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ABSTRACT 
We present a novel, modular, recurrent connectionist network 
architecture which learns to robustly perform incremental pars- 
ing of complex sentences. From sequential input, one word 
at a time, our networks learn to do semantic role assignment, 
noun phrase attachment, and clause structure recognition for sen- 
tences with passive constructions and center embedded clauses. 
The networks make syntactic and semantic predictions at ev- 
ery point in time, and previous predictions are revised as ex- 
pectations are affirmed or violated with the arrival of new in- 
formation. Our networks induce their own “grammar rules” 
for dynamically transforming an input sequence of words into 
a syntactic/semantic interpretation. These networks generalize 
and display tolerance to input which has been corrupted in ways 
common in spoken language. 

I. INTRODUCTION 
Processing spoken language is difficult at many levels. The 
complexity of the word recognition task alone is well docu- 
mented. Parsing and understanding the output of word recog- 
nition systems presents significant challenges. Spoken language 
has a loose grammatical structure not easily captured in formal 
grammar systems. This is compounded by speech phenomena 
such as ungrammaticality, stuttering, interjections, etc. Errors in 
word recognition exacerbate the situation. Independent of these 
factors, systems which can produce predictive information for 
perplexity reduction in the recognition task are desirable. Lan- 
guage processing systems specifically aimed at spoken language 
are needed. 

Connectionist networks have three main computational 
strengths which have important implications in the domain of 
speech understanding. First, they learn and can generalize from 
examples. This offers a potential solution to the difficult prob- 
lem of constructing formal grammars for spoken language do- 
mains. Second, by virtue of the learning algorithms which they 
employ, connectionist networks can combine symbolic and non- 
symbolic information spanning multiple modalities effectively. 
Lastly, connectionist networks tend to be tolerant of noisy input 
as is the case in real speech. 

‘The authors gratefully acknowledge ATR Interpreting Telephony Re- 
search Laboratories and the National Science Foundation for supporting this 
rcscarch. 

Previously, we have reported on experiments using connec- 
tionist models for a small parsing task using a new network for- 
malism which extends back-propagation to better fit the needs of 
sequential symbolic domains such as parsing[3,4]. We showed 
that connectionist networks could learn the complex dynamic be- 
havior needed in parsing. The task included passive sentences 
which require dynamic incorporation of previously unseen right 
context information into partially built syntactic/semantic inter- 
pretations. The trained network exhibited predictive behavior 
and was able to modify or confirm hypotheses as sentences were 
sequentially processed. It was also able to generalize well and 
tolerate ill-formed input. 

In this paper, we describe work on extending our parsing 
architecture to grammatically complex sentences. The paper 
is organized as follows. First, we briefly outline the network 
formalism and the general architecture. Second, the parsing 
task is defined and the procedure for constructing and training 
the parser is presented. Then the dynamic behavior of the parser 
is illustrated, and the performance is characterized. 

II. NETWORK ARCHITECTURE 

We have developed an extension to back-propagation networks 
which is specifically designed to perform tasks in sequential 
domains requiring symbol manipulation (for details, see [SI). 
It is substantially different from other connectionist approaches 
to sequential problems [1,5,7]. There are four major features 
of this formalism. One, units retain partial activation between 
updates. They can respond to repetitive weak stimuli as well 
as singular sharp stimuli. Two, units are responsive to both 
static activation values of other units and their dynamic changes. 
Three, well-behaved symbol buffers can be constructed using 
groups of units whose connections are gated by other units. 
Four, the formalism supports recurrent networks. The networks 
are able to learn complex time-varying behavior using a gradient 
descent procedure via error back-propagation. 

Figure 1 shows a high-level diagram of the general parsing 
architecture. It is organized into five hierarchical levels: Word, 
Phrase, Clause Structure, Clause Roles, and Interclause. The 
description will proceed bottom up. A word is presented to the 
network by stimulating its associated word unit for a short time. 
This produces a pattem of activation across the feature units 
which represents the meaning of the word. The connections 
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Figure 1: High-level parsing architecture. 

from the word units to the feature units which encode seman- 
tic and syntactic information about words are compiled into the 
network and are fixed.' The Phrase level uses the sequence of 
word representations from the Word level to build contiguous 
phrases. Connections from the Word level to the Phrase level 
are modulated by gating units which learn the required condi- 
tional assignment behavior. The Clause Structure level maps 
phrases into the constituent clauses of the input sentence. The 
Clause Roles level describes the roles and relationships of the 
phrases in each clause of the sentence. The final level, Inter- 
clause, represents the interrelationships among the clauses. The 
following section defines a parsing task and gives a detailed de- 
scription of the construction and training of a parsing network 
which perfoms the task. 

