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Abstract: In this paper, the problem of large vocabulary word recognition is addressed from a
connectionist perspective. The problem is not only of practical interest but also of scientific importance,
since a workable solution must integrate pattern recognition under consideration of sequential, symbolic
constraints. We have developed two large vocabulary word recognition systems based on different
speech recognition philosophies. One of the systems exploits the power of neural networks in performing
accurate classification, the other the power of producing good non-linear function approximation and
signal prediction. We present each system’s operation and evaluate its performance. Both achieved
respectable recognition scores in excess of 90% correct for vocabularies of up to 5000 words. We
suggest further avenues towards improvement of either system and in the process discuss the relative
strengths of either approach.
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1 Introduction

Recognition of speech by machine has been a fascinating topic of research that has for many years given
rise to some of the most innovative and exciting models. It has always been driven by a mix of intuitions
relating to system design and engineering on one side and human cognitive modeling on the other. It has
aways drawn a great deal of ideas, motivation and inspiration from a desire to understand human
communication, while imposing the realism of practical engineering constraints and comparative
performance measures. Connectionist models or "neural networks" have recently attracted considerable
(and renewed) attention in speech recognition as they provide speech scientists with a cognitively
plausible model of speech processing while at the same time introducing a novel, yet realistic engineering
solution to the problem. A number of initial designs have produced in a short time performance results
that compared favorably or exceeded those obtained by traditional speech processing
techniques [1, 2, 3, 4].  On the other hand, most of these experiments were limited to small tasks or
subproblems of the speech recognition problem such as phoneme classification [1, 2, 5] or small
vocabulary word recognition [8, 7, 8].

While these results are encouraging given those limited domains, the question remains to be answered
if and how this technology may be used effectively for the design of whole speech understanding
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systems. Indeed, a common criticism argues that connectionist models are but good classifiers but
cannot handle the temporal, sequential nature of speech. As such, connectionist models may be
attractive only in limited domains or toy problems, but would scale poorly to large vocabulary speech
understanding systems. Although this criticism has been valid for a number of initial simple networks,
extensions that overcome these limitations have been proposed and are beginning to produce
respectable results on larger problems as well.

In this paper we will describe current research activity that addresses the large vocabulary recognition
problem. We present two large vocabulary word recognition systems that illustrate that neural networks
1.) can be used productively for large vocabulary speech recognition by way of classification but also by
way of non-linear mapping and system identification 2.) neural networks can be integrated with
connectionist as well as non-connectionist strategies to handle temporal, sequential processing to form
chains of subword units, words and sentences.

2 The Large Vocabulary Word Recognition Problem

Early on connectionist word recognition experiments were carried out that have exploited the
classification capabilities of neural nets by applying an entire word's coefficient matrix to the inputs of
static full word networks with output units for each word to be classified. Good results were achieved, but
the resulting systems required precise time alignment and a preprocessing stage that determines the
endpoints of an input word, both unacceptable requirements in practice in the light of continuous speech,
noise and varying speaking rates. Similarly limiting is the fact that only small vocabularies can be
handled in this fashion, because network size and training time become prohibitively large and enroliment
impractical with increasing vocabulary size.

To overcome the former first set of fimitations, networks that model time, temporal distortion (warping)
and/or shift-invariance internally have been proposed for small vocabulary recognition. Among them are
techniques that integrate neural network based classification with traditional schemes for time alignment
and sequence management, such as the Dynamic Neural Net (DNN) [8, 9], word level Time-Delay Neural
Networks (TDNNs) [10, 11], hybrid neural net classifiers and Hidden Markov Models [12] and Neural
Prediction Models [13]. Most of these models have been tested on small vocabularies (Japanese, French
and English digits) and have achieved excellent performance results, but all used dedicated models for
each vocabulary word and are in their basic forms not appropriate for large vocabulary recognition.

