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This paper describes a new structure of Neural Networks ("s) for speaker-independent and context-independent 
phoneme recognition. This structure is based on the integration of Time-Delay Neural Networks (TDNN) which 
have several TDNNs separated according to the duration of phonemes. As a result, the proposed structure has the 
advantage that it deals with phonemes of varying duration more effectively. In the experimental evaluation of the 
proposed new structure, 16-English vowel recognition was performed using 5268 vowel tokens picked from 480 
sentences spoken by 140 speakers (98 males and 42 females) on the TIMIT (TI-MIT) database. The number of 
training tokens and testing tokens was 4326 from 100 speakers (69 males and 3 1 females) and 942 from 40 speakers 
(29 males and 11 females), respectively. The result was a 60.5% recognition rate (around 70% for a collapsed 13- 
vowel case), which was improved from 56% in the single TDNN structure, showing the effectiveness of the 
proposed new structure to use temporal information. 

1 INTRODUCTION 

Recently, quite a few efforts have been made to develop speech recognition systems using promising connectionist 
models (Lippmann et ul.[l], Waibel et al.[2], [3], Leung et al.[4], Bourlard et a1.[5], Franzini et al.[6]). This is due 
to the fact that Neural Networks may have the ability to overcome limitations of conventional techniques in speech 
recognition. Speech recognition is one of the excellent abilities of human beings. So, new approaches, which are 
based on human cognitive mechanisms, should be explored to further advance this field. From this point of view, 
Neural Networks ("s), whose basic idea is motivated by processing mechanisms of the nervous system, may be a 
good scheme for pattem recognition, including speech recognition. 

However, current structures of NNs must be improved to better cope with the temporal nature of speech in the 
field of speech recognition. Especially, usual NNs show poor performance in the case of speech features which are 
quite similar, and where the duration information might be the only cue in distinguishing this speech, such as in the 
case of single vowels and diphthongs. To overcome these problems in phoneme recognition, variable duration input 
patterns should be used in order to minimize training and improve generalization in the case of short phonemes (e.g. 
single vowels) and to provide enough input information in the case of long phonemes (e.g. diphthongs). 

In this paper, we propose a new algorithm for NNs which is quite useful for speaker-independent and context- 
independent phoneme recognition. This structure is based on the integration of Time-Delay Neural Nets (TDNN, 
Waibel et al.[2], [3]) which have several TDNNs separated according to the duration of phonemes. As a result, the 
proposed structure has the advantage of dealing with varying duration information more effectively. Experimental 
evaluation of the proposed new structure was performed using 16 English vowels picked from continuously uttered 
sentences in the TIMIT(T1-MIT, Lee et a1.[71) database. We report here on the details of the algorithm and 
experimental evaluation results for speaker-independent and context-independent phoneme recognition. 

2 SPEAKER-INDEPENDENT PHONEME RECOGNITION USING TDNN 

2.1 A Brief View of the System 

First, sentence length speech, which has been labeled at the phoneme level, is analyzed and transferred to speech 
feature coefficients. We are using an FFT analysis method. (Moreover, a cepstral analysis method for NNs has been 

lThe author was a visiting researcher from Central Research Laboratory, Hitachi, Ltd., Japan. This work has been done on 
a collaborative research project between the Center for Machine Translation of CMU and Hitachi, Ltd. 
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evaluated in preliminary experiments to compare with an FFT method.) Subsequently, speech intervals, which have 
vowel parts of a sentence, are picked up using labeling information. We use only the beginning information of 
vowels. In other words, some portion of speech from this beginning is being used in the training and testing 
(recognition) modes. In the training mode of NNs, training pattems are used to obtain weighted values of the 
connections between units in the TDNN. And in the testing mode, other testing pattems are used for evaluation of 
the NNs which have these weighted values. These training and testing modes are carried out by a speaker- 
independent recognition method. This means the pattems, which are used in each mode, are picked from completely 
different speakers and sentence contents. 

