
INCREMENTAL LEARNING USING THE TIME DELAY NEURAL NETWORK

Minh Tue Vo

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 1521 3-3890

U.S.A.
Email: tue@cs.cmu.edu

ABSTRACT
The Time Delay Neural Network (TDNN) is one of the neural net-
work architectures that give excellent performance in tasks
involving classification of temporal signals, such as phoneme
classification, on-line gesture and handwriting recognition, and
many others. One particular problem that occurs in on-line recog-
nition tasks is how to deal with input patterns that are incorrectly
recognized because they are totally dissimilar to anything the net-
work has seen during training. In this paper we present an algo-
rithm to add incremental, one-shot learning capability to the
TDNN by creating extra hidden units to perform template match-
ing on incorrectly recognized inputs and influence the output units
via excitatory or inhibitory connections. In a simple handwritten
digit recognition task, the addition of a single extra unit increases
recognition rate for a new digit variation from 0% to 99%, while
decreasing the performance on the old data by only 0.6%. Thus
this Incremental TDNN (ITDNN) can in fact learn a new pattern
from one example and perform reasonably well on similar inputs
without forgetting what it already knew, thereby enabling it to
deal effectively with the on-line misrecognition problem.

1. INTRODUCTION
Neural network techniques have been successfully applied to a
wide range of pattern recognition tasks. The lime Delay Neural
Network (TDNN) 181 is a network architecture particularly suited
to the classification of temporal signals. This capability has been
demonstrated for a variety of tasks, including phoneme classifica-
tion [8], and more recently on-line gesture [7] and handwriting
recognition [2 1 [1 I.

The usefulness of gesture and handwriting recognition
depends largely on the ability to adapt to new users because of the
great range of variability in the way individuals write or make
gestures. No matter how many tokens we put in the training data-
base to cover different gestures that mean “delete text”, for exam-
ple, there will be someone who will use a totally different gesture
and break the system. This is particularly troublesome for neural
network-based systems because usually the network has to be
retrained using all the old training data mixed with a large number
of new examples, in order to be able to Iecognize new pattems
without catastrophically forgetting previously learned pattems.
Because of the large number of examples needed and the long
retraining time, this clearly cannot be done on-line in a way that
would enable the user to continue to work productively. A good
system should be able to query the user for correction and remem-
ber this particular input pattem in order to make intelligent
guesses when similar inputs occur and thus offer a reasonable
level of performance until the network can be retrained off-line.

FIGURE 1: TDNN for Handwritten Digit Recognition

10

Output

=lo

Hidden 2

1 8
50 Time +

In this paper we propose to accomplish this for the TDNN by
creating template-matching hidden units that influence the output
units via excitatory or inhibitory connections. The incremental,
one-shot learning capability of this Incremental TDNN, or
ITDNN, is tested in a series of experiments involving a simple
handwritten digit recognition task. We trained a TDNN to recog-
nize written digits 0-9 and tested the incremental algorithm using
a different variation of one of the digits.

The reported recognition rates are not intended to show how
well TDNNs can recognize handwritten digits because the task is
fairly simple and the data was kept fairly consistent. Rather, the
results demonstrate that the ITDNN can immediately improve
performance in the presence of completely new inputs and thus
could prove very useful for systems requiring this capability, such
as gesturehandwriting recognizers for pen-based computers.

2. THE ITDNN ARCHITECTURE
The ITDNN consists of a regular TDNN [8] augmented by special
additional hidden units. The TDNN shown in Figure 1 is essen-
tially the same as the one used in [SI to classify phonemes, except
for network parameters. The power of the TDNN in classifying
temporal data stems from its sliding timer-delay windows which
enable the hidden units to discover temporal correlations in the
input sequence during training by backpropagation [5] [8] .

Raw input data goes through preprocessing steps based on
those described by Guyon et al. [2] before being fed to the net-
work. Incremental leaming is accomplished by adding extra hid-
den units that influence the output units, similar to those used by
Sato et al. 161 for non-TDNN feedforward networks.

2.1. Addition of Extra Units
The activation pattem of an incorrectly recognized input is

used as a template to create an extra hidden unit whose weights
are promrtional to the activations in the first hidden laver. as . .

11-629
0-7803-1775-0i94 $3.00 0 1994 IEEE

mailto:tue@cs.cmu.edu

FIGURE 2: Addition of an Extra Hidden
Unit to Excite Output 8

Excitatory connection
(weight > 0)

Extra unit Ez3is7
I

I I
I shown in Figure 2. The motivation for this is to maximize the dot

product of the weight and activation vectors so that future patterns
close to the template in input space will also produce high activa-
tion in the extra unit, while other patterns will tend to deactivate it.
We try to match activations in the first hidden layer rather than in
the input layer because the first hidden layer of the TDNN is
essentially a collection of “feature detectors” trained by backprop-
agation to recognize relevant features in the input.

