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Abstract— In this paper, we present an algorithm for real-
time multi-person tracking with a humanoid sensor head featur-
ing a stereo camera and multiple microphones. The proposed
algorithm works with a dynamic combination of simple but
fast features, which allow us to cope with limited on-board
resources. By using a combination of democratic integration and
layered sampling it can deal with deficiencies of single features
as well as partial occlusion using the very same dynamic fusion
mechanism. Both audio and video signals are processed to form
a joint attention map of the surroundings. This map allows us
to initialize tracks automatically and to control the robot’s focus
of attention dynamically.

I. INTRODUCTION

Humanoid robots are defined by their human-like appear-
ance as well as by their ability for human-like interaction. A
basic prerequisite for this interaction is the ability of a robot to
localize people in its surroundings. In this paper, we present a
system for real-time person tracking using an on-board stereo
camera in conjunction with 2 or more microphones. The video
data is used for accurate 3-d localization of people, whereas
the audio information is used for attention shifts of the robot
head towards the sound source.

Person tracking with on-board cameras poses a number of
challenges that we will address specifically:
• The tracking range varies from close distance, where the

portrait of the user spans the entire camera image, to far
distance, where the entire body is visible and the user’s
face becomes as small as 10× 10 pixels.

• The on-board computational resources are limited and
cannot be used for person tracking exclusively.

• Tracks for a varying number of users have to be created
and terminated automatically.

In order to tackle the aforementioned problems, we present
a multi-cue integration scheme embedded into the framework
of particle filter-based tracking. It is capable of dealing with
deficiencies of single features as well as partial occlusion by
means of the very same dynamic fusion mechanism. A set of
simple but fast cues is defined, allowing to cope with limited
on-board resources.

The choice of cues is a crucial design criterion for a tracking
system. In real-world situations, each single cue is likely to fail
in certain situations such as occlusion or background clutter.
Thus, a dynamic integration mechanism is needed to smooth
over a temporary weakness of certain cues as long as there

Fig. 1. Head of the humanoid ARMAR-III [1]. It is equipped with two stereo
cameras and six microphones.

are other cues that still support the track. In [16], Triesch
and Von Der Malsburg introduced the concept of democratic
integration that weights the influence of the cues according
to their agreement with the joint hypothesis. The competing
cues in [16] were based on different feature types such as
color, motion, and shape. In this paper, we use the principle
of democratic integration in a way that also includes the
competition between different regions of the target object. We
show that this allows us to deal with deficiencies of single
feature types as well as with partial occlusion using one joint
integration mechanism.

The combination of democratic integration and particle fil-
ters has been approached before by Spengler and Schiele [15].
In their work, however, the integration weights were held
constant, thus falling short behind the real power of democratic
integration. This has also been pointed out by Shen et al. [13],
who did provide a cue quality criterion for dynamic weight
adaptation. This criterion is formulated as the distance of
the tracking hypothesis based on all cues and the hypothesis
based on the cue alone. The problem with this formulation is
that, due to resampling, the proposal distribution is generally
strongly biased toward the final hypothesis. Thus, even cues
with uniformly mediocre scores tend to agree well with the
joint mean of the particle set. We therefore propose a new
quality criterion based on weighted MSE, that prefers cues



which actually focus their probability mass around the joint
hypothesis.

Democratic integration combines cues in the form of a
weighted sum. In a particle filter framework, this means
that all cues have to be evaluated simultaneously for all
particles. As pointed out by Pérez et al. [11], this can be
alleviated by layered sampling, if the measurement modalities
are ordered from coarse to fine. In the proposed algorithm, we
therefore combine two-stage layered sampling with democratic
integration on each stage to increase efficiency by reducing the
required number of particles.

For each object to be tracked, we employ one dedicated
Condensation-like tracker [2]. By using separate trackers in-
stead of one single tracker running in a joint state space, we
accept the disadvantage of potentially not being able to find
the global optimum. On the other hand, however, we thereby
avoid the exponential increase in complexity that typically
prevents the use of particle filters in high-dimensional state
spaces. There are a number of approaches dealing with this
problem, such as Partitioned Sampling [8], Trans-dimensional
MCMC [14], or the Hybrid Joint-Seperable formulation [6].
Although these approximations reduce the complexity of joint
state space tracking significantly, they still require noticeably
more computational power than the separate tracker approach.

Related work on person tracking in the domain of mobile
robots includes [3], who use democratic integration to track
faces and objects based on motion, color and shape. They
track in the 2D image space by fusing saliency maps as
in [16]. In robotics, cameras are often used in combination
with other sensors. For example [9] use cameras as well as
ultrasonic and infrared sensors. They detect and track humans
with an MCMC sampling scheme. In the work of [5], multiple
people are tracked based on face detection, acoustic source
localization and laser range finder data.