To extend these models to large vocabulary recognilion subword units such as phonemes or syllables
must be employed. Since such subword units are limited in number large vocabularies can be
constructed as different sequences of these atomic subunits. In large vocabulary word recognition then
the task is to identify the most likely sequence of phonetic units that make up a legal word (preferably
without requiring segmentation in the process). Several models have been proposed that express
sequential constraints in a connectionist framework alone [14, 15, 16, 17, 18]. Alternatively, combinations
between the perceived strengths of neural networks at the pattern recognition level with the strengths of
traditional methods at modeling sequences such as Hidden Markov Models, Viterbi Decoding, or Dynamic
Programming have also been proposed. Such "hybrid approaches" have recently gained in popularity as
they appear to offer immediate access to the best of both worlds.
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In the following we describe two connectionist large vocabulary recognition systems. They are
examples of two different recognition philosophies. We will refer to them as "classification based models"
and "prediction based models".

3 Classification Based Models

Neural networks have been shown to implement excellent non-linear classifiers both at the phonetic level
as well as at the word level. Large vocabulary systems can therefore be implemented by neural networks
that recognize phonemes or parts of phonemes (states) and evaluate how well a sequence of their
phonemic output hypotheses match the legal sequence of a word.

3.1 Time-Delay Neural Networks

One of our attempts in doing this is based on the Time-Delay Neural Network (TDNN). This network has
been shown to produce excellent phoneme discrimination performance [1]. This network was developed
to provide a non-linear non-parametric? pattern classifier that can spot features or phonemes independent
of precise temporal alignment (shift-invariance property). The network is a multilayer network of units that
incorporate current activations from lower layers as well as time-delayed versions of them (context) as
input.  Fig.1 illustrates a TDNN trained to perform the discrimination task between the voiced stop
consonants /b, d, g/ (see [19] for a more detailed description of its operation).

Initial experimentation with this class of networks was performed speaker-dependently on small
phoneme sets only (/b,d,g/ discrimination), but extensions to high performance multi-speaker
recognition [20] and recognition of all phonemes were soon achieved. Both problems significantly
benefitted from modular and incremental learning [20, 21, 2]. By using an integrating supernetwork
(Meta-Pi network [20]) 1o decide on how to gate an appropriate mix of speaker specific network decisions,
focus of attention or rapid adaptation to speaker specific classification can be achieved. In multi-speaker
classification experiments this resulted in speaker-dependent recognition rates - a significant
improvement over results from speaker-independent training. Modularity could also be used effectively to
overcome problems related to scaling, training time and generalization. By exploiting the featural
abstractions in the hidden units of previously trained networks modular training allowed for greater
efficiency and flexibility of design while achieving performance greater than or equal to non-modular
networks [2].

3.2 Large Vocabulary Recognition by TDNN

Based on a Japanese large vocabulary isolated word database (5240 words) [22, 19, 1] a number of
speaker-dependent experiments were carried out to improve the TDNN’s performance, particularly in view
of large vocabulary recognition [23]). For use in word recognition, speech is to be classified into phoneme
output categories over running speech (in this case over entire words spoken in isolation). As the original

2no assumptions as to the underlying probability distributions need to be made
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Figure 1. The TDNN architecture (/b,d,g/-task)

TDNNs were trained on excised phoneme tokens only, several modifications were desirable. First, the
original excised phoneme training patterns were now artificially misaligned in time by various offsets. It
more realistically simulates the absence of precise phoneme labels and segmentation. The resulling
introduction of time alignment "noise" turned out not to decrease performance, but lead to noticable
improvements instead, particularly for phoneme spotting. Training in this fashion improved generalization
and enforced shift-invariant phoneme classification even in transitory regions between phonemes. The
resulting phoneme spotting rates of the large scale TDNN's improved from 95.8% to 98.0% and more
importantly, the false alarm rates® decreased from 62.2% to 23.2%4. The performance results of our
earlier models and this improved model compared favorably with various other recognition strategies over
the same data. For word recognition also a silence category was necessary which was added by modular
design to the existing net [23]. Fig.2 shows the resulting large TDNN all-phoneme architecture. Fig.3
shows output activation patterns for the word "wata”.

