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ABSTRACT 
The Time Delay Neural Network (TDNN) is one of the neural net- 
work architectures that give excellent performance in tasks 
involving classification of temporal signals, such as phoneme 
classification, on-line gesture and handwriting recognition, and 
many others. One particular problem that occurs in on-line recog- 
nition tasks is how to deal with input patterns that are incorrectly 
recognized because they are totally dissimilar to anything the net- 
work has seen during training. In this paper we present an algo- 
rithm to add incremental, one-shot learning capability to the 
TDNN by creating extra hidden units to perform template match- 
ing on incorrectly recognized inputs and influence the output units 
via excitatory or inhibitory connections. In a simple handwritten 
digit recognition task, the addition of a single extra unit increases 
recognition rate for a new digit variation from 0% to 99%, while 
decreasing the performance on the old data by only 0.6%. Thus 
this Incremental TDNN (ITDNN) can in fact learn a new pattern 
from one example and perform reasonably well on similar inputs 
without forgetting what it already knew, thereby enabling it to 
deal effectively with the on-line misrecognition problem. 

1. INTRODUCTION 
Neural network techniques have been successfully applied to a 
wide range of pattern recognition tasks. The lime Delay Neural 
Network (TDNN) 181 is a network architecture particularly suited 
to the classification of temporal signals. This capability has been 
demonstrated for a variety of tasks, including phoneme classifica- 
tion [8], and more recently on-line gesture [7] and handwriting 
recognition [ 2 1 [ 1 I. 

The usefulness of gesture and handwriting recognition 
depends largely on the ability to adapt to new users because of the 
great range of variability in the way individuals write or make 
gestures. No matter how many tokens we put in the training data- 
base to cover different gestures that mean “delete text”, for exam- 
ple, there will be someone who will use a totally different gesture 
and break the system. This is particularly troublesome for neural 
network-based systems because usually the network has to be 
retrained using all the old training data mixed with a large number 
of new examples, in order to be able to Iecognize new pattems 
without catastrophically forgetting previously learned pattems. 
Because of the large number of examples needed and the long 
retraining time, this clearly cannot be done on-line in a way that 
would enable the user to continue to work productively. A good 
system should be able to query the user for correction and remem- 
ber this particular input pattem in order to make intelligent 
guesses when similar inputs occur and thus offer a reasonable 
level of performance until the network can be retrained off-line. 

FIGURE 1: TDNN for Handwritten Digit Recognition 
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In this paper we propose to accomplish this for the TDNN by 
creating template-matching hidden units that influence the output 
units via excitatory or inhibitory connections. The incremental, 
one-shot learning capability of this Incremental TDNN, or 
ITDNN, is tested in a series of experiments involving a simple 
handwritten digit recognition task. We trained a TDNN to recog- 
nize written digits 0-9 and tested the incremental algorithm using 
a different variation of one of the digits. 

The reported recognition rates are not intended to show how 
well TDNNs can recognize handwritten digits because the task is 
fairly simple and the data was kept fairly consistent. Rather, the 
results demonstrate that the ITDNN can immediately improve 
performance in the presence of completely new inputs and thus 
could prove very useful for systems requiring this capability, such 
as gesturehandwriting recognizers for pen-based computers. 

2. THE ITDNN ARCHITECTURE 
The ITDNN consists of a regular TDNN [8] augmented by special 
additional hidden units. The TDNN shown in Figure 1 is essen- 
tially the same as the one used in [SI to classify phonemes, except 
for network parameters. The power of the TDNN in classifying 
temporal data stems from its sliding timer-delay windows which 
enable the hidden units to discover temporal correlations in the 
input sequence during training by backpropagation [5 ] [8 ] .  

Raw input data goes through preprocessing steps based on 
those described by Guyon et al. [2] before being fed to the net- 
work. Incremental leaming is accomplished by adding extra hid- 
den units that influence the output units, similar to those used by 
Sato et al. 161 for non-TDNN feedforward networks. 

2.1. Addition of Extra Units 
The activation pattem of an incorrectly recognized input is 

used as a template to create an extra hidden unit whose weights 
are promrtional to the activations in the first hidden laver. as . .  
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FIGURE 2: Addition of an Extra Hidden 
Unit to Excite Output 8 
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product of the weight and activation vectors so that future patterns 
close to the template in input space will also produce high activa- 
tion in the extra unit, while other patterns will tend to deactivate it. 
We try to match activations in the first hidden layer rather than in 
the input layer because the first hidden layer of the TDNN is 
essentially a collection of “feature detectors” trained by backprop- 
agation to recognize relevant features in the input. 