The remainder of this paper is organized as follows: In
section II, we briefly describe the concept of particle filters
and layered sampling. In section III we present our multi-
cue integration scheme, which is the main contribution of this
paper. It is followed, in section IV, by the definition of the
cues used in the live tracking system. In section V, the multi-
person tracking logic including automatic track initialization
and termination is described. Section VI outlines the acoustic
source localization, and section VII combines visual and
acoustic stimuli into a joint attention map. Finally, section VIII
shows the system in operation.

II. PARTICLE FILTER-BASED TRACKING

Particle filters represent a generally unknown probability
density function by a set of random samples s(1..n)

t and
associated weights π(1..n)

t with
∑
π

(i)
t = 1. In one of the

simplest cases, the Condensation algorithm [2], the evolution
of the particle set is a two-stage process which is guided by
the observation and the state evolution model1:

1The time index t is omitted for the sake of brevity wherever possible.

1) The prediction step (including resampling): randomly
draw n new particles from the old set in consideration
of their weights, and propagate them by applying the
state evolution model p(st|st−1).

2) The measurement step: adjust the weights of the new
particles with respect to the current observation zt:
π

(i)
t ∝ p(zt|s

(i)
t ).

The final tracking hypothesis for the current time instance
ŝt can be obtained from the sample set as

ŝt =
∑
i=0..n

π
(i)
t s(i)

t (1)

A. Layered sampling

Assuming that z is made up of M conditionally independent
measurement sources, the observation likelihood of a particle
s can be factorized as:

p(z|s) =
∏

m=1..M

p(zm|s) (2)

According to [11], the state evolution can then be decomposed
into M successive intermediary steps:

p(s|s′) =
∫
pM (s|sM−1) · · · p1(s1|s′)ds1 · · · dsM−1 (3)

where s1 · · · sM−1 are auxiliary state vectors. In case of a
Gaussian evolution model, this corresponds to a fragmentation
into M successive steps with lower variances. This leads to
a layered sampling strategy, where at the m-th stage new
samples are simulated from a Monte Carlo approximation
of the distribution pm(sm|sm−1)πm−1 with an associated
importance weight πm ∝ p(zm|sm). As [11] point out,
the benefit of layered sampling arises in cases where the
measurement modalities can be ordered from coarse to fine.
Then, the layered sampling approach will effectively guide
the search in the state space, with each stage refining the
result from the previous stage. We will apply layered sampling
in section V in combination with the multi-cue integration
scheme described in the following.

III. DYNAMIC MULTI-CUE INTEGRATION

In the Bayesian tracking formulation used in this work, cues
have the function of scoring the match between a state vector s
and the observation z. A joint score combining different cues
c ∈ C can be formulated as a weighted sum

p(z|s) =
∑
c∈C

rcpc(z|s), (4)

where pc(z|s) is the single-cue observation model, and rc is
the mixture weight for cue c, with

∑
c rc = 1.

A. Democratic integration for particle filters

Democratic integration [16] is a mechanism to dynamically
adjust the mixture weights, termed reliabilities, rc with respect
to the agreement of the single cue c with the joint result. For
each cue, a quality measure qc is defined that quantifies the
agreement, with values close to zero indicating little agreement



and values close to one indicating good agreement. The
reliabilities are updated after each frame by a leaky integrator
using the normalized qualities:

τ ṙc =
qc∑
c qc
− rc, (5)

with the parameter τ controlling the speed of adaptation.
In the original paper [16], tracking is implemented as an

exhaustive search over a support map, and the quality measure
is defined over a single cue’s support map. In [13], a different
quality measure dedicated to particle filters is proposed: Based
on the current particle set s(1..n) and an auxiliary set of weights
π

(1..n)
c ∝ pc(z|s(1..n)), a tracking hypothesis ŝc is generated

according to eq. 1 and compared to the joint hypothesis ŝ.
The L2-norm distance |ŝc - ŝ| is normalized by means of a
sigmoid function and then taken as quality measure.

