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ABSTRACT 
We present a multi-network Time-Delay Neural Network (TDNN)- 

based connectionist architecture that allows us to perform multi- 
speaker phoneme discrimination (/b,d,gh at the speaker-dependent 
recognition rate of 98.4%. The overall network gates the phonemic 
decisions of modules trained on individual speakers to form its over-all 
classification decision. By dynamically adapting to the input speech 
and focusing on a combination of speaker-specific modules, the net- 
work outperforms a single TDNN trained on the speech of all six 
speakers (95.9%). To train this network we have developed a new 
form of multiplicative connection that we call the “Meta-Pi” connec- 
tion. We illustrate how the Meta-Pi paradigm implements a dynam- 
ically adaptive Bayesian MAP classifier. It leams - without super- 
vision - to recognize the speech of one particular speaker (99.8%) 
using a dynamic combination of intemal models of other speakers 
exclusively. The Meta-Pi model is a viable basis for a connectionist 
speech recognition system that can rapidly adapt to new speakers and 
vnrying speaker dialects. 

I. INTRODUCTION 
The objective of this research was to extend the speaker de- 

pendent phoneme recognition performance of TDNNs [l] to a 
multi-speaker task, focusing on ways to build a connectionist 
phoneme classifier that could utilize an integrating superstruc- 
ture to combine a number of speaker-dependent sub-networks 
(or “modules”) into a larger structure. We were motivated in 
this direction by two factors: 

Issues of modularity and scaling [3,4] (i.e., the need for 
computationally efficient modular connectionist structures 
that could form the basic building blocks of much larger 
integrated systems). 

The tradeoff in speech recognition systems that strive for 
speaker independence by training a single large speech 
model with speech from a broad collection of speakers: 
speaker-independent recognition rates are usually well be- 
low speaker-dependent recognition rates. As an example, 
our earlier experiments using a single TDNN for the six- 
speaker /b,d,g/ task yielded a recognition rate of 95.9% 
[4] - well below the 98.5% result for the single-speaker 

We wanted our speech model to have the flexibility necessary 
for robust recognition across a range of speakers with widely 
varying vocal tract characteristics, yet we wanted speaker de- 
pendent recognition rates; our notion of flexibility was based on 
how readily the classifier could adapt to a novel speaker. Psy- 
choacoustic studies have suggested that people actively adapt to 
new speakers within a few uttered syllables [5]. Our goal was 
to develop a modular connectionist architecture that could adapt 
to new speakers, thereby focusing the recognition process on an 
internal model of a single speaker or a set of relevant speakers 
This led to two basic levels of adaptation: 

1. Rapid Adaptation: The network should recognize a novel 
speaker without additional training, using an adaptive com- 

/b,d,g/ task. 

- 

bination of intemal speaker-dependent modules to model 
the new speech. 

2. Slow Adaptation: If rapid adaptation were still inadequate 
for modeling the new speaker, the network should initiate 
a learning process to develop and “fine tune” a suitable 
additional model for properly representing the new speaker. 

We describe the “Meta-Pi“ network, a modular connectionist 
structure that addresses issues of rapid adaptation and forms a 
viable basis for more complex adaptive systems. 

II. SPEECH DATA 
The nature of the speech data used in this experiment is de- 

tailed in [l]. We obtained isolated Japanese word utterances 
from six professional announcers (2 female, 4 male). From this 
phonetically balanced database we then obtained approximately 
200 training and 200 testing tokens for each of the three voiced- 
stops /b,d,g/ from each speaker. This data formed six training 
and six testing /b,d,g/ data sets: one for each of the six speakers. 
We also mixed all six training sets to form a “global” training 
set, and repeated the process to build a disjoint global testing 
data set. 

III. THE META-PI PARADIGM 
The general form of the Meta-Pi network is illustrated in 

figure 1. It actually comprises many TDNN modules - all 
working in parallel to classify the input speech signal. Each of 
these modules is trained to classify the speech of one particular 
speaker. The N global network outputs 01 . . . ON correspond 
to N possible phonemes to be detected in the input speech sig- 
nal. The speaker-dependent outputs pk,l, . . . , PkC,N correspond 
to their global counterparts 01 . .. ON. In the case of the 
/b,d,gJ task trained with six speakers K = 6 and N = 3 (for the 
three phonemes). The most active output of the global structure 
constitutes the structure’s classification of the input token‘. 

