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ABSTRACT 

‘This paper proposes anew phoneme-based speech recog- 
nition approach using neural networks trained to recog- 
nize sub-phonemes. The sub-phoneme is an acoustic unit, 
which is shorter than a phoneme, The sub-phoneme recog- 
nition neural networks exhibit a more precise firing pattern 
and smaller firing gaps around phoneme boundaries than 
conventional phoneme recognition neural networks. The 
word or sentence score is given by the normalized highest 
sum of the output neuron firing score, which is obtained by 
the Dynamic ‘Time Warping (DTW) algorithm. A ‘Time 
Delay Neural Network (TDNN) structure is employed for 
the sub-phoneme recognizer. ‘The proposed method has 
been evaluated through word recognition using a contin- 
uous speech database. ‘The results show that the recog- 
nition rate greatly improves when the sub-phoneme is in- 
troduced as a recognition unit. The best word recogni- 
tion rate is obtained when a phoneme period is divided 
into front and rear sub-phonemes. The recognition rate 
is further improved by introducing a multiple entry word 
dictionary. 

INTRODUCTION 

‘The phoneme-based recognition approach, which recog- 
nizes a word or a sentence as a sequence of phonemes, is 
especially effective for large vocabulary continuous speech 
recognition. ‘This paper investigates phoneme-based ap- 
proach using the TDNN which has recently been reported 
to be powerful for phoneme recognition [1, 2]. Originally, 
tied connection was introduced to the neural network to 
achieve shift-invariant phoneme recognition. The TDNN 
is applicable to phoneme-based speech recognition because 
of its firing stability. 

In this paper, DTW is used to obtain a word or sen- 
tence score. In conventional DTW approaches, the neural 
network is trained to recognize phonemes, where, the out- 
put neural cell should keep firing throughout the phoneme 
period. A method using a set of shifted phoneme samples 
for the training has been tried to produce stable firing 
patterns [3]. However, the feature at the incoming tran- 
sition of a phoneme and that at the outgoing transition 
are much different. It is not advantageous to memorize 
these feature variety into a neural network. To cope with 
this problem, the neural network would have to be very 
large to be able to learn all these variations. Moreover, 
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this approach requires a large number of training samples 
and a large amount of computation time for training. 

This paper introduces a sub-phoneme as an acoustic 
unit which is smaller than a phoneme. The sub-phoneme 
neural network is responsible only for the recognition of a 
part of a phoneme. Therefore, it is expected that the firing 
gap is reduced and that the firing accuracy is improved 
due to the localization of features to be memorized. ‘This 
paper applies the sub-phoneme-based approach to word 
recognition for a continuous speech database. 

TDNN 

TDNN is a neural network architecture developed to 
recognize time-shifted phoneme samples [1]. TDNN is 
characterized by tied connections along the time axis in 
the network. A tied connection is defined as a set of neu- 
ral connections which are forced to have the same connec- 
tion weight. The tied connection also effectively reduces 
the degree of freedom while keeping a large scale network 
architecture. 
TDNN architecture is robust for the time-shifted pat- 

terns, because a feature extracting network is repeated 
along the time axis. The connection between the output 
layer and the second hidden layer works like an analog 
‘OR? gate. Therefore, the output cell can collect the sig- 
nal indicating the existence of phoneme feature from any 
position within the input window of the neural network. 

In this paper, a neural cell is modeled as a multiple 
input one output nonlinear function unit. The nonlinear 
function of the cell is the standard sigmoid defined by 

1 
en ys (yj) 

yy = bias; + wiz, 

where 2; is the i-th input to the j-th cell. A standard feed 
forward type TDNN is employed. ‘The back propagation 
algorithm is available for TDNN training. 

‘The error at the j-th output cell, denoted by Ej, is mea- 
sured by the square distance between the desired output 
T; and the output signal f(y;) as 

= (Tj ~ f(y). E; 
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Figure 1: The TDNN for 25 sub-phoneme recognition 

The connection weight wi; is modified in proportion to the 
partial derivative as 

0B; Au oc 5 

Figure 1 shows the network architecture for the sub- 
phoneme recognizer. The input layer forms a matrix of 16 
feature parameters by 11 frames. The specific input cell, 
which supplies a DC bias to every neural cell, is implicitly 
included in the input layer. There are thus 177 input 
cells in the input layer. ‘The lower hidden layer and upper 
hidden layer have 16 x 9 cells and 25 x 5 cells, respectively. 
‘The full-connection unit between the 16 x 3 input cells and 
16 x 1 lower hidden cells is repeated along the time axis as 
the tied connection. The connections between the hidden 
layers and between the upper hidden layer and the output 
layer are tied independently, The connections from the 
DC bias cell are also tied along the time axis. 