Although this formulation looks straightforward, there is
a problem associated with it: Imagine the common situation
where a cue finds little or no support at all, and therefore
assigns equal likelihood values to all of the particles. Let’s
assume further that the state of the target has not changed for
a while, so that in consequence, due to resampling, the particle
distribution is equally spread around the actual state. In this
case, the cue-based hypothesis ŝc will be close to ŝ resulting in
a high quality value qc despite the fact that the cue is actually
not at all able to locate the target. To eliminate this problem,
we need a quality measure that describes how well the
probability mass agglomerates around the joint hypothesis ŝ.
We found the following weighted MSE formulation to be an
appropriate quality measure for democratic integration:

qc =

( ∑
i=1..n

π(i)
c (s(i) − ŝ)T (s(i) − ŝ)

)−λ
(6)

The exponent λ > 0 can be used to tweak the volatility of the
quality measure.

B. Generalized cue competition

In order to allow for a fruitful combination, the set of
cues should be orthogonal in the sense that different cues
fail under different circumstances. One way to achieve this
is to use different cue-specific feature transformations F(z)
like motion, color, or shape. Failure of one feature can thus
be compensated by cues relying on other features.

pc(z|s) = pc(F(z)|s), (7)

The other option to generate orthogonal cues is to use dif-
ferent state model transformations A(s), for example different
projections from state space to image space.

pc(z|s) = pc(z|A(s)), (8)

This is motivated by the fact that cues relying on certain
aspects of the state vector may still be used while other aspects
of the state are not observable. This could for example happen
in a situation, where due to partial occlusion a certain region of
the target object can be observed, while another region cannot.

In this work, we aim at combining the advantages of both
strategies, i.e. dynamically combining cues that are based on
different feature types as well as dynamically weighting cues
that focus on different regions of the target but are based
on the same feature type. Therefore, we use a generalized
definition of the cues c = (F ,A) that comprises different
feature types F(z) and different state transformations A(s):

pc(z|s) = pF,A(F(z)|A(s)), (9)

All cues in this unified set will then compete equally against
each other, guided by the very same integration mechanism.
Thus, the self-organizing capabilities of democratic integration
can be used to automatically select the specific feature types as
well as the specific regions of the target that are most suitable
in the current situation.

C. Cue model adaptation

Certain cues, such as color models or templates, allow
for online adaptation of their internal parameters to better
match the current target appearance. In [16], this adaptation
is described as a continuous update process with a fixed time
constant τc:

τcṖc = P̂c − Pc, (10)

with Pc being the internal parameters of cue c, and P̂c being
a new set of new parameters acquired from the image region
given by the joint hypothesis ŝ.

D. Cue normalization

The likelihood functions pc(z|s) of different cues can differ
strongly in terms of responsiveness and in the absolute range
of values. One cue could, for example, produce a spiky output,
whereas another cue might exhibit a higher ambient value.
Combining the raw response from pc(z|s) as weighted sum (cf.
eq. 4) would then be problematic. Therefore, we normalize the
cues using their average response statistics µc and the standard
deviation σc:

pc(z|s)←− max(0, pc(z|s)− µc)
σc

(11)

The values of µc and σc can either be learned from training
data, or, as in our case, be acquired at runtime by continuously
drawing random samples from the entire image, i.e. from
mainly non-target regions.

IV. FAST CUES FOR 3D PERSON TRACKING

As the humanoid’s computational on-board resources are
strictly limited, cues have to be found that rely on features that
can be evaluated rapidly but still have the power to segment
people from background. Our proposed cues are based on the
following well-known feature types: difference image, color
histogram back-projection, Haar-feature cascades and stereo
correlation. While the first two features are known to be fast
enough for real-time applications, we will show how to apply
detector cascades and stereo correlation in a way that the
computational complexity is low and well scaled to the specific
needs.



Fig. 2. The 3-box model of the human body: the state vector s is transformed
into the image space as the projection of a cuboid representing either the
head, torso, or leg region. The projection of the cuboid is approximated by a
rectilinear bounding box.

As motivated in section III-B, we use different transforma-
tions of the state vector in order to handle partial occlusion:
some cues focus on the human head region only, whereas other
cues concentrate on the torso and legs region respectively.
These regions are determined using the ”3-box model” of the
human body depicted in Fig. 2. The real-world extensions of
the 3 cuboids are geared to model an average human being;
their relative positions depend on the height of the head above
the ground plane. As all regions in our system are rectilinear
bounding boxes, the sum of pixel values inside the regions
can be calculated efficiently by means of 4 table-lookups in
the integral image [18].

By combining the 4 different feature types with the 3
different body parts, we obtain a total number of 13 cues that
will be described in the following.

A. Motion cues

The difference image can be considered as a short-time
background model that requires the camera to be static only
for two successive frames. It is generated by pixel-wise
thresholding the absolute difference of the current frame’s and
the previous frame’s intensity images. For a moving object,
we can expect high values of the difference image both in
the region around object’s current location x, as well as in
the region around the object’s previous location x− ẋ. Thus,
the response of the motion cue is based on the amount of
foreground pixels within the regions in question.