The template activations are multiplied by a factor of propor-
tionality and copied into the weight matrix of the new extra unit.
The activation of this unit is determined by sigmoid(b + x w i h i)
where b is a bias value, w is the weight matrix, and h is the activa-
tion matrix of the first hidden layer. The quantity E w i h i is con-
sidered the score for the match between the weights and the
activations. The bias value and weight factor are carefully chosen
to obtain good selectivity; quantitatively this means these parame-
ters are such that only activation patterns that give a match score
better than 80% of the original match score with the template will
produce a high activation in the extra unit. Note that reducing the
bias increases selectivity by requiring a better match score.

We increase or decrease output activations to correct the
classification by connecting such extra units to the outputs using
positive (excitatory) or negative (inhibitory) weights of large
enough magnitudes to drive the outputs to the desired values.
Each extra unit is connected to a single output unit; if more than
one output unit needs to be corrected, we create more than one
extra unit based on the same template (possibly with different out-
put weigh&, depending on the desired corrections.)

2.2. Fine-tuning Extra Units
When subsequent input patterns are presented to the network

and a recognition error occurs, fine-tuning procedures (modeled
after the ones in 161) are tried before additional extra units are con-
sidered. These procedures adjust the bias values and output
weights to tum off unwanted extra units and strengthen wanted
ones. The procedure is as follows:

1. To increase the activation of an output unit:
Find an inhibitory extra unit connected to this output and
tumed on by the current input pattern; reduce the bias of
this extra unit until it is tumed off, or
Find an excitatory extra unit connected to this output and
turned on by the current input pattern; increase its output
weight until output activation is high enough.

2. To lower the activation of an output unit:
Find an excitatory extra unit connected to this output and
turned on by the current input pattern; reduce the bias of
this extra unit until it is tumed off or

FIGURE 4: Linear Time Warping for Subunits

Time +

M I
Score = average activation Match point

Find an inhibitory extra unit connected to this output and
turned on by the current input pattern; increase its output
weight until output activation is low enough.

It is not wise to reduce a bias too much because the extra unit
could become too .selective and reject even good matches. Like-
wise, making an output weight too large is also disadvantageous
because this could let poor matches contribute significantly to
influencing the output even when the extra unit’s activation is
fairly low. For these reasons we impose a minimum bias value and
a maximum output weight for all extra units.

2.3. Time-warped Extra Units
In the above implementation, added extra units simply match

the whole activation matrix and thus do not take advantage of the
time-shift invariant property of the TDNN. One way to remedy
this is to divide the activation matrix into sections and decompose
each extra unit into subunits, assigning one subunit to match each
section of activations (in our experiments we used 4 subunits per
extra unit.) Sliding the time windows of these subunits along the
time dimension produces activation traces similar to the one
shown in Figure 3. Note that each subunit is tumed on around the
area in which its weights match the activations. These subunits in
fact represent successive states in the activation trace, indicating
that we need to employ some time-warping technique to evaluate
the quality of the match.

We first tried the dynamic time warping (DTW) algorithm
141 to find the optimal state transition path. This tumed out not to
work very well because activation traces for some input patterns
(corresponding to different digits) are very similar but shifted in
time, and DTW is too good at warping these paths to match. Dura-
tion control did not greatly improve the situation. We believe the
poor applicability of DTW in this case is caused by the artificial
nature of the state assignments. The subunits .seem to represent
successive states but actually these states were artificially imposed
on the input by dividing the activation matrix into equal-length
sections with no regard to the contents.

The above arguments led us to try “linear time warping” as
shown in Figure 4. We identify the points at which the weights of
the subunits match the template activations exactly, and compute
the score for each subunit by averaging its activations around its
corresponding match point only. This seemingly simplistic
approach turned out to work better than DTW for our ITDNN.
Fine-tuning this kind of time-warped extra units is done in the
same way as for non-time-warped units (see Section 2.2.)

11-630

3. DATA COLLECTION PROCEDURE

L

U
5
7

We evaluated the ITDNN’s incremental leaming capability using
a simple handwritten digit recognition task. The databases used in
network training and testing were collected from a single person
writing digits 0-9 on a digitizing tablet with a pressure-sensitive
stylus. The raw data consists of sequences of tablet coordinates
and pen pressures tracing the handwritten strokes; this data stream
is preprocessed as mentioned in the previous section.

