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Abstract In this paper we present a neural network based word recognition system 
extendable to large vocabulary isolated word recognition. The system consists of (1) 
time-delay neural networks (TDNNs) for phoneme spotting, and (2) a higher level 
network and a DP-time alignment procedure for word recognition. TDNN-based 
phoneme spotting networks are used whose role is to fire when a particular phoneme is 
input. A higher level network then improves these phoneme firing patterns in view of 
an idealized phoneme sequence. For training of the higher level network, DP-matching 
is used to determine idealized phoneme firing patterns which are nearest to the actual 
phoneme firings. During recognition, the system selects the most probable word by 
applying DP-matching to the outputs of the higher level network. Speaker-dependent 
and isolated word recognition experiments show that word recognition rates of around 
92% can be achieved for medium-size vocabularies. 

1 Introduction 
A number of recent studies[l, 2, 3, 41 (also, see [51) suggest that neural networks designed 

specifically for speech recognition can yield excellent phoneme recognition performance. 
Encouraged by these results, we have begun to apply these networks to large vocabulary word 
recognition. 

At the word level, it  has been shown that neural networks[6, 7, 8, 91 achieve outstanding 
performance results for various small vocabulary spoken word recognition tasks. However, most 
of them rely on the availability of sufficient speech patterns of each word for training. The 
resulting need for considerable amounts of data renders such an approach impractical for large 
and changing vocabularies. It is very hard to collect a lot of training data for each word in a 
practical application. It is also time and resource consuming to train a neural network over a 
large amount of data. 

In order to overcome this problem in large vocabulary systems and to exploit the phoneme 
recognition ability of neural networks, we adopt phonemes as underlying subword units that 
make up the words to be recognized. In this approach, phonemes are recognized first, and words 
are determined by the sequence of phonemes found in the input string. Training data for 
phonemes could be large enough for training as long as the vocabulary is large and sufficient 
training patterns are available for each phoneme. 

Adopting such a phoneme-based approach, we build a word recognition system using both 
neural networks and a DP-matching procedure[ 101. We perform speaker-dependent, isolated word 
recognition experiments for evaluation. 

In the following, we first present the architecture of the word recognition system. We then 
describe the phoneme spotting networks and the higher level network. We finally report on 
experimental evaluations of the system. 

2 Word Recognition System 

phoneme recognition. Figure 2.1 shows the whole architecture. It consists of the following 
In our system, phonemes are recognized first and then words are recognized based on this 
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components. 
(1) phoneme spotting network 

Phoneme spotting networks scan the time 
frequency patterns of an input word. Each of 
them are trained to fire only when a particular 
phoneme is found in the input, resulting in a 
sequence of phoneme firings over the frames of 
the input word. 
(2) higher level network 

Phoneme firings a r e  not necessarily 
perfect. They sometimes have misfirings or 
deletions. The higher level network acts as  a 
postprocessor to smooth and correct these 
patterns in order to raise the recognition 
accuracy. We apply DP-matching for recognizing 
words, t ak ing  phoneme sequences in the 
dictionary as reference data, and the outputs of 
the higher level network as input data. 
(3) dictionary 

Correct phoneme sequences for the words 
to be recognized are taken from a dictionary. It 
can have several phoneme sequences for a word. 

3 Phoneme Spotting Network 
Phoneme spotting networks recognize 

phonemes of an input word. Each of them fires 
only for a particular phoneme. A Time-Delay 
Neural Network(TDNN) architecture[l, 21 was 
used. In a TDNN, a unit in a layer is connected 
to a unit in the upper layer directly and with 
delays[ll .  Each of these connections has  
different weights. A TDNN unit can have the 
ability to relate and compare current input with 
the past history of events by this structure. 

The architecture of a phoneme spotting 
network is shown in  F igure  3.1. Sixteen 
melscale spectral coefficients serve as input to 
the input layer of the network. Input speech, 
sampled a t  12 kHz, was hamming windowed and 
a 256-point FFT computed every 5 msec. 
Melscale coefficients were computed from the 
power spectrum[ll and adjacent coefficients in 
time collapsed resulting in an overall 10 msec 
frame rate. The coefficients over a 150 msec time 
interval were then normalized to lie between 
-1.0 and +1.0 with the average a t  0.0. In 
Figure 3.1, X output unit means arbitrary 
phoneme unit and non-X output unit is  the 
complement to X, i.e., anything else. Each 
phoneme spotting network is trained using the 
Back-propagation Learning Procedure[ 11 I. 