The training and testing modes are executed by "DyNet" (Haffner [SI), a software package for the fast training of 
Neural Nets. The learning algorithm of DyNet is based on the Error Back-Propagation (Backprop, Rumelhart et 
a1.[9]), though DyNet is using an optimized search atrategy and is controlling the "step size" and the "momentum" 
of NNs' parameters dynamically. As a result, DyNet can get very fast convergence. 
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1. TIMIT Database 
We use the TIMIT speech database in this research. This is because the TIMIT database has so many and various 

speakers and sentences that this database is most suitable in evaluating speaker-independent speech recognition 
performance. Moreover, comparison with other speaker-independent speech recognition systems, which are using the 
same TIMIT database2 (e.g. SPHINX system (Lee et al.[71) and NN system (Leung et a1.[4])), will be possible and 
effective for the evaluation of our proposed system. We selected a task of 16-English vowel recognition. These 16 
English vowels are /ae/(bat), /eh/@&, /ih/(bit), /iy/(bet), /uh/(bmk), /ah/(butt), /ax/(thg), /ix/(roas), /aa/(cet), 
/ao/(aht), / u w / b t ) ,  /aw/&mgh), /ay/(bite), /ey/(b&t), /ow/mt) ,  and / o y / O .  

2. Training and Testing: SamDles 

sample size used. These samples were selected at random from the speech data in the TIMIT database. 
We carried out the experiments according to the following two phases which are separated from the amount of 

Fig. 1 An Example of Input Speech 

*The TIMIT database consists of speech data uttered by 630 speakers. Each speaker uttered the following sentences. 
- Five "sx" sentences which were read from a list of 450 phonetically balanced sentences selected by M E ,  
- Three "si" sentences which were randomly selected by TI, 
- Two "sa" sentences which are the same over all speakers. 

The "sa" sentences were not used in this research because the evaluation of the context-independent recognition 
performance using NNs is one of the main purposes of this research. So, the "sa" sentence set is not applicable for this 
research because of its fixed context. 
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(1) Preliminarv Experiments (Small Samples) 

input data to decide which would be better for the main experiments. The data size was as follows: 
This data was used for the comparison of speech analysis methods (FIT and cepstral analysis) and the length of 

50 speakers, 135 sentences 

(2) Main ExperimenQ (Large Samples) 

- Training Samples: 1139 vowel patterns from 35 speakers 
- Testing Samples: 430 vowel patterns from 15 speakers 

Main experiments are carried out by the following data: 
140 speakers, 480 sentences - Training Samples: 4326 vowel patterns from 100 speakers (69 males, 

31 females) 
- Testing Samples: 942 vowel patterns from 40 speakers (28 males, 12 females) 

3. SDeech Processing 
The speech input, which was sampled at 16 kHz and pre-emphasized with a filter (transfer function 1-0.97r1), 

was hamming windowed and 256-point FFT coefficients were computed every 5 msec. And then, the 16 melscaled 
coefficients of the power spectrum were obtained by the melscaled transformation from these 256-point FFT 
coefficients. Finally, 16 coefficients of 10 msec frame rate were obtained by the average of two adjacent coefficients 
in time. The coefficients of an input token were then normalized to have the values between -1.0 to +1.0 with the 
average of 0.0. Fig.1 shows an example of speech samples picked from a continuously uttered speech. This speech 
is the beginning portion of a sentence whose content is "That doctrine has been accepted by many, but has it 
produced good results?" 

3. PRELIMINARY EXPERIMENTS USING SINGLE TDNN 

3.1 TDNN Architecture 

The TDNN structure has been created to cope with many problems, which are substantial in the speech recognition 
field. And the TDNN has been shown to be powerful, especially for Japanese phonemes, such as /b / ,  / d / ,  /g/ in 
speakerdependent speech recognition tasks. The TDNN consists of four layers, including input and output layers. 

The connections between each layer used in this research are completely the same as in the previous report [21. 
The differences are an addition of a power coefficient to 16 FFT coefficients and 16 outputs in the output layer. As a 
result, the input layer has 255 input units (15 frames x 17 coefficients). The numbers of the first hidden layer and 
the second hidden layer are 208 units (13 horizontal and 16 vertical units) and 144 units (9 horizontal and 16 
vertical), respectively. 

First, we evaluate the performance of speech coefficients (FlT vs. cepstral) and the duration length of input 
sample (150 msec vs. 200 msec). 

3.2 Experimental Results 

1. Preliminarv Exueriments Using Small Samples 
(1) comparison of Parameters: FFT vs. Ceustral Coefficients 

Table 1 shows comparison result3. From this result, we found that FFT coefficients showed a slightly improved 
performance, especially in view of overlearning and generalization problems. However, this comparison was done 
on small samples, so we need further evaluation before reaching a final conclusion. In this research, we have decided 
to use the FFT coefficients from this preliminary comparison. 

