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ABSTRACT

Automatic speech recognition on a humanoid robot is ex-
posed to numerous known noises produced by the robot’s own
motion system and background noises such as fans. Those
noises interfere with target speech by an unknown transfer
function at high distortion levels, since some noise sources
might be closer to the robot’s microphones than the target
speech sources. In this paper we show how to remedy those
distortions by a speech feature enhancement technique based
on the recently proposed particle filters. A significant in-
crease of recognition accuracy could be reached at different
distances for both engine and background noises.

Index Terms— speech feature enhancement, particle fil-
ter, humanoid robots, automatic speech recognition

1. INTRODUCTION

We address noise robustness for far distant speech recognition
in the context of a humanoid robot’s own noise production.
The research project SFB588 ”Humanoid Robots - Learning
and Cooperating Multimodal Robots” [1] aims at the devel-
opment of a household robot (Fig.1) which is intended to
support humans at home. One part of the project is natu-
ral human robot interaction with verbal communication. The
current working environment of the humanoid robot Armar
[2, 3] is a kitchen. Besides concurrent kitchen sound events
and human speech Armar’s auditory system has to deal with
its own noise production corrupting the human speech sig-
nal. Noises from the robot could be generated by fans or
engines and its synthetic voice. This work concentrates on
the compensation of distortions due to engine and background
noises rather than synthetic speech, in which case the source
signal is known. We therefore use an approach which can
model noises descended from incompletely known dynamic
noise sources, namely sequential Monte Carlo methods. They
have been recently introduced as a method for speech feature
enhancement for speech recognition [4, 5], which can deal
with non-stationary noises. Particle filters, as a special case
of sequential Monte Carlo methods, are getting more pop-
ular for the task of dynamic noise compensation: the auto-

Fig. 1. Armar III in the kitchen lab

matic speech recognition performance for several noise types
like machine-guns, music, traffic or garbage collection vehi-
cles could be improved by applying particle filters [4, 5, 6].
Faubel and Wölfel have demonstrated an additional gain in
accuracy by coupling the particle filter with the automatic
speech recognition [7]. In this paper we investigate particle
filter based speech feature enhancement technique using sam-
pling importance resampling (SIR) in human robot interaction
at different distances between the two. Since the robot’s own
noises usually have less distance to the integrated far distance
microphones compared to a human speaker, a natural human
robot communication suffers from high distortion levels. Par-
ticle filters seem to be a suited solution for this problem, since
the dynamic noises of the motion system interfere additively
and the engine timings are known, which allows to switch be-
tween different noise models for particle filter initialization.

2. PARTICLE FILTER BASED SPEECH FEATURE
ENHANCEMENT

Speech feature enhancement can be formulated as to track
the clean speech spectrum xk with the observation history
y1:k = {y1, . . . ,yk} using the probabilistic relationship
p(xk|y1:k). To find the optimal solution (with respect to

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

WeA10.1

1-4244-0912-8/07/$25.00 ©2007 IEEE. 1737



the mean square error criterion) to yield the minimum mean
square error estimate consists of finding the conditional mean
E[x1:k|y1:k] [8]. Assuming that (xk)k∈N is a Markov process
and that the current observation is only dependent on the cur-
rent state. A recently proposed solution in speech processing
to this problem, without constrains such as linearity or gaus-
sianity of the system is the particle filter [9]. An illustration
of the particle filter with importance sampling and resampling
is given in Fig. 2.

2.1. The Particle Filter

The used particle filter follows the approach by Singh et al.
[5] which aims, in contrast to common approaches, to track
the noise spectra corrupted by speech. Clean speech spectra
is later on derived by an interference step. This particle filter
for speech feature enhancement can be outlined as follows:

1. Sampling
At time zero (k = 0) noise hypotheses (particles) n(j)

0

(j = 1, ..., N ) are drawn from the prior noise density
p(n0). For k > 0, n(j)

k is sampled from the noise tran-
sition probability p(nk|n(j)

k−1) for j = 1, ..., N .