The template activations are multiplied by a factor of propor- 
tionality and copied into the weight matrix of the new extra unit. 
The activation of this unit is determined by sigmoid(b + x w i h i )  
where b is a bias value, w is the weight matrix, and h is the activa- 
tion matrix of the first hidden layer. The quantity E w i h i  is con- 
sidered the score for the match between the weights and the 
activations. The bias value and weight factor are carefully chosen 
to obtain good selectivity; quantitatively this means these parame- 
ters are such that only activation patterns that give a match score 
better than 80% of the original match score with the template will 
produce a high activation in the extra unit. Note that reducing the 
bias increases selectivity by requiring a better match score. 

We increase or decrease output activations to correct the 
classification by connecting such extra units to the outputs using 
positive (excitatory) or negative (inhibitory) weights of large 
enough magnitudes to drive the outputs to the desired values. 
Each extra unit is connected to a single output unit; if more than 
one output unit needs to be corrected, we create more than one 
extra unit based on the same template (possibly with different out- 
put weigh&, depending on the desired corrections.) 

2.2. Fine-tuning Extra Units 
When subsequent input patterns are presented to the network 

and a recognition error occurs, fine-tuning procedures (modeled 
after the ones in 161) are tried before additional extra units are con- 
sidered. These procedures adjust the bias values and output 
weights to tum off unwanted extra units and strengthen wanted 
ones. The procedure is as follows: 

1. To increase the activation of an output unit: 
Find an inhibitory extra unit connected to this output and 
tumed on by the current input pattern; reduce the bias of 
this extra unit until it is tumed off, or 
Find an excitatory extra unit connected to this output and 
turned on by the current input pattern; increase its output 
weight until output activation is high enough. 

2. To lower the activation of an output unit: 
Find an excitatory extra unit connected to this output and 
turned on by the current input pattern; reduce the bias of 
this extra unit until it is tumed off or 

FIGURE 4: Linear Time Warping for Subunits 
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Find an inhibitory extra unit connected to this output and 
turned on by the current input pattern; increase its output 
weight until output activation is low enough. 

It is not wise to reduce a bias too much because the extra unit 
could become too .selective and reject even good matches. Like- 
wise, making an output weight too large is also disadvantageous 
because this could let poor matches contribute significantly to 
influencing the output even when the extra unit’s activation is 
fairly low. For these reasons we impose a minimum bias value and 
a maximum output weight for all extra units. 

2.3. Time-warped Extra Units 
In the above implementation, added extra units simply match 

the whole activation matrix and thus do not take advantage of the 
time-shift invariant property of the TDNN. One way to remedy 
this is to divide the activation matrix into sections and decompose 
each extra unit into subunits, assigning one subunit to match each 
section of activations (in our experiments we used 4 subunits per 
extra unit.) Sliding the time windows of these subunits along the 
time dimension produces activation traces similar to the one 
shown in Figure 3. Note that each subunit is tumed on around the 
area in which its weights match the activations. These subunits in 
fact represent successive states in the activation trace, indicating 
that we need to employ some time-warping technique to evaluate 
the quality of the match. 

We first tried the dynamic time warping (DTW) algorithm 
141 to find the optimal state transition path. This tumed out not to 
work very well because activation traces for some input patterns 
(corresponding to different digits) are very similar but shifted in 
time, and DTW is too good at warping these paths to match. Dura- 
tion control did not greatly improve the situation. We believe the 
poor applicability of DTW in this case is caused by the artificial 
nature of the state assignments. The subunits .seem to represent 
successive states but actually these states were artificially imposed 
on the input by dividing the activation matrix into equal-length 
sections with no regard to the contents. 

