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Abstract 

We present an overview of our laboratories' research on 
Multimodal Human-Computer Interfaces. By exploiting 
all available channels of human communication we aim 
to increase flexibility, robustness, and naturalness of hu­
man-computer interaction. The information sources we pro­
cess include Speech-, Character-, and Gesture Recognition , 
Face- and Eye Tracking, Lipreading , and Sound Source Lo­
calization. Connectionist and hybrid techniques are used 
throughout. 

Introduction 

Recent developments in the computer and communication 
industries are rapidly increasing the amount and variety of 
information available to a wide and diverse audience. The 
multi-media nature of this dat a explosion , heralded by the 
concept of the "Information Superhighway" , offers images, 
sound, t ext, etc. as the output presented to the informa­
tion consumer. This is in stark contrast to the impover­
ished set of input options which are still largely limited to 
the keyboard and mouse. Attempts at the use of alternate 
modalities have mostly focused on single alternatives and 
are finding limited acceptance. 

In an effort to improve this situation, we have begun to 
develop ways to process a multiplicity of signals that are 
believed to all carry meaning in human communication. 
These include: Speech Understanding, Written Character­
and Gesture Recognition, Lipreading, Face-Tracking, Eye­
Tracking, and Sound Source Localization. In combination, 
these different sources of information are known to pro­
vide humans with sometimes crucial information for effec­
t ive face-to-face communication. They allow for greater 
robustness by taking advantage of redundant information 
and t heir availability provides flexibility and freedom to 
choose a suitable/convenient communication channel. Such 
multimodal interfaces are expected to be useful in human­
to-human communicat ion (e.g., video conferencing, speech 
t ranslat ion), as well as human-computer interaction such as 
database access, document production, CAD use, machinery 
control, etc. 

To create multimodal interfaces, we are developing tech­
nology that improves processing and interpretation of each 
modality, while at the same t ime pursuing t he integration 
of the information sources in a single framework. Connec­
tionist models are used throughout because of their superior 
performance as pattern classifiers as well as for t he ease with 
which they can integrate het erogeneous signals and features 
( sensor fusion) . 

Separate Modality Recognition 

This section concentrates on the recognition challenges and 
solut ions specific to single modalities. 

Speech Recognition 

Foremost among human communication modalit ies, speech 
and language arguably carry most of the information in hu­
m an communication. Automatic Speech Recognition (ASR) 
naturally constitutes an integral part of an advanced human­
computer interface. In our laboratories several approaches 

toward robust high performance speech recognition are un­
der way. 

We continue to experiment with several connectionist, 
stochastic and hybrid approaches for Large Vocabulary Con­
t inuous Speech Recognition and spontaneous speech recog­
nition. These include Multi-Layer Perceptrons (MLP), 
Time Delay Neural Networks (TDNN), Learning Vector 
Quantization-2 (LVQ-2) and Hidden Markov Model (HMM) 
techniques and combinations of these. Detailed descriptions 
of these syst ems and performance measures are reported 
elsewhere. 3 ,5 ,9 ,10 

Our modality integration experiments (see below) have 
employed our word-spotting syst em for continuous sponta­
neous speech. 11 Because of their small vocabulary and size, 
word spotters offer a practical and efficient solution for many 
speech recognition problems that depend on the accurate 
recognition of a few important keywords. The word spot­
ting system architecture is based upon the TDNN and more 
recently the Multi-State TDNN (MS-TDNN) .3 The network 
consists of a common input layer and hidden layer , con­
nected to a state layer and output layer for each keyword. 
In the state layer , each keyword is represented by a sequence 
of sub-word states over time. A dynamic time warping algo­
rithm is used to find the best state sequence , from which we 
can hypothesize the presence or absence of a keyword when 
its score reaches a threshold. 