SUB-PHONEME 

‘A phoneme is modeled as a sequence of sub-phoneme 
units. A sub-phoneme could be a very small unit, such 
as 1/4 ox less of a phoneme period. However, equal di- 
vision into either two or three sub-phonemes is consid- 
ered to be sufficient to represent acoustical events in a 
phoneme according to the three state HMM approach [4]. 
Ifa phoneme period is divided into either two or three sub- 
phonemes, at least the incoming transition and outgoing 
transition are separated into front and rear sub-phonemes, 
respectively. 
Sub-phoneme training samples are collected according 

to the phoneme labels. A sub-phoneme sample is a se- 
quence of 11 frames centered at the position, 

center =r start +(1—r) end, 

where start is the beginning of the phoneme and end is the 
end of the phoneme as obtained from the phoneme label, 
and r denotes the interpolation ratio shown in Table 1. In 
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Table 1: The interpolation ratio to obtain a sub-phoneme 
training sample 

NSP | NSS J position |r 
T 2 [- 0.67 

0.33 
2 T [front 0.67 

Tear 0.35 
z Front 08 

0.6 
rear UF 

0.2 
3 T {front 0833 

middle [0.5 
rear OT 

NSP : Number of sub-phonemes per phoneme 
NSS : Number of samples per sub-phoneme 

the case of NSS=2, two samples centered at the different 
position in a sub-phoneme period are used for training. 
‘The NSP is equal to the number of sub-phoneme recogni- 
tion neural networks used for word or sentence recognition. 

DTW 

A word or sentence score is given by the normalized 
highest summation of the firing score of output neurons 
along the input speech to reference sub-phoneme sequence 
matching path. The matching is performed by frame syn- 
chronous DTW. In frame synchronous DTW, firing score 
is summed once a frame. The word or sentence score, D, 
is given by 

1 M 

D= my 4 5} 

1=j(1) $+ SiG-I SIG) S- SH(M)=N, 
where j(é) is a function indicating a matching path and 
di; is the firing score of the j-th sub-phoneme output neu- 
ron at the i-th frame. M is the number of input speech 
frames and N is the number of sub-phonemes in a refer- 
ence speech. Figure 2 illustrates the sub-phoneme based 
DTW. 

Four types of local matching path constraints are exam- 
ined. With local path constraints, the accumulated firing 
score of the j-th sub-phoneme at the i-th frame, denoted 
by ij, is given by, 

Type 1-1 

Gi-1j 
KF =a Gt max { Gin jot } 

Sint j 
Type 2-1 

{ $i-1j 4 } 
ipad; max 4 gi-2j-1 + di-a j G22 
Haast Gi-2 je + Gina joa . 

Sina j 
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Figure 2: Sub-phoneme based DTW 

‘Type 3-1 

Ki= ht 

max jr2 

Gi-1 5 jel 

and 
‘Type 4-1 

Hj =A Gt 
Ji-15 

| Gina ji t gina j + diag +di-n 5 
max¢ gi-4 j-1+gi-3 j-1 + di_a j + dja j 

Gi—4 j-1 + Gi-3 j-1 + dia a + dij 
9i-4 1 + Gi—3 5-1 + ya g-1 t+ i- 5-1 

G22 
Gintj 

jel. 
Type m-n indicates that the gradient of DTW local path 

on the plane spanned by input speech and sub-phoneme 
sequence is at most n/m. The optimal type depends on 
the number of sub-phonemes per phoneme. These local 
path constraints prevent the skipping over a reference sub- 
phoneme within a short time. 

‘An adjustment window is also used to prevent exces- 
sively warped matching paths. The adjustment window 
at the i-th frame is given by 

jmin <j <jmaz 
N 

jmaz = vil +W 

N jmin= —i-W jmin = Fi 

w= {2 3 number of sub-phonemes < 2 
“| 4 5 otherwise. 

‘This means that the jmin-th to jmaz-th sub-phonemes 
are allowed to match with the i-th input frame. The local 
path must run within the adjustment window. 
The sentence score can be obtained using the cumulative 

score, denoted by gf ;, based on Ney’s method [5]. 
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Type 1-1 

of =p + 
1 

j22 

1=1,2,-,M 
Here, df; is the firing score of the j-th sub-phoneme at 
the i-th input frame of the k-th reference word. N; is the 
number of sub-phonemes in the (-th reference word. 

EXPERIMENTS 

The Conference Registration speech database includ- 
ing 204 sentences is used for the evaluation of the pro- 
posed method. Each sentence is spoken at natural speed 
by a male speaker. Neural network training samples are 
collected according to only the phoneme label, without 
taking account of the phoneme environment. Therefore, 
phonemes in various contexts contribute to the training. 
The Conference Registration database is grouped into 12 
sets, Cl to C12. Cl-C7 are used for training and C9 for 
testing. The word samples for testing are collected accord- 
ing to the word labels. 