While good phoneme classification performance is indeed encouraging, this will have to be properly
integrated and have to translate into good large vocabulary word recognition performance to advance the
field. Mature speech recognition technology has already at its disposal a number of elegant techniques
for this and similar word-level integration needs to be accomplished in a connectionist frame-work or in

3presumably due to previously undefined transitory regions.

4All recognition tests were run on independent test data from the same speaker.
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Figure 3. TDNN spotting phonemes in word "wata"

the form of hybrid connectionist/ non-connectionist system design. Neither is necessarily a trivial step to
undertake and we shall desribe several successful initial attempts that have been proposed.

Using data from a Japanese isolated word database (as described above) and a TDNN as a front end
phoneme level model, a hybrid large vocabulary recognition system was developed [23]. 24 phonemes (5
vowels, 18 consonants and silence) were spotted by shifting TDNNs across time providing the front end
for phoneme based word recognition. To recognize a word, the overall likelihood of a word-specific
sequence of phoneme activations needs to be estimated. To do so, we can approximate the output
activations of a TDNN as representing the maximum a posteriori probabilities of a phoneme class given
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speech at a given time frame [24]. If each phoneme is viewed as a single state with an associated output
probability, then a word likelihood can be calculated as the joint probability over all output probabilities
over time. Assuming that ail states are independent, a word likelihood would be given by the product of
framewise outputs. A simple way of implementing this is to evaluate at each time frame the log activation
of the output unit that corresponds to a legal phonemic state in the word and summing these log outputs
over time. The correspondence between a given time frame and the current active phoneme node is
performed by a Dynamic Time Warping (DTW) procedure.

An implementation of this procedure is described by Miyatake, Sawai, Minami and Shikano [23]. Here,
a modular TDNN as described above was used, and only one state per phoneme was provided. An
LR-parser provided top-down prediction of what set of phoneme transitions are legal to form legal words
in the dictionary. For duration control each phoneme state was expanded to the average number of
frames of that phoneme before DTW was carried out. Recognition experiments on various vocabulary
sizes were undertaken with this system. All experiments were performed vocabulary independently® and
on independent test data (phonemes not used for training). For a 500-word test vocabulary, first choice
accuracy of 98% was achieved. For a large vocabulary of 5000 words, recognition rates as high as 92.6
were obtained. Second and fifth choice rates for the later vocabulary size were 97.6% and 99.1%,
respectively, indicating that most confusions occurred among a small group of acoustically similar words
(e.g., "itai" -> "ittai").

3.3 Extensions

The performance of the system described does indeed suggest that very high performance can be
achieved, independent of training vocabulary and training context. Several problems, however, need to
be overcome to further improve large vocabulary speech recognition systems.

Sequencing of Phoneme Internal Events: First, we have already noted that the TDNNs described
above were all integrated as single phoneme states. While TDNNs can capture a variety of phoneme
specific cues sequential ordering within a phoneme is only imposed within the reach of its fixed duration
time-delays. Additional ordering between variably duration subphonemic states must be imposed in the
context of word recognition. Variable or adaptive time-delays [25] could be used internally or a sequence
of several states [12] per phoneme at its output. This should lead to better performance and duration
modeling, particularly in continuously uttered poorly articulated speech.

Stochastic Modeling of Sequences: The most successful and popular approach to stochastic
modeling of sequences is given by Hidden Markov Models (HMMs), where a phoneme is given by a
stochastic sequence of states that can be linked together into words and from there on into sentences. At
each of these levels (lexical, syntactic, etc.) constraints can be applied and probabilities estimated, and
their joint probabilities (assuming they are independent) computed. A popular idea therefore is to use the
strengths of neural networks at precise pattern classification in combination with the modeling of state
sequences and time alignment found in HMMs.

Some of the earlier proposals at this were developed by Bourlard, Wellekens and Nelson [26, 24, 27].
In theoretical and experimental work they had shown that the outputs of a multilayer perceptron

5The phonemes used for training were extracted from words of a different vocabulary than the one used for testing.
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(feedforward network) trained by backpropagation from a mean square error may be considered 1o be
estimates of the maximum a posteriori probabilities of a given input to belong to its corresponding output
class. They have since built on this notion to construct Hidden Markov Model chains where the output
activations of a local multilayer perceptrons (MLP) are used as output probabilities for the states in a
traditional HMM. Viterbi aligment is performed to assign the framewise MLP firings to corresponding
states and to compute an overall word output probability.