2. Calculating the normalized importance weights
The importance weight (likelihood) of each noise hy-
pothesis n(j)

k is evaluated by p(yk|n(j)
k ). The normal-

ized importance weights are calculated as

w̃
(j)
k =

p(yk|n(j)
k )∑N

m=1 p(yk|n(m)
k )

3. Inferring clean speech
Clean speech is inferred as explained in 2.4 for two dif-
ferent strategies by using the discrete Monte Carlo rep-
resentation of the continuous filtering density

p(nk|y1:k) =
N∑

j=1

w̃
(j)
k δ

n
(j)
k

(nk) (1)

The term δ
n

(j)
k

denotes a translated Dirac delta function.

4. Importance resampling
The normalized weights are used to resample among
the noise hypotheses n(j)

k (j = 1, ..., N). This can be
regarded as a pruning step where likely hypotheses are
multiplied, unlikely ones are removed from the popula-
tion.

Those steps are repeated with k 7→ (k + 1) until all time-
frames are processed.

2.2. Modeling noise and its evolution

To initialize the noise hypothesis one can sample from the
prior noise density p(n0). The prior noise density can be
modeled as a Gaussian mixture model and trained on known
or expected noise types a priori or on silence regions of the
current speech observation.

In [6] the evolution of (log Mel) noise spectra is modeled
as a 1st-order autoregressive process

nk+1 = A · nk + εk

where A is the transition matrix that is learned for a specific
type of noise and nk denotes the noise spectrum at time k.
The εk terms are considered to be i.i.d. zero mean Gaussian,
i.e. εk ∼ N (0,Σnoise), where the covariance matrix Σnoise is
assumed to be diagonal. Using this model the noise transition
probability p(nk+1|nk) can be written as

p(nk+1|nk) = N (nk+1;A · nk,Σnoise) (2)

Since [6] et al. found that higher model orders than 1st-order
are not leading to a significant improved performance, we use
1st-order predictors.

2.3. Modeling clean speech and evaluate likelihoods

Modeling clean speech (log Mel) spectra xk as a Gaussian
mixture distribution p(x) learned for all of speech, the rela-
tionship

xk ≈ log(eyk − enk) = yk + log(1− enk−yk) (3)

between corrupted speech spectra yk, nk and xk (all in the
log Mel domain), the likelihood l(n(j)

k ;yk) = p(yk|n(j)
k ) of

a noise hypothesis n(j)
k can be evaluated as

p(yk|n(j)
k ) =

px(yk + log(1− en
(j)
k −yk))∏d

i=1

∣∣∣1− en
(j)
k,i−yk,i

∣∣∣ , (4)

where d represents the dimension of the noise spectral vector.
Note that this equation can only be evaluated if no spectral
bin n(j)

k exceeds yk, otherwise p(yk|nk) = 0.

2.4. Inferring Clean Speech

The solution to the particle filter problem, to get enhanced
speech features, consists in computing the conditional mean

E[xk|y1:k] =
∫

xk · p(xk|y1:k)dx (5)

where the noise nk is introduced as a hidden variable

p(xk|y1:k) =
∫

p(xk,nk|y1:k)dnk
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p(nk|yk-1)

p(yk|nk)

p(nk|yk)

p(nk+1|yk)

Fig. 2. Illustration of a particle filter with importance sampling and resampling.

Further, using p(xk,nk|y1:k) = p(xk|y1:k,nk) · p(nk|y1:k)
and changing the order of integration we obtain

E[xk|y1:k] =
∫ ∫

xk · p(xk|y1:k,nk)dxk︸ ︷︷ ︸
=hk(nk)

p(nk|y1:k)dn

(6)
Since this is equivalent to Ep(nk|y1:k)[hk(nk)|y1:k], the
weighted empirical density (1) can be used to approximate
(6) by Monte Carlo integration [10]:

E[xk|y1:k] ≈
N∑

j=1

w̃
(j)
k hk(n(j)

k ) (7)

To finally be able to calculate the conditional mean we have
to evaluate for

hk(nk) =
∫

xk · p(xk|y1:k,nk)dxk (8)

with
xk = yk + log(1− enk−yk)

