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ABSTRACT these procedures are well suited to speech recognition applications, in which 

Hybrid methods which combine hidden Markov models (HMMs) 
and connectionist techniques take advantage of what are. believed 
to be the strong points of each of the two approaches: the powerful 
discrimination-based learning of connectionist networks and the 
time-alignment capability of HMMs. Connectionist Viterbi Train- 
ing (CVT) is a simple variation of Viterbi training which uses a 
back-propagation network to represent the output distributions as- 
sociated with thc transitions in the HMM. The CVT procedure is 
an extension of the procedure we described at ICASSP’89; how- 
ever, CVT integrates the connectionist and HMM components of 
the system more tightly than the ICASSP’89 approach. Unlike the 
previous procedure, CVT can be run iteratively and can be applied 
to large-vocabulary recognition tasks. Successful completion of 
training the connectionist component of the system, despite the 
large network size and volume of training data, depended largely 
on several measures taken to-reduce learning time. The system 
was trained and tested on the TUNSS Speaker-Independent Con- 
tinuous Digits database. Performance on test data for unknown- 
length strings was 98.5% word accuracy and 95.0% string accu- 
racy. Several improvements to the current system are expected to 
increase these accuracies significantly. 

1 Introduction 

Recent work in conljiiuous speech recognition has focused on augmenling 
exisling hidden Markov model (HMM) based techniques with other meth- 
ods. One direction this research has taken is towards the use of power- 
ful discrimination methods instead of the Maximum Likelihood Estimation 
(ME) procedures typically used for training HMMs. Since speech recog- 
nition entails discrimirrating among speech units, learning procedures which 
are defined explicitly in terms of performing a discrimination task may be 
better suited to the task than MLE. 

Another focus of recent WO& with HMM-based speech recognizers has 
been on modelling speech parameters directly, rather than using the drasti- 
cally reduced representations of the speech signal produced by vector quan- 
tization (VQ). Systems which vector quantize have a distinct disadvantage, 
being deprived of information which may be of use in the recognition pro- 
cess. One approach to this problem has been to use continuous dcnsily 
HMMS. However, Uiese systems incorporate assumptions about Lhe distd- 
butions of speech parameters which may be inaccurate. (See [l].) 

Connectionist learning procedures are designed to perform accurate dis- 
criminclrion, and they operate directly on real-valued parameters, without 
making any strong assumptions about the distributions of these parameters. 
Since the energy functions typically used in connectionist learning maxi- 
mize the system’s ability to discriminate among classes of input patlems, 
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the usual goal is to discriminate among words or phones. Most conncction- 
ist models include inputs defined over a contbiuous range of real numbers 
and exhibit no advantage with discrete inputs. Inlegrating these models 
into HMMs can relieve the need for VQ, while adding discrimhalion-based 
leaming. Hence, such hybrid methods h@ve been the subject of a great deal 
of recent investigation (e.g., [2,3,41). 

In building hybrid connectionist/HMM systems, speech recognition is 
viewed as a s m i c  pattern classijicatiorr problem combined with a time 
alignment problem. These systems take advantage of the ability of connec- 
tionist networks to discriminate accuralely among c h w s  in stalic paltem 
classMcation problems. They use HMM technology to find thc oplinial 
time alignment based upon the output of the connectionist conipoiient of 
the system. 

The work described here is an extension of thal reported at ICASSP’89 
121, in which a connectionist network was used to generate hypotheses 
conceining the phones and words present in the input, and these hypotheses 
were processed by an HMM. In our present work, the two components of 
the system are more tightly inlegraled. Using a siniple extension of the 
Viterbi (or “Segmental K-Means”) training procedure 151, a connectionist 
network was used to encode the output probabilities associated wilh the 
transitions of an HMM. 

