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Abstract
We present a dialog model for identifying persons, learning per-
son names, and associated face IDs in a receptionist dialog.
The proposed model allows a decomposition of the main dialog
task into separate dialog behaviors which can be implemented
separately and allow a mixture of handcrafted models and dia-
log strategies trained with reinforcement learning. The dialog
model was implemented on our robot and tested in a number of
experiments in a receptionist task. A Wizard-of-Oz experiment
is used to evaluate the dialog structure, delivers information for
the definition of metrics, and delivers a data corpus which is
used to train a user simulation and component error model. Us-
ing these models we train a dialog module for learning a per-
son’s name with reinforcement learning.
Index Terms: dialog management, behavior models, reinforce-
ment learning, wizard-of-OZ, learning dialogs

1. Introduction
In this paper we present a dialog model which implements a
decomposition of the overall dialog task into separate dialog
behaviors. The dialog model controls the behavior of a recep-
tionist robot, which is given the task to receive persons, conduct
a receptionist dialog, identify persons and learn names and as-
sociated voice and face IDs of unknown persons. A robot that
works as a receptionist should be able to communicate with
known and unknown persons equally, verify if he knows the
person he talks to, and obtain the name of an unknown person
in a task which requires registration of a person. He should
then store collected user data to be able to recognize the per-
son again later on. Our design goal was to implement a strategy
for learning a person’s name embedded into the more complex
receptionist dialog.

The dialog model features two different types of learning.
First, it implements learning dialogs for multimodal acquisition
of new knowledge. Second, the model implements reinforce-
ment learning as an integral part of defining a dialog strategy.
As mentioned above, the dialog model suggests a decompo-
sition of the main dialog task into separate dialog behaviors.
Their coexistence allows to mix handcrafted dialog strategies
and dialog strategies trained with reinforcement learning. The
decision which behavior to select and to execute the next action
is done per situation by a situation model. All behaviors share a
common discourse, state- and slot- model and can select within
a shared action space for execution of dialog moves.

A decomposition of a dialog architecture is also proposed
by [1] who use agents for distributed interaction tasks, and
among others [2], who define agents in a hierarchical task struc-
ture. Related architectures are e.g. multimodal user registration
[3] and [4] who employ voice ID to identify people in dialog
and furthermore use reinforcement learning for this task.

Based on a Wizard-of-Oz experiment we could evaluate the

dialog structure, which provides a motivation for decomposi-
tion into separate behaviors and modules. In the following we
use the term module, when we refer to the technical implemen-
tation of a behavior or want to describe how a behavior is im-
plemented. We use the term behavior when we refer to what a
module does and describe its higher level usage. The Wizard-
of-Oz experiment also delivers information for the definition of
metrics which are important to evaluate the dialogs and later
to define reward functions for reinforcement learning. It also
delivers a data corpus which is used to train a user simulation
and component error model, used for a dialog simulation. Fur-
ther experiments were conducted with an automated system in-
tegrating insights we gained from the Wizard-of-Oz experiment
and fully implemented behavior models, and also with mixing
handcrafted strategies and optimized models trained with rein-
forcement learning. The following sections describe the dialog
architecture with dialog behaviors and experiments conducted
with the system.

2. Dialog System Architecture
The dialog architecture is based on the TAPAS dialog man-
ager, which has been developed for multimodal human-robot
communication, to control a humanoid robot, interact with it,
and support its learning. In recent experiments we have added
functionality for interactive learning, as well as proactive dialog
behavior to initiate conversations with persons [5].

The dialog manager is embedded in an integrated percep-
tual system with audio and speech recognition and visual pro-
cessing. Speech recognition is done with the IBIS decoder
[6] in JANUS using context free grammars. The speech rec-
ognizer can detect unknown words, which in our application
is especially important to recognize unknown person names.
It supports spelling recognition which is used in combination
with grapheme to phoneme conversion to learn new names. It
offers a tight integration with the dialog manager, which im-
proves context dependent natural language understanding and
allows context dependent control for switching language mod-
els and weighting grammar rules. The robot is also equipped
with visual processing which can track persons, detect and re-
solve pointing gestures, detect faces, recognize and learn face
IDs.

2.1. Discourse Model

The dialog manager receives input from these recognition com-
ponents, converts input events to semantics (e.g. natural lan-
guage understanding for speech), interprets these semantics in
the given context and updates the discourse model. A state
model contains variables representing various characteristics of
the current dialog state. Furthermore, a slot model contains
variables representing important information which have been
extracted from the dialog. The models are shown in figure 1.
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After updating the discourse, slot- and state model the dialog
strategy executes the next action(s). Different from our previous
model, in which the strategy selects matching dialog goals and
executes dialog moves to achieve such a goal, the new dialog
strategy is split into different behaviors. To allow integration
of these independent strategies, the system relies on a generic
discourse model that can be used by all strategies, which also
supports a shared context model influenced by system actions.