The above arguments led us to try “linear time warping” as 
shown in Figure 4. We identify the points at which the weights of 
the subunits match the template activations exactly, and compute 
the score for each subunit by averaging its activations around its 
corresponding match point only. This seemingly simplistic 
approach turned out to work better than DTW for our ITDNN. 
Fine-tuning this kind of time-warped extra units is done in the 
same way as for non-time-warped units (see Section 2.2.) 
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3. DATA COLLECTION PROCEDURE 
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We evaluated the ITDNN’s incremental leaming capability using 
a simple handwritten digit recognition task. The databases used in 
network training and testing were collected from a single person 
writing digits 0-9 on a digitizing tablet with a pressure-sensitive 
stylus. The raw data consists of sequences of tablet coordinates 
and pen pressures tracing the handwritten strokes; this data stream 
is preprocessed as mentioned in the previous section. 

The data set for each digit is divided into two or three varia- 
tions; for example, a “0” can be written in a clockwise or counter- 
clockwise direction, a ‘7” can have a bar in the middle (“Euro- 
pean 7”) or not (“American 7”). Within each variation the data is 
kept fairly consistent because the purpose of this experiment is to 
find out if the ITDNN can adapt to a new input variation. 

One variation of each digit is selected to form a database of 
all the digits, henceforth referred to as the ORIGINAL database. 
The experiments described in the next section also make use of 
one variation of “6” (written in a clockwise direction rather than 
counter-clockwise as in ORIGINAL), examples of which are col- 
lected into a database called VARIATION. Preliminary expen- 
ments identified the combination of variations used here as being 
relatively difficult to classify due to similarities between different 
digits, e.g., “0” and “6“ both written in the same direction. 

ORIGINAL and VARIATION are each further divided into a 
training set and a test set; examples in the test sets are never seen 
by the networks during training. The training and test sets for 
ORIGINAL contain lo00 examples each (100 for each digit), 
while the data sets for VARIATION have 100 examples each. The 
two training sets are also combined by randomly interleaving 
examples from each set; the test sets are combined in the same 
way. The resulting data sets form a database called COMBINED. 

99.4 92.4 91.8 
97.5 94.3 94.1 
99.9 %.5 96.4 
99.3 98.4 98.4 

COMBINED 

ORIGINAL 

4. EXPERIMENTAL RESULTS 
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The parameters of the TDNN used here were selected by trial- 
and-error to find a network large enough to perform well on the 
ORIGINAL database but small enough to give substantially 
poorer results when a digit variation is added. We trained two 
TDNNs with exactly the same parameters on ORIGINAL and 
COMBINED, respectively called NET-ORG and NET-COM. 
Three versions of each network were trained starting from 3 dif- 
ferent sets of random initial weights. Because of the small net- 
work size and the fairly high consistency within each digit 
variation, convergence was achieved after about 10 epochs in each 
case. Performance results for the network versions giving the low- 
est error rates are reported in Table 1. For each pair of perfor- 
mance figures, the upper number is the % recognition rate for the 
training set, and the lower number is for the test set. 

TABLE 1: Performance of Regular TDNNs 

75.0 99.0 99.0 
42.0 96.0 97.0 

VARIATION - 

ORIGINAL 

98.0 
0.0 100.0 

VARIATION 
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97.6 96.7 96.6 
94.1 98.2 98.3 

COMBINED 

We built up ITDNNs (using non-time-warped extra units) 
from the trained NET-ORG by incremental training using VARIA- 

Database 

U ORIGINAL 
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TION. We made many runs with successively higher limits on the 
maximum allowable number of extra units. The results are 
reported in the upper half of Table2. We also fine-tuned each 
ITDNN by incremental training using COMBINED while disal- 
lowing additional extra units in order to force the network to 
adjust the bias values and output weights only. The results from 
this fine-tuning procedure are reported in the lower half of 
Table 2. The shaded entries are the most relevant to the discussion 
in the next section. 

TABLE 2: Performance After Adding Extra Units 

1 extra unit 2 extra units 3 extra units 

99.4 98.4 86.4 
99.0 98.6 87.8 

I I Database I 1 extra unit I 2 extra units I 3 extra units I 

X 

$ 

97.0 100.0 100.0 

80.0 100.0 100.0 
VARIATION 

99.4 99.2 93.4 
97.7 97.8 95.3 

COMBINED 

I E i  1 I 
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99.0 99.0 100.0 
92.0 92.0 100.0 2 VARIATION 

99.7 

99.3 99.3 94.8 
ORIGINAL 

96.0 %.O 100.0 

82.0 83.0 100.0 

5. DISCUSSION 
From the results reported in the previous section, we can make the 
following observations (note that the figures quoted are for train- 
ing data unless specified otherwise.) 