The data set for each digit is divided into two or three varia-
tions; for example, a “0” can be written in a clockwise or counter-
clockwise direction, a ‘7” can have a bar in the middle (“Euro-
pean 7”) or not (“American 7”). Within each variation the data is
kept fairly consistent because the purpose of this experiment is to
find out if the ITDNN can adapt to a new input variation.

One variation of each digit is selected to form a database of
all the digits, henceforth referred to as the ORIGINAL database.
The experiments described in the next section also make use of
one variation of “6” (written in a clockwise direction rather than
counter-clockwise as in ORIGINAL), examples of which are col-
lected into a database called VARIATION. Preliminary expen-
ments identified the combination of variations used here as being
relatively difficult to classify due to similarities between different
digits, e.g., “0” and “6“ both written in the same direction.

ORIGINAL and VARIATION are each further divided into a
training set and a test set; examples in the test sets are never seen
by the networks during training. The training and test sets for
ORIGINAL contain lo00 examples each (100 for each digit),
while the data sets for VARIATION have 100 examples each. The
two training sets are also combined by randomly interleaving
examples from each set; the test sets are combined in the same
way. The resulting data sets form a database called COMBINED.

99.4 92.4 91.8
97.5 94.3 94.1
99.9 %.5 96.4
99.3 98.4 98.4

COMBINED

ORIGINAL

4. EXPERIMENTAL RESULTS

1 E

The parameters of the TDNN used here were selected by trial-
and-error to find a network large enough to perform well on the
ORIGINAL database but small enough to give substantially
poorer results when a digit variation is added. We trained two
TDNNs with exactly the same parameters on ORIGINAL and
COMBINED, respectively called NET-ORG and NET-COM.
Three versions of each network were trained starting from 3 dif-
ferent sets of random initial weights. Because of the small net-
work size and the fairly high consistency within each digit
variation, convergence was achieved after about 10 epochs in each
case. Performance results for the network versions giving the low-
est error rates are reported in Table 1. For each pair of perfor-
mance figures, the upper number is the % recognition rate for the
training set, and the lower number is for the test set.

TABLE 1: Performance of Regular TDNNs

75.0 99.0 99.0
42.0 96.0 97.0

VARIATION -

ORIGINAL

98.0
0.0 100.0

VARIATION

2:
5
3

I I

97.6 96.7 96.6
94.1 98.2 98.3

COMBINED

We built up ITDNNs (using non-time-warped extra units)
from the trained NET-ORG by incremental training using VARIA-

Database

U ORIGINAL
- 5

TION. We made many runs with successively higher limits on the
maximum allowable number of extra units. The results are
reported in the upper half of Table2. We also fine-tuned each
ITDNN by incremental training using COMBINED while disal-
lowing additional extra units in order to force the network to
adjust the bias values and output weights only. The results from
this fine-tuning procedure are reported in the lower half of
Table 2. The shaded entries are the most relevant to the discussion
in the next section.

TABLE 2: Performance After Adding Extra Units

1 extra unit 2 extra units 3 extra units

99.4 98.4 86.4
99.0 98.6 87.8

I I Database I 1 extra unit I 2 extra units I 3 extra units I

X

$

97.0 100.0 100.0

80.0 100.0 100.0
VARIATION

99.4 99.2 93.4
97.7 97.8 95.3

COMBINED

I E i 1 I

I C 4 I I I I I

I Z I 1

99.0 99.0 100.0
92.0 92.0 100.0 2 VARIATION

99.7

99.3 99.3 94.8
ORIGINAL

96.0 %.O 100.0

82.0 83.0 100.0

5. DISCUSSION
From the results reported in the previous section, we can make the
following observations (note that the figures quoted are for train-
ing data unless specified otherwise.)

5.1. Non-time-warped Extra Units
One extra unit is enough to cover almost all (978) the
examples of the new variation while reducing the perfor-

11-631

mance on the original data only marginally if at all (from
100% down to 99.68.)
Additional extra units cover the remaining few examples
of the new variation but can cause performance on the
original data to drop significantly (from 99.6% down to
91.6% when the 2nd extra unit is added.) An analysis of
the activations in the network reveals that the new “6“ is
easily confused with “0“ and “5” in ORIGINAL; 1 extra
unit is not enough to affect performance appreciably, but 2
extra units matching similar patterns cause some Os and 5s
to be incorrectly classified as 6s.
Fine-tuning extra units improves the performance for the
original data but dramatically decreases the performance
on the new variation (from 97% down to 75%) because of
the increased selectivity of the extra units, thus hurting the
overall performance.
The overall recognition rates of NET-ORG augmented by
extra units exceed those achievable by the non-incremen-
tal TDNN of the same size (NET-COM) trained on the
original data combined with the new variation.