Two approaches to solve for h have been proposed in the
literature which we will summarize in the next sections:

The vector Taylor series approximation

Following Raj et al. [6] we can approximate log(1+enk−xk)
by a 0th order Taylor series expansion around every Gaussian
mean µg ∀ g.

hk(nk) =
∫

xk

G∑
g=1

p(xk|g,yk,nk)p(g|yk,nk) dxk

=
G∑

g=1

p(g|yk,nk)
∫

xkp(xk|g,yk,nk) dxk

where, under the assumption that clean speech and noise is
stochastically independent, we can write

p(g|yk,nk) =
p(g,yk|nk)
p(yk|nk)

=
ck · p(yk|nk, g)

p(yk|nk)

with p(g|yk) = p(g) = cg .
The noise shifts the means of the Gaussians in the loga-

rithmic domain to

µ′
k = µk + log(1 + enk−µk)︸ ︷︷ ︸

=∆µk,nk

. (9)

which can also be considered as a shift of the corrupted spec-
trum in the opposite direction to obtain the clean spectrum:

xk = yk −∆µg,nk
.

With
p(xk|g,yk,nk) = δyk−∆µg,nk

(xk)

we can finally solve for

hvts
k (nk) =

G∑
g=1

p(g|yk,nk)
∫

xδyk−∆µg,nk
(xk) dxk

=
G∑

g=1

p(k|yk,nk)
(
yk −∆µg,nk

)
= yk −

G∑
g=1

p(g|yk,nk)∆µg,nk
(10)

The direct approach

Faubel and Wölfel proposed to directly use the relationship
between xk, nk and yk [11] from (3). This makes the prob-
ability density p(xk|y1:k,nk) deterministic, since xk is com-
pletely determined if yk and nk are given:

p(xk|y1:k,nk) = δyk+log(1−enk−yk )(xk).

Substitution in (8) yields

hdirect
k (nk) =

∫
xk · δyk+log(1−enk−yk )(xk)dxk

= yk + log(1− enk−yk). (11)
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3. DATA DESCRIPTION AND BASELINE SYSTEM

The following subsection describes the collection of three
data sets: one set containing far distant speech without noise
constituting our test set, and two noise sets (engine and back-
ground noise) which we both split into training data used for
the particle filter models and testing data used for distortion of
the speech test set. Thereafter we describe the front-end with
feature spaces used, the acoustic and the language model. Fi-
nally the particle filter model training is explained.

3.1. Recording Setup and Data Sets

We recorded 100 continously spoken sentences from each of
three non-native speakers using a close-talking microphone
at 48 kHz. The utterances contain typical instructions and
questions for a household robot in the kitchen domain (e.g.
”Make a cup of tea with milk and sugar.” or ”What can I cook
with tomatoes and onions?”). For a fair comparison of auto-
matic speech recognition (ASR) performance we played back
all recorded utterances in a real kitchen environment using the
Fostex Personal Monitor 6301B with three distances (60 cm,
120 cm, 180 cm) between the robot microphones (Sony ECM
C115) which are located at the left and right side of the head
and the loudspeaker. Besides these distant speech recordings,
we captured four types of engine noises caused by the robot’s
motion system (movement of head, hands, arms and platform)
and background noise (especially by the robot’s fan) during a
real robot dialog interaction, again using the robot’s micro-
phones in the same environment. Since the noise type hand
movement turned out to be somewhat silent, we ignored this
subset. The resulting engine noise type set contained 139 in-
stances and was split into a training (104 recordings) and a test
set (35 recordings). The background noise consisted mainly
of a fan on the robot’s platform which is far more static than
the engine noises. Therefore 35 seconds for particle filter
prior model training and 10 seconds for test data distortion
are reasonable amounts. All data have been recorded at 48
kHz and later downsampled to 16 kHz.