Training and t esting of the system was performed on two 
separate databases, the Roadrally corpus, and the Switch­
board credit card corpus. 11 Each of these databases contains 
a set of 20 keywords to be spotted (including variants), em­
bedded in extraneous speech. The system's performance is 
measured by plotting the keyword detection rate for several 
false alarm rates per keyword per hour ( fa/ (kw*hr)). By 
changing the thresholds of the word-output units, the de­
tection rate can be improved at the expense of increasing 
the number of false alarms. The Figure of Merit (FOM) for 
the system is the averaged keyword detection rate over the 
false alarms from O to 10 fa/ (kw*hr). Our system achieves 
an FOM = 72.2% for the Roadrally corpus and 50.9% on the 
much more difficult Switchboard corpus. These figures com­
pare favorably to those of other keyword spotting systems 
in its class evaluated by ARPA. 

More extensive word-spotting as well as topic-spotting is 
under development . We are making use of our continuous 
speech recognition and t ranslation system JANUS.10 

Gesture Recognition 

We have been investigating pen-based gestures drawn using 
a stylus on a digitizing tablet. This kind of gesture is sim­
pler to handle than hand gestures captured with a camera 
but still allows for rich and powerful expressions. The ini­
tial multimodal editor we developed currently uses 8 editing 
gestures. Some of these were inspired by standard mark­
up symbols used by human editors. Others, such as the 
"delete" symbols, are what most people would automati­
cally use when correcting written text on paper. 

Using a temporal representation, a gesture is captured as 
a sequence of coordinates tracking the stylus as it moves 
over the tablet's surface. This dynamic representation was 
motivated by its successful use in handwritten character 



recognition7 and is preferred to a static, bitmapped repre­
sentation of gesture's shape. The coordinates are normalized 
and resampled at regular intervals to eliminate differences 
in size and drawing speed; from these resampled coordinates 
we extract local geometric information at each point, such 
as the direction of pen movement and the curvature of the 
trajectory. 

Each coordinate is represented in the classifying TDNN by 
eight such low-level features . Their t emporal sequence con­
stitutes the input layer. Ten units in the first hidden layer 
extract patterns from the input, eight units in the second 
hidden layer spot patterns typical of a given gesture. Out­
put units ( one per gesture) integrate over time the evidence 
from the corresponding unit in the second hidden layer. The 
output unit with the highest activation level determines the 
classification. The network is trained on a set of manually 
classified gestures using a modified backpropagation algo­
rithm. With training data of 80 samples/ gesture, we have 
achieved "gesturer" -dependent recognition rate of 98.8% on 
an independent test set . 

Our gesture recognizer also incorporates a method for ac­
quiring new gestures "on the fly", i. e., while the system is 
in use. When a recognition error occurs, the system queries 
the user for the correct output and creates new template­
matching hidden units that project onto the output units. If 
a subsequent input pattern is similar to the template used 
to create an extra unit, it is turned on and can influence 
the corresponding output unit. This technique is called an 
Incremental TD NN .8 

Handwriting Recognition 

The recognition of continuous handwriting, on a touch 
screen or digitizing tablet, has not only scientific but also 
considerable practical value, such as for notepad comput­
ers or for providing redundant or alternative input options 
in a multimodal system. The main advantage of on-line 
handwriting recognition is the availability of temporal infor­
mation much as in gesture recognition as presented above. 
Handwritten words can be represented as a time-ordered se­
quence of coordinates with varying speed and pressure in 
each coordinate. As in speech recognition the main problem 
of recognizing continuous words is that character or stroke 
boundaries are not known (in particular if no pen lifts or 
white space indicate these boundaries) and an optimal time 
alignment has to be found. 

The MS-TDNN has been applied successfully to over­
come the problem of recognizing continuous (cursive) 
handwriting. 7 This problem is much more difficult than the 
single character problem because of the need for automatic 
segmentation; however , it is possible to resolve the type of 
conflicts presented above using context. The MS-TDNN 
integrates the recognition and segmentation processes by 
combining the high accuracy character recognition capabili­
ties of a TDNN with a non-linear time alignment procedure 
(Dynamic Time Warping) for finding an optimal alignment 
between strokes and characters in handwritten continuous 
words (see Figure 1). In the most recent experiments, we 
achieved 98. 7%/82.0% writer-dependent / independent word 
recognition rates on a database of 400 handwritten words. 
Recognition experiments on a 20,000-word vocabulary task 
are m progress. 