III. INCREMENTAL PARSING 
In parsing spoken language, it is desirable to process input one 
word at a time as words are produced by the speaker and to 
incrementally build an output representation. This alIows tight 
bi-directional coupling of the parser to the underlying speech 
recognition system. In such a system, the parser processes in- 
formation as soon as it is produced and provides predictive in- 
formation to the recognition system based on a rich represen- 
tation of the current context. As mentioned earlier, our previ- 
ous work applying connectionist architectures to a parsing task 
was promising. The experiment described below extends our 
previous work to grammatically complex sentences requiring a 
significant scale increase. 
IIIa. Parsing Task 
The domain for the experiment was sentences with up to 
three clauses including non-trivial center-embedding and pas- 

'Connectionist networks have been used for lexical acquisition success- 
fully [6].  However, in building large systems, it makes sense from an ef- 
ficiency perspective to precompile as much lexical information as possible 
into a network. This is a pragmatic design choice in building large systems. 

[Clause 1 
[The dog RECIP] [was given ACTION] 

[a bone PATIENT]] 
[Clause 2 

[who AGENT] [ate ACTION] [the snake PATIENT] 
(RELATIVE to Clause 1, Phrase l)] 

Figure 2: Representation of an example sentence. 

sive constructions.* Here are some example sentences: 
Fido dug up a bone near the tree in the garden. 

I know the man who John says Mary gave the book. 

The dog who ate the snake was given a bone. 
Given sequential input, one word at a time, the task is to incre- 
mentally build a representation of the input sentence which in- 
cludes the following information: phrase structure, clause struc- 
ture, semantic role assignment, and interclause relationships. 
Figure 2 shows a representation of the desired parse of the last 
sentence in the list above. 
IIIb. Constructing the Parser 
The architecture for the network follows that given in Figure 1. 
The following paragraphs describe the detailed network structure 
bottom up. The constraints on the numbers of objects and la- 
bels is fixed for a particular network, but the architecture itself is 
scalable. Wherever possible in the network construction, modu- 
larity and architectural constraints have been exploited to mini- 
mize training time and maximize generalization. A network was 
constructed from three separate recurrent subnetworks trained to 
perform a portion of the parsing task on the training sentences. 
The performance of the full network will be discussed in detail 
in the next section. 

The Phrase level contains three types of units: phrase block 
units, gating units, and hidden units. There are 10 phrase blocks, 
each being able to capture up to 4 words forming a phrase. The 
phrase blocks contain sets of units (called slots) whose target 
activation pattems correspond to word feature pattems of words 
in phrases. Each slot has an associated gating unit which leams 
to conditionally assign an activation pattem from the feature 
units of the Word level to the slot. The gating units have input 
connections from the hidden units. The hidden units have input 
connections from the feature units, gating units, and phrase block 
units. The direct recurrence between the gating and hidden units 
allows the gating units to learn to inhibit and compete with one 
another. The indirect recurrence arising from the connections 
between the phrase blocks and the hidden units provides the 
context of the current input word. The target activation values 
for each gating unit are dynamically calculated during training; 
each gating unit must learn to become active at the proper time 
in order to perform the phrasal parsing. Each phrase block with 
its associated gating and hidden units has its weights slaved to 
the other phrase blocks in the Phrase level. Thus, if a particular 

'The training set contained over 200 sentence. These are a subset of the 
sentences which form the example set of a parser based on a leA associative 
grammar [2]. These sentences are grammatically interesting, but they do not 
reflect the statistical structure of common speech. 
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phrase construction is only present in one position in the training 
set, all of the phrase blocks still learn to parse the construction. 

The Clause Roles level also has shared weights among sep- 
arate clause modules. This level is trained by simulating the 
sequential building and mapping of clauses to sets of units con- 
taining the phrase blocks for each clause (see Figure 1). There 
are two types of units in this level: labeling units and hidden 
units. The labeling units learn to label the phrases of the clauses 
with semantic roles and attach phrases to other (within-clause) 
phrases. For each clause, there is a set of units which assign role 
labels (agent, patient, recipient, action) to phrases. There is also 
a set of units indicating phrasal modification. The hidden units 
are recurrently connected to the labeling units to provide context 
and competition as with the Phrase level; they also have input 
connections from the phrase blocks of a single clause. During 
training, the targets for the labeling units are set at the beginning 
of the input presentation and remain static. In order to minimize 
global error across the training set, the units must learn to be- 
come active or inactive as soon as possible in the input. This 
forces the network to learn to be predictive. 

The Clause Structure and Interclause levels are trained simul- 
taneously as a single module. There are three types of units 
at this level: mapping, labeling, and hidden units. The map- 
ping units assign phrase blocks to clauses. The labeling units 
indicate relative clause and a subordinate clause relationships. 
The mapping and labeling units are recurrently connected to the 
hidden units which also have input connections from the phrase 
blocks of the Phrase level. The behavior of the Phrase level is 
simulated during training of this module. This module utilizes 
no weight sharing techniques. As with the Clause Roles level, 
the targets for the labeling and mapping units are set at the be- 
ginning of input presentation, thus inducing the same type of 
predictive behavior. 