Several enhancements were subsequently proposed by several investigators. Morgan and
Bourlard [27] achieved significant improvements in recognition performance, by normalizing their network
outputs (the a posteriori probabilities) by their respective prior probabilities to eliminate a bias to uneven
distributions in the training data. Another technique aimed at optimizing generalization performance is the
usage of a cross-validation set. If only limited amounts of training data are available given a net of a
given size, this can lead to overfitting 1o the training data and poor generalization to (poor performance
on) new unseen data[27]. Use of an independent pseudo testing set (the cross-validation set) then
yields a stopping criterion, that assures that a net is trained with optimal test-set performance in mind. A
third enhancement proposed by several researchers is Connectionist Viterbi Training (CVT) [27, 12].
CVT is akin to the segmental k-means training procedure used for Hidden Markov model training [28] and
aims at infegrated and segmentation free word level training. The idea is to optimize a suitable phoneme
(or state) segmentation together with the backpropagation network optimization. CVT iteratively finds the
best labeling of the input (by way of Viterbi alignment), while the networks attempt to provide better
outputs to correspond to these label. These techniques produced good word level recognition
performance, that are beginning to compare favorably with other advanced HMMs on continuous
sentence [27] and on connected digit [12] tasks.

Research Directions: A host of additional modifications and improvements that are known to work
well for HMMs remain 1o be explored in the context of hybrid connectionist systems. Among them are
corrective training (at the word level), choice of best input representation, transition probabilities, choice of
optimal HMM topology, optimal neural network architecture, etc. Last not least, work is in progress
towards improved training algorithms that generate more meaningful probability estimates at the outputs
of local phonetic classification networks to improve word level discrimination and overall system
robustness.

An alternate exciting research avenue is given by connectionist formalisms that represent sequential
constraints altogether internally as connectionist modeling extensions [14, 15, 16, 17,29, 18]. Such
models may relax some of the limiting assumptions made by current recognition strategies and could
potentially lead to further improvements in speech recognition system design.

4 Prediction Based Models

The connectionist models that we have discussed so far apply neural nets as classifiers of either word
patterns or subpatterns. For classification, the input usually consists of a coefficient matrix and the output
approximates a bit pattern representing the classification results. In addition to learning discrete
classifications, however, neural networks can implement a variety of other constraint satisfaction tasks.
Among them are non-linear function approximation, interpolation and prediction, which generate
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continuous real-valued output vectors. This can be exploited in speech for various signal mapping and
coding applications, including noise suppression [30], speech code mapping [31] and non-linear signal
prediction [32]. The use of neural networks as non-linear signal predictors in speech recognition has
recently first been shown successfully in the "Neural Prediction Model" proposed by Iso and
Watanabe [13] and the "Hidden Control Neural Network" proposed by Levin [33]. Both of these models
have so far only been implemented for small vocabulary recognition tasks (i.e., digits), but have yielded
high recognition performance speaker-independently. Extensions to large vocabulary recognition are also
possible with this approach as we shall see in the following.

4.1 Recognition Using Small Vocabularies

The basic idea is illustrated in Fig.4. A two frame window of input coefficients is input into a multilayer
feedforward net trained to produce at its output a frame of coefficients that is as close as possible to the
next (future) speech frame. The distance between this predicted frame and the actual next speech frame
can be measured as a prediction error or distortion and this distortion is used as error criterion for
backpropagation training. Given a set of predictor networks one can imagine training each predictor for a
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Figure 4. Modeling a phoneme by signal prediction