3.2. Acoustic Pre-Processing

To extract robust speech features, every 10 ms, we have re-
placed the traditional power spectrum by a warped mini-
mum variance distortionless response (MVDR) spectral en-
velope [12] of model order 30. In contrast to traditional ap-
proaches no filterbank was used as the warped MVDR en-
velope already provides those properties, namely smoothing
and frequency warping. The 129 spectral features have been
truncated to 20 cepstral coefficients after cosinus transforma-
tion. Those features have been transfered back to logarith-
mic mel spectral domain by an inverted cosine transforma-
tion to span the 20 dimensional feature space in which the
particle filter is applied. After feature enhancement the 20 di-
mensional vector is again converted into the cepstral domain.

After mean and variance normalization the cepstral features
where stacked (7 adjacent left and right frames) and truncated
to the final feature dimension 42 by multiplying with the op-
timal feature space matrix (the linear discriminant analysis
matrix multiplied with the global semi-tight covariance trans-
formation matrix [13]).

3.3. Acoustic and Language Model

The acoustic model (AM) contains 19,460 distributions over
4,127 models, with a maximum of 64 Gaussians per model
trained on close talking meeting and lecture data. The dic-
tionary contains 62,421 pronunciation variants over a vocab-
ulary of 51,733 words. Further we used a 4-gram in-domain
language model (LM).

3.4. Particle Filter Model Training

To initialize the noise model for the particle filter sampling
step a GMM was used as prior noise model for each parti-
cle filter. The likelihood evaluation of a noise hypothesis on
the corrupted speech log Mel spectra enters the clean speech
GMM into equation (4). This model was trained on the same
data (meeting and lecture data) as used to train the AM, but
in this case in the spectral log Mel feature space in which the
particle filter operates. The noise and speech GMMs have
been trained by split-and-merge training.

To model time evolution of a particular noise type, a linear
prediction transition matrix was estimated for each noise type.
Since the robot is likely to move different engines at once, we
aim at modeling several different engine noises at a time. To
allow this in the evolution model, waveforms from the engine
noise training set were mixed such that all three engine noise
types were present at a time. The mixed waveform was then
used in the 1st-order autoregressive estimation process.

4. EXPERIMENTS

Before analyzing the ASR performances for improved word
error rates by feature enhancement using particle filters, we
give a short description of the three test sets labelled as clean,
background noise and engine noise in Table 1.

4.1. Creation of Test Sets

As shown in Table 1 we experimented with three test sets.
All sets consist of the same far distant recordings: the clean
case represents the far distant recordings played back from
the loudspeaker which were captured by the robot’s micro-
phones. In the other two cases background noise or engine
noise were added to the clean-case. Note that although we ad-
ditively mixed the noise to the far distant speech, both speech
and noise were recorded by the same microphones and envi-
ronment.
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test data PF type PF noise trained on word error rate in %
distance 60 cm 120 cm 180 cm
pass 1st 2nd 1st 2nd 1st 2nd
clean no — 9.8 4.7 20.6 7.7 24.9 9.3

vts background noise 9.5 4.3 18.0 8.0 18.7 6.6
direct background noise 8.1 4.1 16.2 7.8 18.9 7.9

background noise no — 9.9 4.7 21.2 8.2 28.2 10.4
vts background noise 9.3 5.2 20.0 7.6 23.4 8.6
direct background noise 9.0 4.1 16.8 6.8 21.9 8.6

engine noise no — 22.6 10.0 57.1 32.3 78.0 52.4
vts engine noise 13.6 8.8 46.9 26.9 67.5 50.0
direct engine noise 16.8 8.0 44.6 25.1 67.1 48.5

Table 1. ASR performances in WER for the particle filter types no, direct approach, vts approach using different training and
test data combinations at three robot-speaker distances

The mixing was done such that we determined the signal-
to noise ratio (SNR) between the speech signal and the noise
signal in the time domain, both captured by the robot’s micro-
phones. The distance dependent SNRs were used accordingly
as distortion levels for speech signal corruption by additive
mixing. For the engine noises the SNRs were about 15 dB
at 60 cm, 9dB at 120 cm and 6 dB at 180 cm. The back-
ground noises for additive mixing with the far distant speech
test data were taken from the same recordings as the engine
noise recordings used for testing. Therefore the SNRs for the
background noise were higher according to the background
proportion of the engine recordings.