IV. PARSING PERFORMANCE 
The separately trained submodules described above were assem- 
bled into a single network which performs the full parsing task. 
No additional training was needed to fine-tune the full parsing 
network despite significant differences between actual subnet- 
work performance and the simulated subnetwork performance 
used during training. The network successfully modeled the 
large diverse training set. This section discusses three aspects 
of the parsing network’s performance: dynamic behavior of the 
integrated network, generalization, and tolerance to noisy input. 
IVa. Dynamic Behavior 
The dynamic behavior of the network will be illustrated on the 
example sentence from Figure 2: “The dog who ate the snake 
was given a bone.” This sentence was not in the training set. 
Due to space limitations, actual plots of network behavior will 
only be presented for a small portion of the network. 

Initially, all of the units in the network are at their resting 
values. The units of the phrase blocks all have low activation. 
The word unit corresponding to “the” is stimulated, causing its 
word feature representation to become active across the feature 
units of the Word level. The gating unit associated with the slot 1 
of phrase block 1 becomes active, and the feature representation 

CLAUSEl-PHRASEl------I THE-DOG 1 
The dog who ate the snake was given a bone 

P 

Figure 3: Example of dynamic parsing behavior. 

of “the” is assigned to the slot; the gate closes as the next word 
is presented. The remaining words of the sentence are processed 
similarly, resulting in the final Phrase level representation shown 
in Figure 2. While this is occurring, the higher levels of the 
network are processing the evolving Phrase level representation. 

Early in the presentation of the first word, the Clause Structure 
level hypothesizes that the first 4 phrase blocks will belong to the 
first clause-reflecting the dominance of single clause sentences 
in the training set. After “the” gets assigned to the first phrase 
block, this hypothesis is revised. The network then believes that 
there is an embedded clause of 3 (possibly 4) phrases following 
the first phrase. This predictive behavior emerged spontaneously 
from the training procedure (a large majority of sentences in the 
training set beginning with a determiner had embedded clauses 
after the first phrase). The next two words (“dog who”) confirm 
the network’s expectation. The word “ate” allows the network 
to firmly decide on an embedded clause of 3 phrases within the 
main clause. This is the correct clausal structure of the sentence 
and is confirmed by the remainder of the input. The Interclause 
level indicates the appropriate relative clause relationship during 
the initial hypothesis of the embedded clause. 

The Clause Roles level processes the individual clauses 
as they get mapped through the Clause Structure level. 
The labeling units for clause 1 initially hypothesize an 
Agent/Action/Patient role structure with some competition from 
a Rec/Act/Pat role structure (the Agent and Patient units’ acti- 
vation traces for clause 1, phrase 1 are. shown in Figure 3). This 
prediction occurs because active constructs outnumbered passive 
ones during training. The final decision about role structure is 
postponed until just after the embedded clause is presented. The 
verb phrase “was given” immediately causes the Rec/Act/Pat 
role structure to dominate. Also, the network indicates that a 
fourth phrase (e.g. “by Mary”) is expected to be the Agent. As 
with the first clause, an Agent/Action/Patient role structure is 
predicted for clause 2; this time the prediction is borne out. 

Four aspects of the network’s parsing behavior have been il- 
lustrated. One, the network is able to use syntactic, semantic, 
and word order information successfully. Two, it is predictive, 
and the predictions are based on the statistical structure of the 
training corpus. Three, the network is able to dynamically incor- 
porate right context information for disambiguation. Four, the 
parsing task is accomplished in parallel in the different levels of 
the parsing network. 
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IVb. Generalization 
One type of generalization is automatic. A detail of the word 
representation scheme was omitted from the previous discussion. 
The feature pattems have two parts: a syntactic/semantic part 
and an identification part. The representations of “John” and 
“Peter” differ only in their ID parts. Units in the network which 
learn do not have any input connections from the ID portions of 
the word units. Thus, when the network learns to parse “John 
gave the bone to the dog,” it will know how to parse “Peter 
promised the mitt to the boy.” This type of generalization is 
extremely useful, both for addition of new words to the network 
and for processing many sentences not explicitly trained on. 

The network also generalizes to correctly process truly novel 
sentences-sentences which are distinct (ignoring ID features) 
from those in the training set. The weight sharing techniques 
at the Phrase and Clause Structure levels have an impact here. 
While being difficult to measure generalization quantitatively, 
some statements can be made about the types of sentences which 
can be correctly processed relative to the training sentences. 
Replacement of single words by different words resulting in a 
meaningful sentence is tolerated almost without exception. Re- 
placement of entire phrases by phrases with different structure 
gives more errors. They mainly occur in structural parsing on 
sentences which have few similar training exemplars and reflect 
sensitivity of the Clause Structure level to phrase block word 
positions. However, the network does quite well on sentences 
which can be formed from composition between familiar sen- 
tences (e.g. interchanging clauses). 