separate region of an utterance. Each predictor net becomes specialized to best predict this portion of an
utterance, such that the prediction error is likely to be lowest in these regions. A word is then represented
by the sequence of predictor nets that best predicts the actual observed speech. Dynamic Programming
is used as a mechanism to optimally apply each predictor sequentially over time to best approximate the
actual signal. Fig.5 shows this alignment step based on the matrix of distances between actual speech
frames and predicted frames. During training an alignment path is determined by Dynamic Programming.
Each predictor is then trained to minimize the error between its output and the speech frames that it was
assigned to predict according to the DP-alignment path. During recognition the word whose sequence of
predictors minimizes the error between predicted frames and aclual signal frames is chosen. Iso and
Watanabe [13] used 10 mel scale cepstral coefficients and amplitude change as inputs to their networks.
The number of predictors used depended on the utterance and ranged (for Japanese digits) between 9
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and 14. Each predictor net has three layers, an input layer of two 11 coefficient frames, 9 hidden units
and 11 predicted output coefficients. Excellent performance (0.2% error) was reported for a Japanese
speaker-independent isolated digit recognition task uttered over telephone lines. This result comparéd
favorably with other techniques (0.7% for the DNN [34, 8] and 1.1% for DP-matching [35]) tested on the

same data.
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The model proposed by Levin is similar to the one described above and is illustrated in Fig.6. As before
it uses non-linear prediction by neural nets to measure a model's fit to the input data. Unlike the Neural
Prediction Model, however, it uses only one single predictor for an entire word and a sequence of varying
input flags or "control units" that switch the predictor into alternate modes of operation as time
progresses. Similar to "counter nodes"(proposed for spelling correction [36]), these units are used 1o
control the sequential state of the network. The predictor network used 24 speech inputs (12 cepstral and
12 deltacepstal parameters), 30 hidden units, 24 predicted outputs and 8 control input units. The control
units turn on sequentially when appropriate and remain on as additional bits are activated ("thermometer”
representation). Control transitions (the point at which a new bit is turned on) are determined by Viterbi
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Alignment. During training, the Viterbi algorithm determines the state of control unit settings for each
speech input frame and applies backpropagation learning to reduce prediction error according to this
segmentation. The network was tested on connected digits from the TI-digit database (using male
speakers only). Using independent test data but from the same speakers used in training, a word
recognition rate of 99.3% was achieved.

4.2 Large Vocabulary Recognition

Large vocabulary word recognition using predictor networks is also possible. For use in large vocabulary
recognition, words must here again be decomposed into subword units such as phones or syllables and
an optimal model for these units must be trained. Recent work by Tebelskis and Waibel [37] has
demonstrated that this can be done without the need for segmentation. In this work, time alignment and
connection weights were optimised jointly and the weights of sets of network predictors corresponding to
the same phoneme symbols were linked together (as in the TDNN). Experiments with the "Linked
Predictive Neural Network" (LPNN) resulted in 94% recognition performance for speaker-dependent
isolated word recognition over a database of 234 Japanese words and 90% over a 1000 word vocabulary.
The data used in these experiments was given by a confusable subset of the data used for evaluation of
the TDNN based system described in the previous section. Performance results on this particular subset
were found to be comparable between the two systems.

The operation and training of the LPNN are shown in Fig.7. As before, a set of predictors is assigned to
different portions of a word. Here these portions are defined to be phonemes and each occurrence of the
same phoneme is modeled by the same set of three predictors. In Fig.7, for example, two words "BAB"
and "ABA" may consist of the same phonemes in different order and position. Time alignment of the
sequence of predictors is done as before, but all prediction errors assigned to the same phoneme (or
portion thereof) train the same predictor net by way of a linkage pattern that defines the legal phoneme
sequence of a word. A number of enhancements to this basic scheme have so far been found to be
effective. A set of parallel predictors was added to each phoneme model to allow the LPNN to better
represent alternate pronunciations and context dependencies. An assignment of each alternate was not
predetermined, but the system selects the most suitable alternate based on the prediction errors
produced by each alternate. During training the selected alternate is also reinforced by additional training
while the others are not. In this fashion, the network automatically generates different models depending
on context and pronunciation. A measurable performance improvement was obtained from this
technique.  Significant improvements were also obtained when phoneme pairs that are only
distinguishable on the basis of duration (e.g., in Japanese: "k" vs. "kk") were represented by different sets
of predictors. Fig.8 shows an example of processing in the LPNN for an input word "kashikoi”. In the top
panel, the original spectrogram is shown with 16 spectral coefficients per time frame and time moving
from left to right. Underneath, the output predictions of the best predictors (as determined by DTW) at
each time frame are displayed. The third panel shows ouput predictions for only one /i/-predictor(s). As
can be seen prediclion is best in the region corresponding to the final /i/, and degrades in other areas.
The final display shows the distance marix obtained for each input frame and for each predictor linked into
the word. Alignment is performed based on this matrix and the resulting labeling is shown at the input
axis.
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Figure 7. Training a Linked Predictive Neural Net