The discourse model is updated with generic algorithms
using unification, and an expectation model which is filled by
expectations generated by system actions. These expectations
also form a generic mechanism to weight grammar rules in the
speech recognizer and to interpret expected user input seman-
tics within the generated context [7]. The discourse representa-
tion is used by application specific updates to fill the slot model
and update the state model. While discourse representation and
context resolution algorithms are domain independent, the slot
model and its update need to be designed in accordance to the
application specific dialog model. These generic constructs as-
sist the separation of discourse update and dialog strategies and
decouples their interdependence. As we will see in the next sub-
section, also the dialog strategy and the dialog moves/system
actions are decoupled, which furthermore reduces the dialog
strategy to a state- or situation-based selection of actions. Ac-
tions in turn are linked to the expectation model and discourse
update.

2.2. Dialog Modules

After each discourse update a situation model selects a dialog
behavior to execute its strategy. Each dialog behavior is imple-
mented by a dialog module. It implements its own strategy, i.e.
each behavior has its own controller and is responsible for ac-
tion selection, but can access common actions. Each behavior
can execute lower level actions, internally represented as dia-
log moves. These moves themselves are complex enough to
generate TTS or multimodal output, influence the expectation
model and abstract over a language specific layer [7], so that
the behavior implementation is only concerned with the imple-
mentation of a strategy. By separation of concerns this allows
a completely independent implementation of each dialog mod-
ule where handwritten and statistical models can be mixed. The
switching between the dialog behaviors is implemented by a sit-
uation model which decides for each dialog state, which behav-
ior shall be applied. Integration into the architecture is shown
in figure 2b.

2.3. Reinforcement Learning of Behaviors

The previous subsections describe how to decompose a complex
dialog model into the task of controlling smaller parts. Each
such module has its own implementation and control over its
own state and action space. Thus, such a decomposition al-
lows to apply different control strategies in each module. The
first implementation of each module at first was a handcrafted
strategy following our traditional goal-oriented approach. Each
module can then separately be replaced by a different strategy.
In our experiments we replaced only the name learning mod-
ule, which qualified as the most complex one with the most ac-
tions and highest number of turns during the experiments. The
easy transition from the handcrafted strategy to the reinforce-
ment strategy is possible by a clear separation of the behavior
modules with a common discourse model, slot-model and state
space, and thus simply replaces the old module. Reinforcement
learning uses a Markov-Decision-Process (MDP) which has its

own state space. This state space is defined on top of the com-
mon slot model and state space, and is defined specifically for
each behavior, which is illustrated in figure 1.

Figure 1: State model used by the RL agent.

Following previous experiments [8], we adopted the devel-
opment process, including data collection in the WOZ-study,
user modeling, design of the MDP and reward function and
training of the dialog model in a user simulation. Details are
described in the following experiments section.

3. Experiments
In our setup the robot plays the role of a receptionist. Its task is
to wait in the corridor, greet arriving persons, find out what they
want and help them with directions. In our setup each guest has
to deliver a parcel to a predefined person. An average dialog
during the first day follows the schema: (i) greeting, (ii) system
explains what it can do, (iii) the guest says that he has to deliver
a parcel to person X, (iv) the guest is asked for his name in order
to be announced to person X, the name is learned and stored (v)
the system gives information in which room person X can be
found, optionally gives directions, (vi) after returning the guest
is asked if he could deliver the parcel, (vii) goodbye. Step (vi)
was not used in the automated experiment since it was impos-
sible to recognize persons from behind without seeing the face.
During the second day the dialog was much shorter depend-
ing on whether the person had been learned the previous day
and could be recognized. Altogether, we created 20 different
utterances as text-to-speech output. 16 of which are basic ac-
tions such as hello, request information or confirm information.
The remaining four actions shall bring the user back on track if
something doesn’t work out in the interaction, e.g. a help utter-
ance to pick up the hand-microphone for close speech, a hint to
spell fluently, or explain system capabilities. At the first inter-
action the persons don’t know that they are supposed to interact
with the robot, so the robot needs to greet the persons on its
own initiative. Figure 2a shows the view from the robot in the
corridor with an arriving person.