Table 1 Comparison between FlT vs. Cepstral Coefficients 

63.8% (50th epoch) 69.1% (50th) I 93.5% (500th) 95.1% (500th) 
I I I 

testing Data 55.6% (20th) 55.4% (50th) 
(430 patterns) 50.0% (500th) 46.6Y0 (500th) 

3TDNN structures: In the case of FFT, the total number of units is 509 including a bias unit, i.e. 16 input coefficients 
without power and 16 vertical units in the first hidden layer. In the case of cepstral coefficients, the total number of units is 
759 including a bias unit, i.e. 26 input coefficients (including 12 differential cepstral coefficients and one differential 
power) and 16 vertical units in the f is t  hidden layer. 
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(2) Comparison of Input Window Length: 150msec vs. 200msec 
Table 2 shows comparison result4. The input sample of 150 msec has produced better results than that of 200 

msec. We can imagine that the 200 msec data is including a lot of unnecessary neighbor vowels and consonants, 
especially in short duration vowels such as /ax/ and /ix/, and as a result, the generalization for these short vowels is 
so poor that the decreased performance of these short vowels is affecting the total performance. 

DATA 

training data 
(1 139 patterns) 

Table 2 Comparison of Input Window Length (150msec vs. 200msec) 

150 msec (1 5 frames) 200msec (20 frames) 

63.8% (50th epoch) 59.5% (50th) 
93.5% (500th) 90.8% (500th) 

testing Data 
(430 patterns) 

55.6% (20th) 48.8% (50th) 
50.0% (500th) 41.5% (500th) 

2. Experiments Using Large Samples 

16 

(1) Comparison of the number of units in the first hidden laver 
The number of the vertical units were evaluated using large samples. Table 3 shows recognition results. The 

case of 24 vertical units showed the best performance. Overlearning and generalization problems might have 
occurred in the case of 28 vertical units. 

20 24 28 

Table 3 Comparison of the Number of Units in the First Hidden Layer 

training data 
(4326 patterns) 

testing Data 
(942 patterns) 

59.80% 60.61 % 63.92% 64.98% 
(150th epoch) (150th epoch) (150th epoch) (150th epoch) 

54.1 4% 55.52% 57.32% %.88% 
(70th) (30th) (30th) (30th) 

3.3 Consideration on Single TDNN 

The experimental results of the single TDNN show the following problems: 
(1) errors between single vowels and diphthongs (e.g. /ax/ and /aV, /ix/ and /ai/ etc.) 

---> how to use duration information explicitly 
---> overlapped-category problem (/ax/</ai/, /ix/</ai/) 

Quite a few diphthongs have duration length over 200msec. 
(2) necessary to use more input information for diphthongs 

(3) generalization problems, especially for short duration vowels 

4. NEW STRUCTURE OF INTEGRATED TDNNs 

4.1 Integrated TDNNs 

Fig. 2 shows the proposed structure based on the integration of TDNNs. The various intervals of speech are put into 
each TDNN's input layer in the first NNs. The outputs of first NNs are put into the second NNs' input layer. Each 
TDNN has an output for the counter category and the training procedure of these NNs is carried out separately. 
These Integrated TDNNs can manage the duration difference between each vowel, especially between single vowels 
and diphthongs, because the input data can be separated by the duration difference, by putting the data into the 
different TDNN-n in a training mode. As a result, each TDNN-n can share recognition abilities for specified 
phonemes. 

4TDNN structures: Both cases have same 16 input units without power,and the same 16 vertical units in the first hidden 
layer. 
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16 outputs i-' 

I structure [ rate 

put TDNNs' outputs into 2nd NNs 

comments 

rz-z- - -- - - -=-I 

Integrated TDNNs TDNN-a 62.56% (10 categories) 
I (two TDNNs) 60.470/0 TDNN-b 83.49% ( 8 categories) 

I TDNNs separated by 
(TDNNs) 1 s t " ~  I r;~! ~;NN I ............ J T ~ N ~  I I input window length 