5.1. Non-time-warped Extra Units 
One extra unit is enough to cover almost all (978) the 
examples of the new variation while reducing the perfor- 
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mance on the original data only marginally if at all (from 
100% down to 99.68.) 
Additional extra units cover the remaining few examples 
of the new variation but can cause performance on the 
original data to drop significantly (from 99.6% down to 
91.6% when the 2nd extra unit is added.) An analysis of 
the activations in the network reveals that the new “6“ is 
easily confused with “0“ and “5” in ORIGINAL; 1 extra 
unit is not enough to affect performance appreciably, but 2 
extra units matching similar patterns cause some Os and 5s  
to be incorrectly classified as 6s. 
Fine-tuning extra units improves the performance for the 
original data but dramatically decreases the performance 
on the new variation (from 97% down to 75%) because of 
the increased selectivity of the extra units, thus hurting the 
overall performance. 
The overall recognition rates of NET-ORG augmented by 
extra units exceed those achievable by the non-incremen- 
tal TDNN of the same size (NET-COM) trained on the 
original data combined with the new variation. 

5.2. Time-warped Extra Units 
The above observations also apply to the ITDNN constructed 

using time-warped extra units. However, adding a 2nd extra unit 
has less effect on the recognition rate for the original data (from 
99.4% down to 98.4% instead of 91.6% as for non-time-warped 
units) and fine-tuning does not hurt performance on the new varia- 
tion as much (from 99% down to 96% instead of 75%.) This 
means the time-warped units achieve a better match function. 

6. CONCLUSIONS AND FUTURE DIRECTIONS 
In this paper we have described a technique to augment a TDNN 
with extra hidden units in order to correct recognition errors using 
template matching. The experimental data shows that the ITDNN 
is capable of quickly adding coverage for a new input variation 
without forgetting previously learned information and thus is a 
good candidate for systems requiring on-line, immediate recogni- 
tion improvement during use, such as gesture and handwriting 
recognizers for pen-based computers. Such systems capable of 
incremental learning will in fact be able to adapt quickly to a new 
user at a reasonable level of performance to let the user do produc- 
tive work; during the subsequent work sessions new data can be 
quietly collected for off-line training of a regular network that will 
do a better job later on. 

An altemative to off-line retraining is to develop a “network 
compacting” algorithm that will allow the extra units to be inte- 
grated into the regular TDNN in some fashion. Some fine-tuning 
(by making only a few passes through the original training data 
combined with the newly collected data) may still be needed to 
bring the performance to a level comparable to complete retrain- 
ing, but there will still be a net saving in training costs. It is possi- 
ble that the time-warped extra units will facilitate the integration 
process because their structure is closer to the original TDNN. If 
we could find a way to remove the artificial nature of the state 
assignment in these units and employ real DTW successfully, we 
could replace the TDNN with the Multi-State TDNN (MS- 
TDNN) 131 which also uses DTW to exploit the state succession 
mechanism; this should facilitate network compaction even fur- 
ther. Developing and refining these techniques would give us a 
novel neural network structure capable of not only learning incre- 
mentally but also achieving better performance than the regular 
TDNN and MS-TDNN. 

Our experiments show that time-warped extra units (using 
“linear warping” instead of DTW) do better at template matching 
than non-time-warped units. I t  seems that at most one extra unit 
should be used for each new input variation; otherwise the perfor- 
mance on the original data may suffer. This leads to the question 
of how to evaluate the worth of adding an extra unit quickly and 
effectively when the target system is in use. The most feasible 
approach we can see at this time is to try the network augmented 
by the new unit on a test set of the original data to see if the addi- 
tion of the new extra unit is beneficial. 

The experiments did not demonstrate any clear advantage of 
fine-tuning extra units on the original and new data combined. 
This may be due to the fact that our data is so consistent that the 
network already achieves a very low error rate even without fine- 
tuning, and thus fine-tuning cannot significantly improve perfor- 
mance on the original data while performance on the new varia- 
tion can only go down. We may need to reevaluate the worth of 
fine-tuning using a more realistic training corpus. 

Another research direction worth investigating is how to gen- 
eralize the “templates” (which will cease to be true templates) 
using subsequent examples to improve the matching. This will 
help avoid the problem of hurting performance on new data after 
fine-tuning on the old data, caused by our simple scheme of 
adjusting bias values and output weights. 
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