Figure 2: a.) truncated robot’s view in the corridor, b.) dialog
behaviors in the architecture

3.1. Wizard-of-Oz and Standalone Experiments

The first user study was conducted as a Wizard-of-Oz experi-
ment with a fully integrated system, where the wizard only re-
placed the dialog decisions. Fully integrated means automatic
person tracking and face ID, speech recognition, natural lan-
guage understanding and user model. The wizard was provided
with the spoken input, face ID hypothesis and user model, mul-
timodal ID (combining face ID and spoken name), and a view
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through the robot’s camera, all integrated into a GUI window.
An additional GUI panel provides the 20 utterances, all text-
to-speech output, to communicate with the person in front of
the robot. The utterances are predefined text strings, so that the
wizard needn’t type. Some utterances require parameters, e.g.
when asking for a name, which are automatically resolved from
the user model at execution. The camera view should have only
been used to proactively initiate a conversation (engagement)
when the person first arrives and after delivering the parcel,
plus giving information to pick up the microphone (only distant
speech activity). However, we found that the wizard was influ-
enced by the picture in making own decisions when a wrong
name or wrong face ID was recognized. The Wizard-of-Oz ex-
periment was conducted on three consecutive days with 16 per-
sons, where each person had to do one interaction per day and
went through an interview after each interaction. The data, close
and distant speech input, robot vision and system logging, were
recorded for a data corpus. The experiment furthermore serves
as a gold standard for successive automated experiments. The
same setting was later used for the automated experiment, with
8 additional persons.

3.1.1. Wizard Questionnaire

In addition to the users, also the wizard was interviewed about
which criteria were important for him to achieve by his strat-
egy and how he perceived the interactions. The goal of these
questions was to find problems with the current setup where the
results didn’t match the expectations, but even more to define
measures for dialog strategy design and evaluation. We had five
basic categories that should be scored in their importance from
-2 to 2. Table 1 shows the categories for dialog length, friend-
liness, success in learning a person’s name, naturalness and
user acceptance, rated by the wizard by his goals (Initial) and
how he perceived the dialogs after the experiment (Perceived).
Friendliness has two numbers corresponding to one setup that
was conducted with text-to-speech actions mimicking a clinical
style and the second one mimicking an empathetic style. Due
to the high difference this category was excluded from the re-
ward function. Acceptance was not important to the wizard so it
was also excluded. Thus, the three categories which the reward
function is based on are dialog length, naturalness and success.

length friendly success natural accept
Initial 1 -1/2 1 1 -1
Perceived 1 -1/2 2 -1 0

Table 1: Wizard ratings

3.1.2. Wizard-of-Oz Strategy Evaluation and Discussion

What can we learn from the conducted wizard of OZ strategy?
First, the recorded interactions show a high variation in which
actions are applied. While the wizard was pursuing one goal
at a time, e.g. obtaining a persons name, the order of these
goals varied. For example, sometimes the name was asked be-
fore asking for the (parcel) task and sometimes after it. High
variation in the order of the goals, but a very consistent strategy
in pursuing one goal at a time motivates the design of dialog
behaviors.

The predefined answers helped the wizard to respond to
the user input in time, and provided a similar and only slightly
slower response time than in the fully automated experiment
described later. The average dialog length in the Wizard-of-Oz
experiment was 16,5 turns, the automated experiment provided

comparable results, both with high variation depending if the
users were recognized by the ID component, if their names were
known or if they had to spell their names. The average interac-
tion time was 190 seconds. Out of the 16 dialogs conducted dur-
ing the first day (all unknown), 3 persons couldn’t complete the
name learning task, and 2 persons accepted a wrong name. Dur-
ing the second day one previously learned person, one unknown
person and one person who accepted a wrong name could not
be recognized. The other 13 dialog were successful. During the
third day all persons could be recognized. In this experiment
multiple names were stored that were not an exact match but
sounded similar e.g. Michhel instead of Michael.

Some aspects, what can be referred to as human meta-
knowledge, could neither be modeled in the automated experi-
ment nor in the reinforcement learning optimization. For exam-
ple, we applied spoken name recognition with unknown word
detection, and in the case of an unknown word used a spelling
recognizer with n-gram language model. The wizard sometimes
rejected spelling results produced by the recognizer as impos-
sibly being names. So despite the fact that we don’t want to
restrict the system to recognize only names within a fixed vo-
cabulary, humans apply additional guesses what can be names
and what not.

The following dialog is a sample from the experiments:
User: -approaches-
Syst: Hello?
User: -picks up microphone- Hello. ; [act hello]
Syst: How may I help you?
User: I have to deliver a parcel for Mr. Brunn. ;
User: [act deliver [RECEIVER ”Brunn”]]
Syst: To announce you to Mr. Brunn please tell me your name.
User: My name is John. ; [inform name [NAME ”OOV”]]
Syst: Please spell your name!
User: J O H N. ; [inform spelling [SPELL ”JOHN”]]
Syst: Have I understood correctly that your name is John?
User: Yes. [confirm name]
Syst: -gives room information-

3.1.3. Segmentation of Dialog Behaviors

For the second, fully automated experiment, we segmented the
dialog task into the following behaviors: hello, reception-task,
learn-name, room-info-and-goodbye. While in the previous ex-
periment the text actions were selected by the wizard, now the
dialog behavior which is selected by the situation model de-
cides which action to take, as described in section 2, using the
completed discourse model and dialog moves. Criteria for the
segmentation were that all can be found in the wizard dialogs,
that they form a partition of each dialog and that they minimize
switching between behaviors. Each dialog behavior was imple-
mented as a goal based strategy which selects a dialog move to
execute. The suggested decomposition into modules seems ap-
propriate. While the automated system uses a fixed set of rules
which doesn’t allow variation in the order of the behaviors for
a given dialog state, it applies a different order if the person is
recognized by face ID during the first few turns. The behaviors
themselves show a high similarity to the segmented wizard’s
strategy.

