier noise 20 —
pen tap 35 —
silence
1 to 2 seconds 547 385
longer than 2 seconds 18 23

Table 5. List of frequent noises

We have chosen 10 noise classes that are modeled by spe-
cialized phoneme models. Initially, we used one such model
for each of the seven most frequent single noises, one for all
remaining human noises, one for all remaining non-human

IThe total number of utterances used for the ESST noise
statistic is about twice the number used for the GSST statistic.



noises and a special model to deal with stutter and short
false starts. Clustering these models into 6 generalized noise
models results in further improvement. The total relative
error reduction due to the introduction of between word
noise models was 17% on the English Spontaneous Schedul-
ing task.

4. THE MACHINE TRANSLATION (MT)
ENGINE

The MT-component that we have previously used has now
been replaced by a new module that can run several alter-
nate processing strategies in parallel. In translating spoken
language from one language to another, the analysis of spo-
ken sentences which suffer from ill-formed input and recog-
nition errors is most certainly the hardest part. Based on
the list of N-best hypotheses delivered by the recognition
engine, we can now attempt to select and analyze the most
plausible sentence hypothesis in view of producing an accu-
rate and meaningful translation.

Two goals are central in this attempt: high fidelityand accu-
rate translation wherever possible, and robustness or grace-
ful degradation in face of ill-formed or misrecognized input.
At present, three parallel modules attempt to address these
goals: 1) an LR-parser 2) a semantic pattern based ap-
proach and 3) a connectionist approach. The most useful
analysis from these modules is mapped onto a common In-
terlingua, a language independent, but domain-specific rep-
resentation of meaning.

4.1. Robust GLR Parser

The first step of the translation process is parsing with the
Generalized LR Parser/Compiler. It can use syntactic or
semantic based grammars. For application to the sponta-
neously spoken English scheduling task, we found semantic
based grammars most useful.

The Generalized LR parsing algorithm is an extension of
LR parsing with a ”Graph-Structured Stack” [10], and it
can handle arbitrary context-free grammars while most of
the LR efficiency is preserved.

We use a recently developed robust version of the GLR
parser to parse the input sentence. The most important
feature of the robust parser is a capability to skip words
of the input in cases where the complete input sentence
is not grammatical. Using a beam search technique, the
parser attempts to detect and parse the grammatical subset
of the input sentence with the fewest skipped words. It
thus returns a parse for any sentence, unless no part of the
sentence can be considered grammatical. If the complete
input sentence is itself grammatical, the parser behavior is
identical to that of the standard GLR parser.

On a first experiment on the English Spontaneous
Scheduling Task, this parser achieved 40% error free parses
on unseen text, using a semantic based grammar.

4.2. The Interlingua

The current output of the parser is an interlingua represen-
tation, that could be refined by a discourse plan tracker.
Figure 3 is an example of interlingua representation
(ILT) produced from the sentence ”twenty (pause) actu-
ally July twenty sixth and twenty seventh looks good”.
In the example, the sentence is represented as speech-act

*SUGGEST-TIME. Other typical speech-acts for this task are
*STATE-CONSTRAINT, *AFFIRM and *REQUEST-RESPONSE;

The interlingua ensures that alternate parsing modules
can be applied in a modular fashion and that different out-
put languages can be added without redesign of the analysis
stage. It also allows the separate evaluation of parser and
generator, by matching against and generating from a set
of reference interlingua representations.

(TWENTY ACTUALLY JULY TWENTY SIXTH AND
TWENTY SEVENTH LOOKS GOOD $)

((SPEECH-ACT *SUGGEST-TIME)
(SENTENCE-TYPE *STATE)
(FRAME *FREE)
(WHEN
((FRAME *TIME-LIST) (CONNECTIVE AND)
(ITEMS
(*MULTIPLE*
((FRAME *SIMPLE-TIME)
(DAY 26)
(MONTH 7))
((FRAME *SIMPLE-TIME)
(DAY 27))))))
(ADVERB ACTUALLY))

Figure 3. Example for Interlingua Output

4.3. Semantic Pattern Based Parsing

Our robust semantic parser combines frame based semantics
with semantic phrase grammars [12]. We use a frame based
parser similar to the DYPAR parser used by Carbonell, et
al. to process ill-formed text [11], and the MINDS system
previously developed at CMU. Semantic information is rep-
resented in a set of frames. Each frame contains a set of slots
representing pieces of information. In order to fill the slots
in the frames, we use semantic fragment grammars. The
operation of the parser can be viewed as ”phrase spotting”.
A beam of possible interpretations are pursued simultane-
ously. An interpretation is a frame with some of its slots
filled. Each slot type is represented by a separate Recursive
Transition Network, which specifies all ways of saying the
meaning represented by the slot. The grammar is a seman-
tic grammar, non-terminals are semantic concepts instead
of parts of speech.

4.4. Connectionist Parsing

The connectionist parsing system PARSEC [13] is used as
a fall-back module if the LR parser fails to analyze the in-
put. One important aspect of the PARSEC system is that
it learns to parse sentences from a corpus of training ex-
amples. This eliminates the very difficult work of writing
robust grammars. Another aspect is that it has proven ro-
bust towards spontaneous utterances which frequently are
“corrupted” with disfluencies, restarts, repairs or ungram-
matical constructions. Third, integration with other infor-
mation sources, e.g intonation, is easier.

More information about the recent developments in PAR-

SEC can be found in [14]



4.5. The Generator

The generation of target language from an Interlingua rep-
resentation involves two steps. First, with the same Trans-
formation Kit used in the analysis phase, Interlingua repre-
sentation is mapped into syntactic f-structure of the target
language. The f-structure is then fed into sentence gen-
eration software called "GENKIT” to produce a sentence
in the target language. A grammar for GENKIT is writ-
ten in the same formalism as the Generalized LR Parser:
phrase structure rules augmented with pseudo unification
equations.

As a first experiment for generation on the spontaneous
scheduling task, we tried Japanese generation on 264 new
hand coded ILT’s. More than 75% of the generated sen-
tences were found to be good or acceptable (see table 6).

output quality %

good 65.2
acceptable 11.0
bad 4.5
no output 19.3

Table 6. Quality of Japanese Generation

5. CONCLUSION

In this paper we have described a number of system im-
provements and extensions that have recently been intro-
duced in JANUS, to accomodate extension of the speech
translator to spontaneously spoken (not read) human-to-
human dialogs.

A database of spontaneous negotiation dialogs is being
collected in German, English and Spanish, and first results
of system components on this data have been reported.
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