2 The Speech Database 

As in our work reporled a1 ICASSP’89, the adult pottion of the TI/NBS 
Connected Digit Database [6] was used for assesshg the effectiveness of 
the training and recognition procedures. The vocabulary consisted of the 
digits one through nine, oh and zero. The database includes approximately 
6000 sentences recorded in a quiel environment and is dialectically balanced. 

The data, as provided by the NBS, was sampled at 20 KHZ. Before use 
Cor training or testing our system, the speech was dowasampled lo 16 KHz 
and pre-cmphasized wilh a filter of 1 - 0 972-I. Then, a Hamming window 
with a width of 20 ms was applied every 10 ms. Autocorrelation analysis 
with older 14 was followed by LPC analysis with order 14. Finally, 12 
LPC-derived cepstral coeflicients and one power value were computed Cor 
each franie. 

3 Training the System 

Phone-based HMMs similar to those used in Lhe SI”NX system [7] were 
used. The sentence model was composed of a concateiiated series of word 
models, which in tuni was composed of a concatcnated series of word- 
dcpendent phone models. The architecture of a typical phone model is il- 
lustraled in Figure l. The system was initiilliied by training a discrete HMM 
wilh this architecture using three iterations of the Bawn-Welch procedure. 
This HMM was used to produce the initial alignment for the Connectionist 
Viterbi Training (CVT). 

The CV1’ procedure was used to re-estimate the output distributions, 
which were associaled with transitions in the HMM. The output proba- 
bilities, calculated in tyyical discrete HMMs by VQ followed by a table 
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lookup, were calculated here by presenting of speech lo a conncc- 
tiOliiSt network. The Outputs of the network were used as HMM output 
probabilities. 
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Figure 1: A Typical Phone Model; All transitions with the same label 
(B/M/E) are tied. 

The training procedure proceeded as follows: 

1. Initialization. 

Use SPHINX to train a set of discrete HMMs on this task. 
Perform a forced Viterbi alignment of aU iitterances in the training 
set using this set of HMMs. This alignment establishes a mapping 
from frames of speech in the input to transitions in the HMMs. 

2. First iteration. 

Train a connectionist network on the pairings (from frames of 
speech to HMM transitions) produced by the initial alignment. 

Use the initial HMMs, including the SPHINX-trained transition 
probabilities, but replace the discrete-HMM output distributions 
with the distributions encoded by the network. That is, discard 
the VQ codebooks and lookup tables, and use the network to 
generate output probabilties from this point on. 

3 .  Subsequent iterations. 

Perform another forced Viterbi alignment of all the training data 
using the new HMMS (which now include the connectionist net- 
work). 

Re-train the network on the new pairings from this alignment. 

Re-estimate the transition probabilities. The probability of taking 
a transition from state i to state j is re-estimated as the ratio of 
the number of times transition ij was taken (in the state sequences 
generated by the Viterbi alignment) to the total number of times 
that transitions were taken from state i to any state. 
Check the performance of the new model on a “validation set” of 
utterances. If improvement is observed, perform another iteration, 
beginning with a new forced Viterbi alignment. 

Figure 2 shows the recurrent connectionist network used in the CVT 
system. The network takes 70 ms of speech as input - 1 centd  frame 
plus 3 frames of left context and 3 frames of right context. The network 
produces one output value for each transition in the HMM. (However, sets 
of tied transitions have only one output unit each.) Training was performed 
using the back-propagation learning procedure [8]. 

During training, for each frame of speech presented to the network, the 
desired value for the output unit corresponding to the transition to which the 
frame of speech was assigned in the forced alignment is set to 1.0. Desired 
values forall other output units are set to 0.0.’ 

The 70 ms input window was shifted accross the utterance from left 
to right in 50 ms steps. The network’s recurrent mechanism (illustrated 
with dashed lines in Figure 2) retained a history of the intemal state of 

‘Somewhat faster learning was observed when a desired value of 0.4 was assigned 
to output units which corresponded to different transitions within the correct phone. 
Thal is, the desired value for the unit corresponding to one transition in a phone 
model was set to 1.0, the desired value for units corresponding to other transitions 
in that phone model was set to 0.4, and all other desired values were set to 0.0. 