3.2. Reinforcement Learning

After the first standalone experiment was conducted we started
to optimize the dialog strategy by reinforcement learning. Here
the modularization of the dialog model provides the basis to
apply reinforcement learning single dialog modules. For rein-
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forcement learning the learn-name module was selected. The
modules task is verification of recognized persons and learning
of names for new persons. The Module selects among actions to
ask to speak the name, confirm a name, confirm a name where
only face ID is given, ask to spell the name, help to spell flu-
ently, and finally the decisions to accept a name or to abort the
learning dialog without a result. Details of training exceed the
scope of this paper and will be presented elsewhere.

3.2.1. Reward Function

Important for reinforcement learning is its reward function. It
emerged on most parts from the wizard’s feedback. The wiz-
ard rated length, success and naturalness highest. The reward
function gives a high bonus (+20) for successful dialogs (name
could be confirmed or be learned) and negatively rewards failed
dialogs (-15) and incorrectly stored names (-30). Currently no
difference is made between successful learning and successful
confirmation. For name that are almost correct, we assigned
a medium reward. These are names with a low Levenshtein
distance to the real name (+10 for distance 1; 0 for distance
2). Further improvements should be possible with a low Leven-
shtein distance based on phonemes. To address ’dialog length’,
each turn is negatively rewarded by -1. For the category ’nat-
uralness’ subjective criteria need to be considered, from user
feedback we found that repeating the same question is unnat-
ural as are long dialogs. The first case also receives negative
reward of -1, the second case is already negatively rewarded by
dialog length. Some persons also perceived specific confirma-
tion questions as unnatural. For confirmation of face ID, when
no spoken name input was given, ”did I understand correctly
that your name is X?” was negatively rewarded and ”you are X,
right?” preferred in this case.

3.2.2. Training in User Simulation

Reinforcement learning of dialog strategies requires large
amounts of data. This is problematic for dialog systems since
usually real dialogs cannot be collected in such a magnitude.
One way to solve this problem is to train the dialog strategy in a
simulated environment which simulates user behavior as well as
behavior of the system’s recognition components (errors mod-
els). For strategy training we created a simulated environment
using similar mechanisms as developed in previous work [8].
Once such models are created they can be used for reinforce-
ment learning of the dialog strategy. For creating these models
real data is required, which is provided by the Wizard-of-Oz ex-
periment. The user simulation estimates a bi-gram probability
for the user’s speech act given the system’s speech act, esti-
mated from transcribed data. p = P (actionuser|actionsystem)

The input speech acts however, which are perceived by the
system, have a higher variation due to errors made by the recog-
nition components. The error model is thus modeled separately
and is applied to the output of the user simulation. Typical er-
rors in the receptionist system are incorrect recognitions like
wrong spelling hypotheses, and speech segmentation errors.

In addition to speech input, the dialog system’s ID com-
ponent obtains face ID input which is provided by the simula-
tion as a sequence of images for each turn, and currently also
voice ID is integrated. For both ID components, samples of real
recorded data is replayed in simulation by concatenating snip-
pets of recorded data. To keep training time short, further op-
timizations are possible in pre-calculating classification results
which are then actually used during simulation. A dialog turn
with this configuration now takes roughly 2 ms on a standard 3

GHz Pentium processor.

4. Conclusion and Outlook
We have presented an approach for decomposition of a complex
dialog strategy into smaller ”behaviors” which are selected via a
situation model. Each behavior is implemented as a dialog mod-
ule which contains its own dialog strategy, either a handcrafted
one or optimized by reinforcement learning. The decomposi-
tion into modules was motivated by a Wizard-of-Oz experiment,
which furthermore was used to create a reward function and to
collect a data corpus from which a user simulation and compo-
nent error models are trained. It provides an appropriate means
for separation of concerns and allows a mixture of reinforce-
ment models and handcrafted dialogs.

The conducted experiments and user feedback suggest im-
provements of some recognition components, but also the in-
tegration of additional features for the dialog, e.g. to prevent
interruption of the user. The user ID model is a straightforward
implementation, we expect further improvements with an inte-
grated multimodal user ID model, further voice ID integration
and improved unknown person detection. While this paper fo-
cuses on the decomposition of the dialog and the implementa-
tion of behaviors, we are currently working to extend the control
methods for behavior switching.
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