‘The sampling frequency is 16 kHz. Autocorrelation co- 
efficients are calculated from the speech wave multiplied 
by the 30-ms wide Hamming window every 10 ms. Cep- 
stral coefficients are derived from autocorrelation coeffi- 
cients through Linear Predictive Coding (LPC) analysis of 
order 14. The LPC cepstra for the neural network input 
are truncated at 15. ‘The other parameter input parameter 
is the delta power defined by 

1 2 

Api = 5 D> los(pise)he 
Kena 

1 k>0 
hy = { 0 k=0 

-l k<0, 

where p; is the power at the i-th frame. 
The Conference Registration database is labeled with 

42 phonemes and a silence symbol. These phonemes are 
classified into 25 for training stability when using a small 
database. In fact, some phonemes are rare in the speech 
data base. There is no linguistic confusion on test words 
because of this categorization. The silence label /sil/ is not 
used in the word recognition experiment. Table 2 shows 
the phoneme groups. The number of output cells in the 
sub-phoneme recognition neural network is thus 25. 
Words which consist of more than one phoneme are cho- 

sen for the recognition experiment. The transcriptions of 
a reference word to phoneme sequences are written in the 
word dictionary. The single entry word dictionary, which 
has a unique transcription from a word to a phoneme sym- 
bol sequence, is used in this experiment. ‘Table 3 shows the 
50 word recognition result. “4” means that the training 
is continued using the latter training set after the train. 
ing with the former set. Table 3 shows that the best word 
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Table 2: Phoneme groups 
Table 4: The change of recognition rate by the number of 

Group [| Phoneme Group Phoneme epochs (training set : C5-7, after the training with Cl-4 ) 
Pp P 
k Ke ch ch Number of Bpochs | 0] 50 [ 100] 180 | 200 
3 3 sh th Tt T hh Recognition Rate [80% | 84] 86[ 90 86 
™m m n n hg 
b B d cd& 
3 g z z_dh jh 

E 7 I 7 v Table 5: Error analysis for the best word recognition result 
aa aa "ao [fax ax_ah_ae_er_en True Misrecognition 
ih ih_iy ix [uw uw_uh Word Score | Word Score 
ch eh ay ay CONFERENCE 0.451 | OFFICE 0.455 
ey ¥ ow [ow oy (kaanfraxns) (a0 fax s) 
aw [aw HAVE 0520 | DRIVE 0.587 

(Dh ae v) (drayy) 
CALLED 0.292 | ALL 0.453 
(kaold) (a0 1) 

aye LOOK 0.230 | WHAT 0.406 ‘Table 3: 50 word recognition results (test set) (Vuh k) (w ah t) 
SOON V40T | SURE 0.696 Matching Path Type | FI] 21 [31] 41 

NSP | Training Set_[ NSS ] (suwn) (sher) 
T [Crd = | 56% | 62 | 62 

6144057]; 2 | - | 72 | 72 | 74 
[CLT T_ [8s 73a T= show that the recognition rate is improved by introduc- 

C14 2 iso )s2 }- |- ing sub-phoneme recognition neural networks compared 
C144 05-7} 2 | 84 }90 | 78 | - with the case of using the phoneme as the acoustical unit. 
CL7 2 |e [so |. | - ‘The optimal size of the sub-phoneme was the half of a 

3 [CL7 T_[88_[70 {= [= phoneme period. Almost the same recognition accuracy 
NSP: Number of sub-phonemes per phonem was obtained using the the size of the 1/3 of a phoneme 
NSS: Number of samples per sub-phoneme 
Co: Training set 
+: Replacement of training set 

recognition rate, 90%, is obtained when a phoneme is mod- 
eled as the sequence of two sub-phonemes, with two neural 
networks per phoneme, while the rate is 74% in the case 
of one neural network per phoneme. Table 4 shows the 
change of the recognition rate by the number of epochs. 
The epoch is defined as one cycle of training for all sub- 
phoneme samples. Table 5 shows the error analysis for the 
best result. 
The pronunciation of the word “the” depends on the 

initial phoneme of the succeeding word. 
“the” =  /dhax/ for consonants 

= /dhiy/ for vowels 
The word recognition rate is improved to as high as 94% 

by introducing a multiple entry word dictionary, which 
allows more than one transcription from word to phoneme 
sequence. 

CONCLUSIONS 

This paper has proposed a new neural network based 
speech recognition approach which uses sub-phonemes as 
the acoustical unit. The word recognition experiments 
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period. Further improvement was obtained by using a 
multiple entry word dictionary. 
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