4,3 Extensions

To further enhance prediction based large vocabulary recognition, several current limitations have to be
addressed. The strength of the model described here is that it inherently provides for simple mechanisms
for word level integration and optimization. Optimization essentially proceeds top down, in an attempt to
suitably represent a word's speech pattern given the phonetic sequence of the word. A possible problem
with this approach is the apparent lack of discrimination at the speech pattern level as can be seen in
Fig.8 from the relative quality of a single /i-predictor applied to the entire utterance. This leads to good
word level integration, but can result in poor acoustic-phonetic discriminability [38]. The representation is
also potentially more sensitive to varying phonetic contexts [38], unless one provides alternate models for
alternate contexts or pronunciations. This suggests enhancements similar to those applied to Hidden
Markov Models, such as corrective training and context dependent phones. Alternatively, connectionist
self-organizing principles could be attempted.

5 Conclusion

In this paper we have reviewed connectionist strategies applied to speech recognition. Reaching beyond
mere classification of sound patterns, we have addressed the problem of large vocabulary recognition,
where constrainis arising from the classification of the underlying speech sounds must be interwoven with
the additional constraints of sequentiality and lexical legality. We have on the other hand deliberately
limited this discussion to the word level and not addressed sentence level issues that certainly have to be
included in complete large vocabulary speech understanding systems (see [39, 40] for further discussion).
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We have developed two different connectionist large vocabulary systems, based on different underlying
One is based on classification, the other on prediction of speech. Both

recognition philosophies.
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Figure 8. LPNN prediction for the word "kashikoi"
(See text for explanation)
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strategies achieved excellent recognition performance and performed comparably with respect to each
other. Interestingly, either approach displayed different areas of strength and weakness, related to their
respective bottom-up or top-down recognition philosophies. While near-term enhancements using either
recognition philosophy are being explored, one may wonder what kind of model may ultimately mimick
humans' ability to use whatever constraints to recognize speech, be they high level pragmatic or fine-
phonetic distinctions. Our search for an understanding of cognitive mechanisms and their realization by
machine will undoubtably continue.

10.

11.

12.

13.

References

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang K., “Phoneme Recognition Using
Time-Delay Neural Networks”, IEEE, Transactions on Acoustics, Speech and Signal
Processing, March 1989.

Waibel, A., Sawai, H. and Shikano, K., “Modularity and Scaling in Large Phonemic Neural
Networks", IEEE Transaclions on Acoustics, Speech, Signal Processing, December 1989.

Moore, R.K. and Peeling, S.M., “Minimally Distinct Word-Pair Discrimination Using a Back-
Propagation Network”, Computer, Speech and Language, Vol. 3, No. 2, 1989, pp. 119-132.

Robinson, A.J. and Fallside, F., “A Dynamic Connectionist Model for Phoneme Recognition”,
Proceedings of nEuro’'88, |IEE, 1988.

McDermott, E., lwamida, H., Katagiri, S. and Tohkura, Y., Shift-Tolerant LVQ and Hybrid LVQ-
HMM for Phoneme Recognition, Morgan Kaufmann, 1990.

Burr, D.J., “A Neural Network Digit Recognizer”, IEEE International Conference on Systems, Man,
and Cybernetics, October 1986.

Burr, D.J., “Experiments on Neural Net Recognition of Spoken and Written Text”, IEEE
Transactions on Acoustics, Speech; Signal Processing, July 1988, pp. 1162-1168.