( one unit for every output distributioo 7 

t 
H(I) Current hidden values) 

Figure 2: The Recurrent CVT Network 

the network over IO such steps, or a total of’ 500 ms. The dcsign of this 
network is an extension of the design used by Elman ([9]); we found that 
a single set of recurrent context units, as used by Elman, was not able to 
retain context over a sufficiently long duration for this application. Hence, 
we augmented Elman’s network with nine other groups of recurrent units, 
as shown in Figure 2. 

The following were the steps in the training of the network: 

1. Initialize the outputs of all history units (see Figure 2) to 0. 

2. Place the f i t  70 ms of processed speech on the inputs, and forward 
propagate. 

in the input layer,= described above. Back propagate. 
3. Set up the desired values for the output units based on the central Crame 

4. Copy the output values from units in the first hidden layer to the units 
in the f i t  history group. 

5. Forward propagate. 

6. Set up the desired values, as described above. Back propagate to all 
input units, including the history units. 

7. Shift all the history groups to the left. Discard the values rrom the 
10th group, shifting all others one group to the left. 

8. Go to step 4; continue until the whole utterance has been processed. 

Once the CVT network was trained, its output valua were distributed in 
the range between 0 and 1 (see Resulrs section below). 

3.1 Notes on Connectionist Training 
The volume of training data and the large number of connections in the 
network presented a formidable implementation problem - that of how to 
perform the training within an acceptable time frame. The slowness of 
connectionist training algorithms and the poor scaling behavior they exhibit 
as the size of the task domain grows have interfered with the successful 
application of these algorithms to real-world speech recognition problems. 

The success of our current approach is due in large part to several mea- 
sures taken to increase the speed of the back-propagation learning procedure.. 
Based on our experience with connectionist learning in other task domaim, 
we estimate that these simple measures have contributed several orders of 
magnitude of reduction in learning time. The complete training procedure 
entailed on the order of 10’’ floating point computations, which was easily 
manageable using a Convex C-1 computer. 

The measures which we found to be most effective for reducing learning 
time were the following: 
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e Split truining corpus & Pooled updares. We have found that learning 
progresses in a more stable and uniform manner when weight updates 
are performed acter forward and backward passes through all tokens 
in the training set, rather than after each back propagation. However, 
tiaining on the entire 6000-utterance database in this manner was pro- 
hibitively time consuming, so several smaller training sets were con- 
structed by randomly sampling utterances from the database. Extensive 
training was performed using each training set (which included about 
1000 sentences) with pooled updates. Although some unlearning takcs 
place when moving from one training set to the next, most of the error 
reduction achieved for each training set generalized to the others. 

e Dynamic aaustment of learning rute. The single most effective heuris- 
tic used to decrease learning time was an adjustment procedure which 
maintained the maximum value of the learning rate parameter for which 
learning would remain stable (first described in [lo]). The heuristic 
monitored the angle, (I, between the error derivative vector at epoch t 
and that at epoch f - 1: 

where E was the network error measure, and wij was the weight on the 
connection from unit i to unit j .  The learning rate, E, was then updated 
according to the “epsilon scaling” rule: 

cos0 + 1 
E ( [ )  = < ( I  - 1) x j j -  2 

where $ 1 ,  the “epsilon-scaling factor,” typically 1.005, determined the 
rate of increase of E when cosff was near 1.0. Epsilon scaling was 
effective only when (1) pooled updates were used, (2) the number of 
patterns in the pool was large, and (3) the composition of the pool did 
not vary from one epoch to the next. 

e Epsilon splirring. Our experience confirmed previous findings [I 11 that 
dividing the leaming rate on connections into a unit by the unit’s fan-in2 
leads to more stable behavior during learning. 

e Nigh monientunr. After an initial sharp descent down the netwoik 
error surface, during which the momentum was set to 0 (for about 100 
epochs), the speed of leaming increased considerably as the value of 
the momentum parameter was increased, as long as it remained below 
1.0. 

e Avoidance of overlearning. When the error for an output unit for a 
given pattern dropped below a threshold of 0.01, the error value for that 
unit and pattern was taken to be 0. This effectively avoided detrimental 
effects of “overlearning.” 