{&I  & 2 ,  . . . , Pk,N } of each of the K speaker-dependent mod- 
ules to the N global outputs { 01 0 2 ,  . . . , ON } via their re- 
spective Meta-Pi unit M,, are shown as single arrows. The 
network’s nth global output is given by 

The N connections linking the N outputs 

where 

‘In order to keep figure 1 compact and visually clean, the output nodes 
of each module and the global outputs have been aligned vertically. 
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Figure 1: The Meta-Pi network K speaker-dependent modules 
linked by an integrating superstructure. 

The gray arrows in the figure illustrate how the error signal 
created by network’s output during learning backpropagates [6] 
through the Meta-Pi integrating superstructure. Detailed equa- 
tions describing error radient computations associated with the 
Meta-Pi network are csntained in [7]. All of these computations 
hinge on the partial derivatives relating the network’s global out- 
puts to the speaker-dependent module outputs and the Meta-Pi 
integrating superstructure’s outputs: 

(3) 
80, 1 

P 
- -  aMrk - - b k , n  - on] 

IV. A BAYESIAN VIEW OF META-PI 
Let us consider for a moment that each global output 0, of 

the Meta-Pi structure represents an estimate of the continuous- 
valued probability of obtaining the input speech signal A when 
A is truly meant to represent the phoneme’ D,: 

0, = (PGIDn)) (4) 

In reality, the probability P(AID,) given in (4) is conditional 
in nature - principally affected by the dialectal characteristics, 
vocal tract properties, physical and emotional states, etc. of 
the speaker actually uttering the input signal A. We bind all of 
these probabilistic conditions into the state variable s (denoting 
speaker) so that (4) is more precisely expressed as 

0, = (PoLIDn, SI) (5) 

Assuming the glob$ outputs 01 , . . . , ON represent all possi- 
ble phonemes given A, one can express the probability that the 

‘Hinton proffers a very similar interpretation of Multi-layer Perceptron 
outputs as his rationale for the Cross Entropy (CE) objective function [8]. 

input A represents the phoneme D, by Bayes rule: 

If the joint prior probabilities P(Dj,S) are equivalent for all j ,  
(6) reduces to 

Clearly, (7) yields optimal classification performance when 
0. constitutes an accurate estimate of P(AID,, S )  for all  n. If 
we consider pk,, (the nth output of the kth speaker-dependent 
module) in the same probabilistic light that we view On, then 

Pk,n = (P(AID.7 sk)) (8) 

Using (I), (7), and (8) we can form the following 
relationshrps[7]: 

(9’) .~ , 

Thus, if one views the Meta-Pi network’s outputs as representing 
the conditional probability that a particular speaker-dependent 
model applies to the given input utterance A and if the set of 
speaker-dependent models { SI, . . . , SK } is all-inclusive for 
X, (9) forms the following approximation on the basis of.linear 
superposition: 

In the Bayesian context, the Meta-Pi network maximizes the a 
posteriori probability of a correct global phoneme classification 
by learning to compute the conditional prior probabilities 
P(SkIA) V k dynamically. It is critical to note that the Meta- 
Pi network learns to compute these speaker-specific conditional 
priors without any explicit knowledge of speaker identity. The 
Meta-Pi integrating superstructure’s weights are adjusted solely 
on the basis of how well the global network performs the global 
classification task. 

V. THE META-PI NETWORK’S PERFORMANCE 
The Meta-Pi network learns early during the training phase 

that gender plays a critical role in accurate phoneme recognition. 
As a result the Meta-Pi network learns - without supervision 
- to group speakers by gender. Figure 2 illustrates this phe- 
nomenon. The figure shows the unique connections between the 
input layer of the Meta-Pi TDNN and its first hidden layer ’. 
Twelve groups of connections depict the weights linking three 
16-coefficient spectra (48 units) of the input layer to each of 
twelve first-hidden-layer units. Positive connections are white, 
negative connections are black, and the magnitude of each con- 
nection is proportional to the size of its corresponding rectan- 
gle. It is clear from figure 3 that the input to first-hidden-layer 

’See [l] for details of the ” N ’ s  temporally constrained connection 
topology. 
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Figure 2: The Meta-Pi network’s input-to-hidden-layer connections use gross formant features to implement the Meta-Pi integrating 
function. 

connections are block-like (i.e., positive and negative connec- 
tions to each first-hidden-layer node are clustered in very regular 
blocks). These blocks tend to correspond to formant locations 
for the various speakers. The figure illustrates two formant fea- 
tures (F2/F3 separation and the presence of low-frequency [LF] 
energy) that the Meta-Pi network has learned to use for detecting 
male speech. Likewise, the Meta-Pi network has leamed that a 
relatively high-frequency third formant (F3) indicates a female’s 
speech. The Meta-Pi network has learned to rely heavily on for- 
mant characteristics in order to maximize its global recognition 
performance. 