Lip-reading 

It is well known that hearing-impaired list eners and those 
listening in adverse acoustic environments (noise, reverber­
ation, multiple speakers) rely heavily on the visual input 
to disambiguate among acoustically confusable speech ele­
ments. The usefulness of lip movement information stems in 
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Figure 1. MS-IDNN architecture as used for handwriting 
recognition. 

large part from its rough complementariness to the acous­
tic signal: the former is most reliable for distinguishing the 
place of articulation, the latter conveys most robustly man­
ner and voicing information. ASR systems' performance is, 
if anything, even more sensitive to degradation of the acous­
tic input. Therefore, it is only natural to try to supplement 
the acoustic data with lip movement information. 

The visual evidence is obtained by "frame-grabbing" the 
output of a conventional camcorder camera at 30 frames/sec, 
with 8-bit gray level resolution. Currently, speakers are 
asked to position themselves such that their lips appear 
within an 144x80 pixel frame that is simultaneously shown 
on the screen of a workstation. However, no special markers, 
restraints or position indicators are used . The image within 
the frame is normalized for lighting variations and a data 
vector to be used by the recognition algorithm is extracted 
from it. Best results have been achieved with Linear Dis­
criminant Analysis coefficients of downsampled (to 24x16) 
frame image. 

Details of the recognition algorithm are given below in 
the section on combined lip-reading and speech recognition. 
The lip-reader alone gives 40- 50% letter accuracy scores on 
a spelling task, performance perhaps not useful by itself but 
helpful in combination with ASR. 

Face Tracking 

The task of the face tracking system, described in detail 
elsewhere,6 is to supply other recognition/understanding 
systems with the coordinates and a stable image of the 
speaker's face. While tracking a face, the position of the 
camera and the zoom lens are automatically adjusted to 
maintain a centered position of the face at a desired size 
within the camera image. 

A conventional camcorder, mounted on a pan/tilt unit 
(PTU), supplies roughly 10 images per second. Color infor­
mation is extracted by the Face Color Classifier (FCC). The 
FCC maps each pixel into a two-dimensional brightness­
normalized color space and divides it into colors belonging 
to faces and all others. As few as five sample images of faces 
with various skin colors have been found sufficient to estab­
lish this color distribution. Movement is computed from 
successive frames and merged with the color information. 
The resulting candidate face objects are fed into a neural 



network. The network considers shape of the objects in pro­
ducing the coordinates of the virtual camera, indicating the 
region actually containing the face. Appropriate commands 
to the PTU and zoom lens are issued if the face moves out of 
a pre-defined area in the center of the physical camera. Fig­
ure 2 shows an example of an image and the area classified 
as a face by the tracking system. 

Figure 2. Carrera image and extracted largest skin-colored 
object. 

Two neural networks are used for centering and size es­
timation respectively. They were trained by backpropaga­
tion on 5000 artificially scaled and shifted example images 
generated with a database containing 72 images of 24 faces 
of different sex, age, hair style, skin color, etc. Performance 
was evaluated on test sequences of over 2000 images of 7 per­
sons ( with different skin types) performing arbitrary move­
ments in front of different backgrounds. Depending on the 
sequence, the face was located in 96% to 100% of all images 
in the sequence. The average difference of the actual posi­
tion of the face and the output of the system were less than 
10% of the size of the head. 

Eye Tracking 

The goal of gaze tracking is to determine where a person 
is looking from the appearance of his eye. Two potential 
uses of a gaze tracker are as an alternative to the mouse 
as an input modality and as an analysis tool for human­
computer interaction studies. The direction of eye fixation 
can also be used to determine the user's focus of attention in 
a multimodal interface; for instance, knowing whether the 
user is looking at the screen or somewhere else while talking 
may be important in deciding whether automated speech 
recognition should be activated. 