4 Higher Level Network 
4.1 Structure 

The higher level network reshapes the 
phoneme firings that the phoneme spotting 
networks produce. The structure of the network 
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is shown in Figure 4.1. This network has 2 layers of 
units, input and output layer. The input layer is fully 
interconnected to the output layer. Basically, this 
network takes one frame of phoneme firings as input, 
and outputs one frame of improved phoneme firings. It 
scans all frames of a n  input word and produces 
reshaped phoneme firings. Figure 4.2 shows a 
spatially expanded figure of this network. In this 
figure, the weights of the corresponding connections in 
the time shifted copies are the same. 
Use of TDNN for Higher  Level Network  :The 
higher level network mentioned above is composed of 
normal units, not TDNN units. However, we can also 
adopt TDNN architecture for the network so that it 
could use contextual information. This is only one 
variation of the network. 
4.2 Training 

In order to determine the ideal phoneme firings 
for each frame, a DP-matching procedure was used. 
Taking phoneme firings for an input word as input Figure 4.2 Higher Level Network (spatially expanded view) 

data, and the lexical phoneme sequence from the 
dictionary as reference data, DP-matching determines the phoneme firings that are nearest to the 
input firings. We adopted a slope constraint for DP-matching as shown in Figure 4.3. The DP- 
equations are as follows. 

g(i-1, j )  + aYi, j )  
g(i-1,j-1) + 1.5 X d(i, j )  g(i , j)  = min 

where d(i, j )  is the Euclidean distance between the i-th 
frame of phoneme firings and the vector representing 
the j-th phoneme of a word‘s phoneme sequence. In 
practice, we double each phoneme in the lexical 
phoneme sequence for the reference data. These 
conditions were introduced to avoid phoneme deletions 
among similar words (e.g., ”kikaku” --* ”kiku”. Both 
are Japanese words. ”kikaku” means ”plan”. ”kiku” 
means ”chrysanthemum”.). 

First, we apply the regular back-propagation to 
all time shifted copies corresponding to one time 
aligned phoneme based on the ideal phoneme 
sequence, and derive weight changes for those 
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Figure 4.3 Slope Constraint for DP-matching 

connections. Then, the weight changes are averaged over the phoneme interval in order to avoid 
the effect of the differences in phoneme durations. Weights are then changed accordingly. The 
weights are changed once for each phoneme interval at each iteration. 
Dynamic Application of DP-matching : In the previous section, the alignment of ideal firings 
is determined before training and is never changed during training. Therefore, if noisy input 
phoneme firings lead to an inappropriate DP-alignment, suboptional network training will result. 
In order to avoid this problem, DP-matching can be applied to the outputs of the higher level 
network during training. In this case, output targets are changed after each iteration according to 
the optimal time alignment. If noise that disturbed DP-matching were decreased during training, 
the desired outputs would lead to improved results. We will call this dynamic application of DP- 
matching ”dynamic alignment’’ and the previous method of using DP-matching ”static 
alignment”. They are similar in spirit to the work proposed by Sakoe et  a1[81. 
4.3 Recognition 
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During recognition, the network takes phoneme firings of an  input word as input, and 
outputs improved phoneme firings. We apply DP-matching to this improved firing taking all 
phoneme sequences in the dictionary as reference data. The word whose phoneme sequence has 
the least DP error value is chosen as the recognized word. 

static(1000) 
(a) 3 frame window 
(b) 5 frame window d.mamic(1000) +dynamic(1000) 

(4) Higher level network with normal units 
( 1 frame window) and dynamic alignment 

Ofdata 

- 95.0 % testingdata (20) 
(a) initial weights are random 
(b) initial weights are the ones 

training data (59) -_ 96.6 % obtained by 1000 iterations of 
training with static alignment. whole data 

training data) (79) 
(testing data t - 95.6 % 5.1.3 Results and Discussions 

5 Recognition Experiments 
5.1 Experiment with small vocabulary 

was carried out first. The task is speaker-dependent, isolated word recognition. 
5.1.1 Data 
(1) Phoneme data( for phoneme spotting networks) 

In order to check the ability of our word recognition system, a preliminary small experiment 

For efficiency we limited the number of phonemes. The 6 most frequently occurring 
t , k , g were chosen. They also reflects typical recognition difficulties. 

The source of the training data-: ATR ( Advanced Telecommunications Research Institute 
International ) speech database 5240 common Japanese words[l] spoken by one male native 
Japanese speaker(MAU) was used. All utterances were recorded in a sound proof booth arid 
digitized a t  a 12 KMz sampling rate. 
Training token : The actual training tokens are extracted from the training set based on 
the hand labels in the database. The range of each tokens is 150 msec. We extracted training 
tokens for silent parts from the training set, too. 

(2) Word data ( for higher level network) 
We collected utterances of words whose pronunciations consist of only the above mentioned 6 

phonemes from the same ATR database. The silent parts were eliminated from the utterances by 
hand. We collected 79 utterances(79 different words). These utterances were separated into 
training set and testing set by taking advantage of a large number of homophones in the 
database. 

phonemes Y Y i 9 1 ,  7YU?2, 77 29 2) 19 >l 19 

Phoneme spotting networks for these 6 phonemes were made using the training data as follows. 