IVc. Tolerance to Noise 
Several types of noise tolerance are interesting to analyze: un- 
grammaticality, word deletions (especially poorly articulated 
short function words), variance in word speed, inter-word si- 
lences, interjections, word/phrase repetitions, etc. The effects of 
noise were simulated by testing the parsing network on training 
sentences which had been corrupted in the ways listed above. 
Note that the parser was trained only on well-formed sentences. 

Sentences in which verbs were made ungrammatical were pro- 
cessed without difficulty (e.g. “We am happy.”). Sentences in 
which verb phrases were badly corrupted produced reasonable 
behavior. For example, the sentence “Peter was gave a bone 
to Fido,” received an Ag/Act/Pat/Rec role structure as if “was 
gave” was supposed to be either “gave” or “has given”. How- 
ever, the sentence, “The bone was gave to the dog by the man,” 
was assigned a Pat/Act/Rec/Ag roles structure-the “was given” 
interpretation was favored here. Other variations in grammati- 
cal structure leading to understandable sentences were also pro- 
cessed sensibly by the network. 

Single clause sentences in which determiners were randomly 
deleted to simulate speech recognition errors were processed cor- 
rectly 85 percent of the time. Multiple clause sentences degraded 
in a similar manner produced more parsing errors. There were 
fewer examples of multi-clause sentence types, and this hurt 
performance. Deletion of function words such as prepositions 
beginning prepositional phrases produced few errors. In sen- 
tences such as “The book was given to the girl [by deleted] the 

man,” sufficient structure is present to assign the correct struc- 
ture. Deletions of critical function words such as “to” in infini- 
tive constructions introducing subordinate clauses (e.g. “John 
tried [to] read the book.”) caused serious problems. 

The network was somewhat sensitive to variations in word 
presentation speed (it was trained on a constant speed), but tol- 
erated inter-word silences. Interjections of “ahh” were simulated 
by inserting the word “a” between phrases. Partial phrase repe- 
titions were also tested. The network did not perform as well on 
these sentences as other networks trained for less complex pars- 
ing tasks. We believe that the weight sharing at the Phrase level 
is preventing the formation of strong attractors for the training 
sentences. There appears to be a tradeoff between generalization 
and noise tolerance. 

V. CONCLUSION 
We have presented a novel connectionist network architecture 
and its application to a non-trivial parsing task. A hierarchi- 
cal, modular, recurrent connectionist network was constructed 
which successfully learned to parse grammatically complex sen- 
tences. The parser exhibited predictive behavior and was able 
to dynamically revise hypotheses. Techniques for maximizing 
generalization were also discussed. Network performance on 
novel sentences was impressive. Results of testing the parser’s 
sensitivity to several types of noise were somewhat mixed, but 
the parser performed well on ungrammatical sentences and sen- 
tences with non-critical function word deletions. Future work 
will concentrate on applying connectionist parsing to real spoken 
language tasks. 

REFERENCES 
[I] J. L. Elman. Finding Structure in Time. Technical Re- 

port 8801, Center for Research in Language, University of 
Califomia, San Diego, 1988. 

[2] R. Hawser. Computation of Language. Springer-Verlag, 
1988. 

[3] A. N. Jain. A Connectionist Architecture for Sequential Sym- 
bolic Domains. Technical Report CMU-CS-89-187, School 
of Computer Science, Carnegie Mellon University, 1989. 

[4] A. N. Jain and A. H. Waibel. A connectionist parser aimed 
at spoken language. In Proceedings of the International 
Workshop on Parsing Technologies, pages 221-229, Pitts- 
burgh, PA, August 1989. Available through the School of 
Computer Science, Camegie Mellon University. 

[SI M. I. Jordan. Serial Order: A Parallel Distributed Process- 
ing Approach. Technical Report 8604, Institute for Cogni- 
tive Science, University of California, San Diego, 1986. 

[6] R. Miikkulainen and M. G. Dyer. Encoding input/output 
representations in connectionist cognitive systems. In D. 
Touretzky, G. Hinton, and T. Sejnowski, editors, Proceed- 
ings of the 1988 Connectionist Models Summer School, 
pages 347-356, Morgan Kaufmann Publishers, 1989. 

[7] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. 
Lang. Phoneme recognition using time-delay neural net- 
works. IEEE Transactions on Acoustics, Speech, and Signal 
Processing, 37(3):328-339, March 1989. 

596 