5.2. Time-warped Extra Units
The above observations also apply to the ITDNN constructed

using time-warped extra units. However, adding a 2nd extra unit
has less effect on the recognition rate for the original data (from
99.4% down to 98.4% instead of 91.6% as for non-time-warped
units) and fine-tuning does not hurt performance on the new varia-
tion as much (from 99% down to 96% instead of 75%.) This
means the time-warped units achieve a better match function.

6. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper we have described a technique to augment a TDNN
with extra hidden units in order to correct recognition errors using
template matching. The experimental data shows that the ITDNN
is capable of quickly adding coverage for a new input variation
without forgetting previously learned information and thus is a
good candidate for systems requiring on-line, immediate recogni-
tion improvement during use, such as gesture and handwriting
recognizers for pen-based computers. Such systems capable of
incremental learning will in fact be able to adapt quickly to a new
user at a reasonable level of performance to let the user do produc-
tive work; during the subsequent work sessions new data can be
quietly collected for off-line training of a regular network that will
do a better job later on.

An altemative to off-line retraining is to develop a “network
compacting” algorithm that will allow the extra units to be inte-
grated into the regular TDNN in some fashion. Some fine-tuning
(by making only a few passes through the original training data
combined with the newly collected data) may still be needed to
bring the performance to a level comparable to complete retrain-
ing, but there will still be a net saving in training costs. It is possi-
ble that the time-warped extra units will facilitate the integration
process because their structure is closer to the original TDNN. If
we could find a way to remove the artificial nature of the state
assignment in these units and employ real DTW successfully, we
could replace the TDNN with the Multi-State TDNN (MS-
TDNN) 131 which also uses DTW to exploit the state succession
mechanism; this should facilitate network compaction even fur-
ther. Developing and refining these techniques would give us a
novel neural network structure capable of not only learning incre-
mentally but also achieving better performance than the regular
TDNN and MS-TDNN.

Our experiments show that time-warped extra units (using
“linear warping” instead of DTW) do better at template matching
than non-time-warped units. I t seems that at most one extra unit
should be used for each new input variation; otherwise the perfor-
mance on the original data may suffer. This leads to the question
of how to evaluate the worth of adding an extra unit quickly and
effectively when the target system is in use. The most feasible
approach we can see at this time is to try the network augmented
by the new unit on a test set of the original data to see if the addi-
tion of the new extra unit is beneficial.

The experiments did not demonstrate any clear advantage of
fine-tuning extra units on the original and new data combined.
This may be due to the fact that our data is so consistent that the
network already achieves a very low error rate even without fine-
tuning, and thus fine-tuning cannot significantly improve perfor-
mance on the original data while performance on the new varia-
tion can only go down. We may need to reevaluate the worth of
fine-tuning using a more realistic training corpus.

Another research direction worth investigating is how to gen-
eralize the “templates” (which will cease to be true templates)
using subsequent examples to improve the matching. This will
help avoid the problem of hurting performance on new data after
fine-tuning on the old data, caused by our simple scheme of
adjusting bias values and output weights.

7. ACKNOWLEDGEMENTS
This research was sponsored by the Department of the Navy,
Office of Naval Research under Grant number N00014-93-1-
0806.

The views and conclusions contained in this document are
those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Navy or the U.S. Government.

The author would like to thank Dr. Alex Waibel and Herman
Hild for their helpful suggestions.

8. REFERENCES
1 1 U. Bodenhausen and S. Manke, “Connectionist Architectural

Learning for High Performance Character and Speech Rec-
ognition,” ICASSP-93.

121 I. Guyon, P. Albrecht, Y. LeCun, W. Denker, and W. Hub-
bard, “Design of a Neural Network Character Recognizer for
a Touch Terminal,’’ Pattern Recognition, 1991.

131 P. Haffner, M. Franzini, and A. Waibel, “Integrating Time
Alignment and Neural Networks for High Performance Con-
tinuous Speech Recognition,” ICASSP-91.

141 H. Ney, “The Use of a One-Stage Dynamic Programming
Algorithm for Connected Word Recognition,” ICASSP-84.

151 D. Rumelhart and J. McClelland, Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition,
MIT Press, 1986.

161 A. Sato, K. Yamada, J. Tsukumo, and T. Temma, “Neural
Network Models for Incremental Learning,” ICANN-91,

171 M.T. Vo and A. Waibel, “A Multimodal Human Computer
Interface: Combination of Gesture and Speech Recognition,”
Adjunct Proc. InterCHI-93, Amsterdam, April 1993.

181 A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, and K. Lang,
“Phoneme Recognition using T i e - Delay Neural Net-
works,” IEEE Trans. A S P , 1989.

11-632