Table 5.1 Recognition Rates (Small Vocabulary) 
training data = 59 utterances 

testing data = 20 utterances 
( 15 different pronunciations) 

( 59 different pronunciations) wlthout higher level TDNN higher TDNN hlgher 
higher level network level network level network 

network ( 1 frame wndow) ( 3 frame wndow) ( 5 frame mndow) 

static(1000) 
statici(1000) 

95.0 0 

93.2 B 

93.7 gr, 

5.1.2 Experiments 

below. In all cases, 1000 iterations 
were run. 
(1) Word recognition by applying 
DP-matching directly to phoneme 
firings 

We ran experiments as shown 
95.0 95.0 B 97.5 gi, 

93.2 70 95.8 74 96.6 70 

whole data 
(testingdata t 91.8% 93.7 70 95.6 B 96.8 gi, 
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amount of contextual information. 
The effects of using dynamic alignment are shown in Table 5.2. Dynamic alignment caused 

learning failure when the initial weights were random. Dynamic alignment training whose 
initial weights are the ones obtained by 1000 iteration training with static alignment improved 
recognition rate for training data. 
5.2 Experiment with medium-size vocabulary 

An experiment with a medium-size vocabulary was carried out in order to judge the 
recognition ability of the higher level network. In this experiment, we used another TDNN-based 
phoneme spotting network provided by Sawai et  a1[12]. We can know the invariant features of the 
higher level network by using different phoneme spotting networks. 
5.2.1 Data 
We limited the number of phonemes in order to limit the use of computer resources. We chose 10 

U , e , o , t , k , h , r , s . We then collected utterances of 
words whose pronunciations consist of only the above mentioned 10 phonemes from the same ATR 
database, and for whom homophones exist in the database. As a result, we obtained 225 
utterances ( 225 different words, 96 different pronunciations). We separated these utterances into 
training set and testing set as follows. 

frequent phonemes V a W ,  ,,;,,, 99 9, 9 )  92 29  99 FY 9, 97 99 V 9 )  19 99 >P W 

training data = 96 utterances ( 96 different pronunciations ) 
testing data = 129 utterances ( 96 different pronunciations ) 

Each word was represented by a string of phonemes for its most likely pronunciation. A 
small number of alternate pronunciations was also introduced in the phonemic dictionary. 
6.2.2 Experiments 

(1) Word recognition by applying DP-matching directly to phoneme firing 
(2) Higher level network with normal units ( 1 frame window ) 
(3) Time-delayed higher level network 

(4) Time-delayed higher level network with dynamic alignment 

The following experiments were carried out. In all cases, 1000 iterations were run. 

. 5  frame window 

- 5 frame window. Initial weights were obtained after 1000 iteration of training with static 
alignment 

5.2.3 Results and  Discussions 
The recognition rates obtained in this experiment are shown in Table 5.3. When the higher 

level network with single frame window is used, the recognition rate is higher than the case 
without the higher level network. It is because the network raises insufficient firings near 
phoneme boundaries so that silent parts between phonemes could be shorter, or decreases noise. 

The time-delayed higher level network works better than the network with single frame 
window. It has more power to raise insufficient firings by looking at the neighboring frames and 
knowing what phoneme is dominant in the neighboring frames. Thus, the problem with large 
distances between two phonemes is reduced. Dynamic alignment also contributes to increasing 
recognition rates because of its fine tuning ability as observed in 5.1. 

The higher level network cannot compensate for complete omissions of phonemes and 
isolated strong incorrect firings. This is the main reason of misrecognition. 

) 

testingdata (129) 81.4 % 87.5 B 

training data (96) 74.0 % 80.2 5 

whole data 
(testing data + 18.2 % 84.4 C 
training data) (225) 

Table 5.3 Recognition Rates (Medium-size Vocabulary) 

TDNN higher TDNN higher level 
level network network 

( 5  frame window) ( frame window 
dynamic alignment) 

89.1 % 91.9 90 

89.6 % 92.7 % 

89.3 % 92.9 % 
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6 Conclusions 
We have presented a phoneme-based word recognition system based on neural networks. We 

have found recognition rates in excess of 90% in speaker-dependent, medium-size vocabulary 
experiments. We believe that it may serve as a good first step toward the development of large 
vocabulary word recognition systems based on neural networks. 

We have also presented the techniques which are effective in rasing recognition rate. One is 
the use of time-delayed higher level network and the other is given by joint optimization of DP- 
matching and back-propagation that we have called "dynamic alignment". These techniques 
might be generally applied to a variety of systems. 

Three avenues of research might be particularly appropriate. First, our system should be 
extended to include all 24 phonemes in the Japanese database. Networks achieving excellent 
performance (up to 98%) in spotting all phonemes are nearing completion[l3] and should be 
incorporated in our system. The second is to optimize the phoneme spotting networks for use in 
word recognition by allowing error back-propagation to proceed from the output layer of the 
higher level network all the way through the phoneme spotting networks down to the underlying 
speech signal. The third is better duration control. At present, no information for the expected 
duration of each phoneme is used in our models. A third extension from which we expect 
additional performance improvements is therefore the introduction of such duration control. 
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