I I 

structure rate 

llona interval) 

comments 

. "  I input patteml 

TDNN-a 62.00% (1 0 categories) 
TDNN-b 82.38% ( 8 categories) 

TDNN-x 71.23% ( 4 categories) 
TDNN-a 71.87V0 ( 8 categories) 

1 TDNN-b 66.14% (10 categories) 

Fig2 Structure of Integrated TDNNs 

4.2 Evaluation Results 

Currently, two TDNNs and three TDNNs are being used which are distinguished by the duration difference between 
each vowel, especially between single vowels and diphthongs. In two TDNNs5, the TDNNs for single vowels and 
diphthongs have 150 msec and 200 msec input intervals, respectively. In three TDNNs6, three TDNNs have 100 
msec, l5Omsec, and 200 msec, respectively. 

Table 4 shows results of preliminary experiments using small samples (50 speakers, 135 sentences) and Table 5 
shows recognition results using large samples (140 speakers, 480 sentences). These results indicate the performance 
increase according to the increase of the number of " N s .  

(1) Preliminarv Exwriments Usine Small Samples 

I sin ale^^^^ I 56.05% I I 

(2)Experiments Using Lars S a m ~  la 

Integrated TDNNs 57.7596 
(two TDNNs) I 

Integrated TDNNs 

(three TDNNs) 
59.34% 

5Tw0 TDNNs: separated by the group of single vowels and diphthongs, TDNN-a is for the single vowel group (10 
categories; /e/, /eh/. /ih/, by/, /uh/, /ah/, /ax/, /ix/, /aa/. and a counter group) and TDNN-b is for the diphthong group (8 
categories; /ao/. /uw/. law/, /ay/, ley/. /ow/. /oy/, and a counter group). 
6Three TDNNs: separated by duration information, TDNN-x is for the group of 4 categories (/ax/. /id, and two counter 
categories). TDNN-a is for the group of 8 categories (/eh/. /ih/, /iy/, /uh/, /ah/. /uw/, and two counter categories). TDNN-b 
is for the group of 10 categories (/ae/. 14, /ao/, /awl, /ay/, ley/, /ow/, /oy/, and two counter categories). 
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5. DISCUSSIONS AND FUTURE WORKS 

The evaluation of the Integrated TDNNs shows the performance increase by separated TDNNs. The reasons why the 
performance has been increased are that the generalization might become better for short duration vowels, and that 
sufficient information can be supplied for long duration vowels such as diphthongs. 

We obtained around 70% recognition rate (69.1% for small samples) for a collapsed 13-vowel set using the 
integrated TDNNs trained context independently. Lee and Hon reported context-independent recognition rate of 
53.68% and context-dependent of 65.71% for all sonorants which include the collapsed 13-vowel set [7]. h u n g  and 
Zue used artificial NNs for the same 16-vowel task, and reported 54% for context-independent recognition and 67% 
for context-dependent 141. 

The future work will be as follows: 
(1) Increase the number of TDNNs: In this report, we are using only two and three TDNNs. The extension to 

(2) Use of context information: 
(3) Models for sequential processing: This is the most important future work. NN classifiers may not be 

highly separated TDNNs can be possible to obtain better recogniton results. 

powerful enough to deal with pattem sequences, and sequential constraints or links with other techniques, 
such as HMMs or DTW, must be considered in order to advance in the speech recognition field. 

information such as semantics and syntax on the NNs is one of our major tasks. 
(4) Hierarchical and feedback type NNs using semantic and syntactic information: How to use higher level 

6. CONCLUSION 

In this paper, we evaluated the ability of Neural Networks in speaker-independent and context-independent speech 
recognition on an English database (TIMIT database). And we proposed a new NNs structure (Integrated TDNNs) 
which can cope with the duration difference problem among vowels and can use the duration information effectively. 
In the experimental evaluation of the proposed structure, 16-English vowel recognition was performed using 5268 
vowel tokens picked from 480 sentences spoken by 140 speakers (98 males and 42 females) on the TIMIT database. 
The number of training tokens and testing tokens was 4326 from 100 speakers (69 males and 3 1 females) and 942 
from 40 speakers (29 males and 11 females), respectively. The result on testing data was around 60% recognition 
rate (around 70% for a collapsed 13-vowel case), which was improved from 56% in the single TDNN structure, 
showing the effectiveness of the proposed new structure in using temporal information. 
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