For both test data cases in which speech was distorted
by background noise or by engine noise, all utterances were
mixed with the noises over the whole time span. Even though
this affects the WERs in an unrealistic way for the engine
noises, because the robot won’t move all its’ engines all the
time during a speech dialog, we can get a sense of how the
noises affect those parts of speech utterances when they are
present.

4.2. Results and Discussion

For each test set we show a reference system without a par-
ticle filter (PF type: no) which we compare to particle filter
approaches with vector Taylor series (PF type: vts) approx-
imation and with the direct deterministic solution (PF type:
direct). The results are given in word error rates (WER) in
Table 1 for first and second pass recognition runs, where the
second pass is adapted by maximum likelihood linear regres-
sion (MLLR) [14] and constrained MLLR on the appropriate
hypotheses of the first passes.

Adding background noise to the clean far distant speech
baseline affects the WERs less negative than adding with en-
gine noises, which are quite dynamic and have a higher power
level. Comparing the presence of engine noise with the si-
lence case at 180 cm distance, without speech feature en-

hancement, we observe a performance drop on the 2nd pass
from 52.4% to 9.3% WER. Compared to this, a difference of
10.4% to 9.3% in the same condition with background noise
instead of engine noise is less drastic.

Besides a common degradation of performance in WER
with increasing microphone-speaker distance, we observe a
significant improvement trend (except of three italic marked
cases) for each distance and each test set for the 2nd passes of
both particle filter types direct and vts when comparing with
the reference systems. The direct approach shows one outlier
with a not significant absolute WER difference of 0.1% to the
reference system. For the direct-type this negative difference
appears only on the clean1 test data, where an improvement
by the particle filter was not necessarily expected. Neverthe-
less in all other clean test data cases both particle filter types
reached improvements over the baseline system, which con-
sists of a plain recording without further noise mixing. The
other two remaining degradation cases mentioned before hap-
pened for the vts-type with an absolute WER degradation of
0.3% for clean and 0.5% for background noise added test data
at 60 cm.

In all other cases both particle filter types could achieve
benefits up to 7.2% absolute WER difference. Note that the
reported improvements are for the adapted 2nd pass for a typ-
ical robot-speaker dialog distance (120cm) with severe engine
noise distortion for disjoint training and testing sets.

Finally we compare the different approaches to infer the
clean speech, namely the vts and direct approach. In seven of
nine first pass cases the particle filter type direct performed
better than the vector Taylor series approach. This trend was
confirmed by the adapted recognition runs: besides one out-
lier out of nine cases the direct approach achieved better re-

1The particle filter training for the clean test data case was performed on
the fly by using background noise from non-speech regions of the clean test
data recording. In both other test data cases we split particle filter training
data and noise data, used for mixing, in disjoint sets. This offline-training
strategy is motivated by the timing knowledge of the robot’s engines.
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sults. This reveals the superiority of the deterministic solu-
tion.

5. CONCLUSIONS

We successfully applied particle filtering for feature enhance-
ment in a humanoid robot’s far distant speech recognition sys-
tem in a kitchen environment. A significant performance im-
provement in terms of WER could be shown for compensa-
tion of human speech distortion by background and engine
noises at different speaker distances for both particle filter
types (direct and vts). For a typical robot speaker distance we
could show an absolute reduction of 7.2% WER for a simulta-
neous distortion by three engine-types at about 9 dB SNR. In
contrary to our expections even undistorted speech could be
recognized at about same and even better WERs when apply-
ing particle filters trained on speech pauses. The comparison
of the vts-method with the direct-method revealed a superior-
ity of the deterministic solution.

In the future we plan to embed engine specific particle fil-
ters and their mixtures which can be switched according to the
known timing of various robot engines. Furthermore, the in-
tegration of knowledge from a kitchen sound event classifica-
tion system [15] should improve speech recognition distorted
by noises not tied to the robot’s own noise production.
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