Although the Meta-Pi network is capable of specific speaker 
identification [7] the percentage of utterances for which it specif- 
ically identifies a single module for the global recognition task 
is actually low - less than 30%. Figure 3 illustrates a much 
more typical mode of operation for the Meta-Pi network. In this 
figure the speech token is actually uttered by male MHT, but the 
Meta-Pi network associates the input stimulus with three male 
modules and produces an unambiguous correct global recogni- 
tion result. The network has learned to perform explicit speaker 
identification when the input signal possesses features that are 
unique to a particular individual, yet it has also learned that 
many utterances are prototypical of a group of speakers (e.g., 
males or females). In cases where the utterance is prototypi- 
cal the Meta-Pi network attributes the speech to a collection of 
speakers associated with the prototype. 

Another notable aspect of figure 3 is that the Meta-Pi net- 
work does not use the MHT module to recognize this utterance. 
In fact, when fully trained, the Meta-Pi superstructure never 
uses the MHT module to classifi speech tokensfrom any of the 
six speakers. Indeed the superstructure learns to model speaker 
MHT with a dynamic combination of other male speakers and, 
in so doing, still achieves a 99.8% recognition rate on the speech 
of MHT. An detailed analysis of this phenomenon is given in 
[7]. In short, the Meta-Pi superstructure learns that it can accu- 

rately model MHT’s speech using combinations of other male 
modules. Additionally, it h d s  that there is little utility in using 
the MHT module to recognize speech tokens from any of the 
other speakers . While its recognition rate is high for 1/6 of the 
training data (MHT’s speech), it is quite low for the remaining 
5/6 of the training data. As a result, the Meta-Pi superstructure 
learns that there is no marginal utility in using the MHT module. 
In effect, the Meta-Pi superstructure removes the MHT module 
from its “module database”. 

These results hold promise for connectionist pattem recogni- 
tion systems for two reasons: 

First, the Meta-Pi integrating superstructure clearly devel- 
ops general and flexible models of conditional stimuli (i.e., 
the characterization of basic speaker types based on very 
gross formant features [figure 21); these general models 
appear to have significant potential for processing novel 
speakers without any modification of the Meta-Pi combi- 
national superstructure (rapid adaptation). The Meta-Pi su- 
perstructure’s ability to learn how to recognize a particular 
speaker using a dynamic combination of models trained on 
other speakers indicates that the architecture can represent 
novel (unknown) stimuli using existing intemal models of 
known stimuli. This, in turn, suggests that the architec- 
ture can adapt to novel stimuli, using dynamically altered 
combinations of known stimuli. Because the integrating 
superstructure is relatively simple, one would expect this 
adaptation process to be rapid. We are investigating this 
issue at present. 

Second, the integrating superstructure demonstrates its abil- 
ity to maintain its own database of relevant stimuli without 
any external supervision beyond the global phoneme recog- 
nition objective: in fact the Meta-Pi superstructure leamed 
that its model for the MHT stimulus was unnecessary for 
robust performance of the global phoneme recognition task, 
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Figure 3: The Meta-Pi superstructure recognizes the speech of male MHT using a dynamic combination of other male speaker 
modules. 

and removed the MHT module from the modular struc- 
ture. This “behavior” could form a basic element of au- 
tonomous connectionist speech recognition systems. Such 
systems would develop and maintain their own database of 
speaker models, adapting to new speakers when possible 
and spawning new speaker-dependent learning processes 
when necessary. These systems could also eliminate re- 
dundant or obsolete speaker-specific modules when appro- 
priate. 

VI. CONCLUSION 
In this report we have presented the Meta-Pi network, a con- 

nectionist architecture for multi-speaker phoneme recognition. 
The Meta-Pi network achieves a 98.4% recognition rate on the 
voiced stops /b,d,g/ of six speakers (2 females, 4 males). This 
recognition rate constitutes a significant improvement over the 
95.9% recognition rate we obtain from a single TDNN trained on 
speech from all six speakers. We have described how the Meta- 
Pi network constitutes a Bayesian MAP connectionist classifier 
with Dotentid for adaDtive sueech recognition svstems. 
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