4 Results 

I 11 Word Accuracy I String Accuracy I 
Unknown 

Known 
Length 

98.5% 95.0% 

99.1% 96.1% 

Table 1: 
Summary of Results 

‘A unit’s “fan-in“ is the number of connections into that unit, 

The overall results of the CVT procedure on the TI Digits task are sum- 
marized in Table 1.‘ These results are based on recognition using a full 
Viterbi search [7]. 

These results are from experiments using word models constructed from 
phone models of the form illustrated in Figure 1. Experiments in which in- 
formation about the distributions of phone and word durations was encoded 
in the HMM transition probabilties exhibited no benefit over the expeiimenls 
rcported here, in which no duration modelling was used. 

Likewise, experiments in which the outputs of the network were divided 
by Uic prior probabilities associated with each of Ihe network’s output 
classes, as suggested by Bourlard [4], showed no improvement over the 
conditions of the reported experiments, in which the network outputs were 
used directly. 

The connectionist component of the system achieved a correct first-choice 
phone classification rate of 92% Cor training data. This value was not 
computed for tcst data, but, as indicated by overall system performam, 
recognition rates for training data and test data were quite close. 

Id* 

0.0 1 .o 

Figure 3: Ilistogranis Showing Separation Between ? t o  Classes 

In order to assess the accuracy of the separation between unit outputs 
corresponding to transitions to which the input should not be mapped and 
those corresponding to transitions to which the input should be mapped, we 
produced histograms of the output values in these two classes. These two 
histograms are shown, superimposed, in Figure 3. 

5 Discussion 

The goal of this work was to take advantage of the superior discriminauon 
ability of connectionist networks in an HMM-based system. The CVT 
procedure achieved this goal by isolating the speech pattern discrimination 
problem from the temporal alignment problem and applying connectionist 
methods to the former and HMM methods to the laller. 

The primary advantages of CVT over the pure HAIM approach are the 
following: 

m It uses connectionist techniques for low-level pattern classification. 
There is some evidence (e.g., [12]) that these techniques are superior 
to HMMs at static pattem classification. 

e It does not require the use of vector quantization (as discrete HMMs 
do) and the loss of precision which accompanies it. 

’One set of models and one network was trained for rnale speakers and one 
for female spakers. The models and network were chosen for each lest utterance 
according lo tlic gender of tlie speaker. 
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It is able to represent the output distributions without making the strong 
assumptions conceming the distributions of speech parameters made in 
continuous-density HMM systems. 

The primary advantages of CVT over the purely connectionist approach 
are the following: 

It uses HMMs to perform the temporal modelling and sequencing for 
which no highly effective connectionist approach has been found. 

It provides a means for performing large-vocabulary speech recogni- 
tion; no purely connectionist method has been applied to this task. 

The primary advantages of CVT over the method we described at 
ICASSP’89 are the following: 

It integrates the connectionist and HMM components of the system for 
both training and recognition. Previously, these two parts of the system 
were disjoint. 

It uses d training procedure which can be run iteratively to improve 
performance. 

It is extensible to large vocabulary recognition, since the phone is the 
largest unit of speech used in the connectionist network; the size of the 
network does not increase with the vocabulary size! 

6 Future Work 

Our short-term goal is to match or surpass the best performance achieved 
on this task - 99.5% word accuracy I131 - i.e., a 3 decrease in word errors. 
In order to do this, we are focusing on two aspects of our system: 
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