At Carnegie Mellon we have developed a neural-network­
based non-intrusive gaze tracker based on camera input 
only. 1 Unlike in most advanced gaze tracking, the user is 
required neither to wear any special equipment , nor to keep 
his head still. Input to the system comes from a camera 
mounted on top of the computer monitor. An infrared light 
source creates a specular reflection on the eye. The gaze 
direction can be computed from the relative positions of 
the reflection and the pupil's center. The system extracts 
a 15x30 window surrounding the reflection. The gray-scale 
values of the window's pixels become the input to a neural 
network comprising 4 hidden units and 50 output units for 
each of the coordinates (X and Y). Training is performed by 
backpropagation. 

The current system works at 10 Hz. The best accuracy we 
have achieved is 1.5 degrees with the freedom of head move­
ment up to 30 cm. Although we have not yet matched the 
best gaze tracking systems, which have achieved approxi­
mately 0. 75 degree accuracy, our syst em is non-intrusive, 
and does not require the expensive hardware or head sen­
sors typical of other approaches. 

Acoustic Localization and Beamforming 

For applications such as video conferencing it is desirable 
to allow several partipiciants of either party to move freely 

in a room while a system of sensors keeps track of the per­
son of interest and enhances speech and other information 
modalities of this individual. This person should not be 
encumbered by having to carry sensors such as a close­
talking microphone, etc. On the other hand, the commu­
nication/ recognition systems should not be distracted by 
background noises or other speakers. Beamforming with a 
multi-microphone array is one approach to providing clean 
acoustic input from a single sound source. 

We have constructed a one-dimensional microphone array 
consisting of 8 sensors spanning the half plane in front of the 
array. In order to steer the array towards a given spot the 
differences of sound arrival time between the microphones 
are compensated for waves originating exactly from this lo­
cation. By summing these aligned (in phase) signals, one 
achieves an enhancement of the desired signal. Competing 
sounds, uncorrelated with the signal and coming from other 
locations are added out of phase and attenuated. This pro­
cedure is well known as delay and sum beamforming. The 
characteristic delays for a point are determined mathemat­
ically, assuming a spherical form of speech radiation. 

We conducted experiments with the JANUS 10 ASR sys­
tem in a noisy environment to assess the effectiveness of the 
array. With a close-talking microphone, word accuracy of 
85.6% was obtained, while a single microphone placed away 
from the speaker resulted in only 15.5%. By using the mi­
crophone array we improved this score to 79.1 %. 

Combination of Modalities 

Beyond better recognizing and understanding each human 
communication event individually, we are mostly interested 
in combining multiple modalities to improve robustness and 
flexibility by offering complementary information. Several 
experiments aimed at such multimodal synergies have been 
undertaken. 

Automatic Speech Recognition and Lip-reading 

Our audio-visual speech recognizer has been developed for 
the German spelling task mainly in the speaker-dependent 
mode. Letter sequences of arbitrary length and content are 
spelled without pauses. The task is thus equivalent to con­
tinuous recognition with small but highly confusable vocab­
ulary. 

In the basic set-up, we record, in parallel, the acoustic 
speech and the corresponding series of mouth images of the 
speaker. Conventional pre-processing of the acoustic input 
gives 16 Melscale Fourier coefficients at a 10 ms frame rate. 
Data extraction from the visual input was described above. 

A modular MS-TDNN, drawing on a pure acoustic 
spelling recognizer,4 performs the recognition. Figure 3 is 
a schematic of the architecture. Through the first three 
layers (input-hidden-phoneme/viseme) the acoustic and vi­
sual inputs are processed separately. The third layer pro­
duces activations for 62 phoneme or 42 viseme (the rough 
visual correlate of a phoneme) states for acoustic and visual 
data, respectively. Weighted sums of the phoneme and cor­
responding viseme activations are entered in the combined 
layer and a one stage DTW algorithm finds the optimal 
path through the combined states that decodes the recog­
nized letter sequence. The weights in the parallel networks 
are trained by backpropagation. There are 15 hidden units 
in both sub-nets. The combination weights are computed 
dynamically during recognition to reflect the estimated reli­
ability of each modality. We have also investigated alterna­
tive methods of combining the audio and visual information 
at the input and hidden layer levels of the network. Initial 
results suggesting an advantage of hidden layer combination 
as well as a more complete description of the system can be 
found elsewhere.2 
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