Sakoe, H., Isotani, R., Yoshida, K., Iso, K., and Watanabe, T., “Speaker-Independent Word
Recognition Using Dynamic Programming Neural Networks”, IEEE International Conference on
Acoustics,Speech, and Signal Processing, May 1989, pp. 29-32.

Isotani, R., Yoshida, K., Iso, K., Watanabe, T. and Sakoe, K., “Dynamic Neural Network --- A New
Speech Recognition Model Based on Dynamic Programming and Neural Network”, IEICE
Technical Report, September 1988.

Bottou, L-Y., “Reconnaissance de la Parole par Reseaux multi-couches”, Proceedings of Neuro-
Nimes 88, November 1988.

Bottou, L., Fogelman-Soulie, F., Blanchet, P., Lienard, J.S., “Experiments with Time-Delay
Networks and Dynamic Time Warping for Speaker Independent Isolated Digits Recognition”,
Proceedings of the Eurospeech, September 1989.

Franzini, M.A., Lee, K.F., Waibel,A.H., “Connectionist Viterbi Training: A New Hybrid Method for
Continuous Speech Recognition”, IEEE International Conference on Acoustics,Speech, and
Signal Processing, April 1990.

Iso, K. and Watanabe, T., “Speaker-Independent Word Recognition Using A Neural Prediction
Model", IEEE International Conference on Acoustics,Speech, and Signal Processing, 1EEE, April
1990.



14.

15.

16.

17.

18.

18.

20.

21.

22.

23.

24,

25,

26.

27.

28.

29.

30.

31.

272

Wong, M.K. and Chun, HW., “Towards a Massively Parallel System for Word Recognition”, IEEE
International Conference on Acoustics, Speech, and Signal Processing, April 1986, pp.
37.4.1-37.4.4.

Lippmann R.P. and Gold, B., “Neural-Net Classifiers Useful for Speech Recognition”, /EEE
International Conference on Neural Networks, June 1987.

J. L. Elman, “Finding Structure in Time", Tech. report CRL Technical Report 8801, University of
California, San Diego, 1988.

Bridle, J.S., “Alpha-Nets: A Recurrent Neural Network Architecture with a Hidden Markov Model
Interpretation”, Speech Communication, 1990, (to appear)

Young, S.J., “Competitive Training: A Connectionist Approach to the Discriminative Training of
Hidden Markov Models”, Tech. report CUED/F-INFENG/TR.41, Cambridge University, March
1990.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang K., “Phoneme Recognition Using
Time-Delay Neural Networks”, Tech. report TR-1-0008, ATR Interpreting Telephony Research
Laboratories, October 1987.

Hampshire, J. and Waibel, A., “The Meta-Pi Network: Connectionist Rapid Adaptation for High-
Performance Multi-Speaker Phoneme Recognition”, JEEE International Conference on
Acoustics,Speech, and Signal Processing, IEEE, April 1990.

Waibel, A., “Modular Construction of Time-Delay Neural Networks for Speech Recognition”,
Neural Computation, MIT-Press, March 1989.

Sagisaka, Y., Takeda, K., Katagiri, S. and Kuwabara, H., “Japanese Speech Database with Fine
Acoustic-Phonetic  Transcriptions”, Tech. repor, ATR Interpreting Telephony Research
Laboratories, May 1987.

Miyatake, M., Sawai, H., Shikano, K., “Integrated Training for Spotting Japanese Phonemes Using
Large Phonemic Time-Delay Neural Networks”, IEEE International Conference on Acoustics,
Speech, and Signal Processing, May 1990.

Bourlard, H. and Wellekens, C.J., “Speech Pattern Discrimination and Multilayer Perceptrons”,
Computer, Speech and Language, Vol. 3, 1989, pp. 1-19.

U. Bodenhausen, “The Tempo Algorithm: Learning in a Neural Network with Adaptive Time-
Delays", Proceedings of the IJCNN, IJCNN, January 1990, pp. 597-600.

Bourlard, H. and Wellekens, C.J., “Links between Markov Models and Multilayer Perceptrons”,
Advances in Neural Network Information Processing Systems, Morgan Kaufmann, 1988.

N. Morgan and H. Bourlard, “Continuous Speech Recognition Using Multilayer Perceptrons with
Hidden Markov Models”, IEEE International Conference on Acoustics,Speech, and Signal
Processing, |IEEE, April 1980, pp. 26.58.1.

Rabiner, L.R, Wilpon, J.G. and Juang, B.H. “A Segmental K-Means Training Procedure for
Connected Word Recognition”, AT&T Technical Journal, May 1986.

Niles, L.T. and Silverman, H.F. “Combining Hidden Markov Model and Neural Network
Classifiers”, IEEE International Conference on Acoustics,Speech, and Signal Processing, |EEE,
April 1990, pp. 417-420.

Tamura, S. and Waibel A., “Noise Reduction Using Connectionist Models”, IEEE International
Conference on Acoustics, Speech, and Signal Processing, April 1988, pp. S12.7.

Atal, B., “Non-Linear Mapping between Speech Codes"”, Personal Communication

e e

Lapedes A. and Far
System Modeling”, 1

Levin, E., “"Speech |
of the International (

Sakoe, H., “Dynami
Programming and N

H.Sakoe, S.Chiba,
Transactions on Ac
43-49.

Kukich, K., “"Back
Conference on Neu
Tebelskis, J. and \
Networks", IEEE Ir
April 1990.

Endo, T., Tamura,
Models", Tech. ref
1989.

Waibel, A. and Lee
Mateo, CA, 1990.

Furui, S. and Sondl
New York, NY, 1991




for Word Recognition”, IEEE
rocessing, April 1986, pp.

Speech Recognition”, IEEE

1l Report 8801, University of

vith a Hidden Markov Model

& Discriminative Training of

imbricige University, March

honeme Recognition Using

reting Telephony Research

Rapid Adaptation for High-
'rnational  Conference on

for Speech Recognition”,

3peech Database with Fine
ng Telephony Research

Japanese Phonemes Using
Conference on Acouslics,

id Multilayer Perceptrons”,
‘work with Adaptive Time-
‘-

id Multilayer Perceptrons”,
Kaufmann, 1988.

Aultilayer Perceptrons with
Istics,Speech, and Signal

15 Training Procedure for

del and Neural Network
' Signal Processing, |EEE,

odels”, IEEE International
p. S12.7.

nunication

36.

37,

38.

39.

40.

273

Lapedes A. and Farber R., “Nonlinear Signal Processing Using Neural Networks; Prediction and
System Modeling”, Tech. report LA-UR-87-2662, Los Alamos National Laboratory, 1987.

Levin, E., “Speech Recognition Using Hidden Control Neural Network Architecture”, Proceedings
of the International Conference on Acoustics, Speech and Signal Processing, |IEEE, April 1990.

Sakoe, H., “Dynamic Neural Network --- A New Speech Recognition Model Based on Dynamic
Programming and Neural Network”, IEICE Technical Report, December 1987.

H.Sakoe, S.Chiba, “Dynamic Programming Optimization for Spoken Word Recognition”, IEEE
Transactions on Acoustics, Speech, Signal Processing, Vol. ASSP-26, No. 1, February 1978, pp.
43-49.

Kukich, K., “Back-Propagation Topologies for Sequence Generation”, IEEE International
Conference on Neural Networks, 1988, pp. 301-308.

Tebelskis, J. and Waibel, A., “Large Vocabulary Recognition Using Linked Predictive Neural
Networks”, IEEE International Conference on Acoustics,Speech, and Signal Processing, |EEE,
April 1990.

Endo, T., Tamura, S. and Nakamura, M., “Phoneme Recognition Using Neural Prediction
Models”, Tech. report TR-1-0107, ATR Interpreting Telephony Research Laboratories, August
1989.

Waibel, A. and Lee, K.F., Readings in Speech Recognition, Morgan Kaufmann Publishers, San
Mateo, CA, 1990.

Furui, S. and Sondhi, M.M., Advances in Acoustics and Speech Processing, Marcel Dekker, Inc.,
New York, NY, 1990.