We employ 3 motion cues, termed M-H, M-T and M-L,
dedicated to either the head, torso or legs region as depicted
in Fig. 2. We rely on the ability of the integration mechanism
(see section III) to automatically cancel the influence of the
motion cues in case of camera motion. This is justified by
the fact that the agreement of the motion cues with the final
tracking hypothesis will drop whenever large portions of the
image exceed the threshold.

B. Color cues

We employ three adaptive color cues C-H, C-T, C-L for the
three body regions. For each of the cues, we use a dedicated
323-bin histogram in RGB color space that automatically

adapts to the target region using the mechanism described
in section III-C. A second histogram is built from the entire
image. It acts as a model for the background color distribu-
tion. The quotient histogram of the target histogram and the
background histogram is back-projected and forms the support
map for a color cue. The response of the color cue is based
on the sum of pixels within the histogram back-projection.

C. Detector cues
The face detection algorithm proposed by Viola and

Jones [18] employs simple features that can be efficiently
computed using the integral image. In the original approach,
a variable-size search window is repeatedly shifted over the
image, and overlapping detections are clustered. Thus, the
number of detector runs required for each scale grows quadrat-
ically with image size, making video-rate processing of high-
res images computationally expensive.

In the proposed particle filter framework however, it is
not necessary to scan the image exhaustively: the places to
search are directly given by the particle set s(1..n), which by
definition is an optimal prior for the target’s location. For each
particle, the head region is projected to the image plane, and
the bounding box of the projection defines the search window
that is to be classified. Thus, the evaluation of a particle takes
only one run of the classifier.

The response of the detector cue is based on the maximum
overlap between the particle’s query region and all positively
classified regions from the whole particle set.

We use four detector cues in total: one for frontal faces (D-
F), one for left (D-L) and one for right (D-R) profile faces,
and one for upper bodies (D-U). Implementation and training
of the detectors is based on [4], [7] as provided by the OpenCV
library.

D. Stereo correlation cues
In traditional stereo processing [12], a dense disparity map

is generated by exhaustive area correlation followed by several
post-filtering steps. The result are the z-values of those image
pixels which lie within sufficiently textured regions. Apart
from the computational effort of generating a dense disparity
map, there is another, more fundamental problem, namely
the choice of the size of the area correlation window. If a
windows is too large, it smoothes over fine details, if it is
too small, it tends to produce noisy results. For particle filter-
based tracking, however, this issue can be solved in an elegant
way: it is the function of the stereo cue to verify that an
object exists at the hypothesized target location s. For this
purpose, it uses the entire target region A(s) as correlation
window and searches for optimal correlation along the epipolar
lines. The response of the stereo cue is then given by the
inverse distance of the discovered disparity d̂(A(s)) and the
hypothesized disparity d(A(s)).

The complexity of the local search for the disparity d̂(A(s))
is scale-invariant because it can be implemented efficiently
by means of integral images, as proposed by [17] for dense
disparity calculation. We employ 3 stereo cues, one for the
head (S-H), torso (S-T), and legs (S-L).



1st layer:
• resample s

(1..n)
t−1 wrt. π(1..n)

t−1

• propagate with partial evolution model (cf. eq. 3)
s
1,(1..n)
t ←− p1(s

1,(i)
t |s(i)

t−1)

• evaluate stereo cues: π1,(i)
t ∝

P
c∈CS

rcpc(z|s1,(i)
t )

• apply collision penalty: π1,(i)
t ←− π1,(i)

t − v(s1,(i)
t )

2nd layer:
• resample s

1,(1..n)
t wrt. π1,(1..n)

t

• propagate with partial evolution model (cf. eq. 3)
s
(1..n)
t ←− p2(s

(i)
t |s

1,(i)
t )

• evaluate regular cues: π(i)
t ∝

P
c∈CR

rcpc(z|s(i)
t )

Dem. integration:
• calculate track hypothesis ŝt =

P
i π

(i)
t s

(i)
t

• update reliabilities (cf. eqs. 5 and 6)
rc∈CS ←− ŝt, s

1,(1..n)
t , π

1,(1..n)
t

rc∈CR ←− ŝt, s
(1..n)
t , π

(1..n)
t

Fig. 3. Two-stage layered sampling algorithm with democratic cue integra-
tion.

V. MULTI-PERSON TRACKING LOGIC

As motivated in the introduction, we run one dedicated
particle filter for each person to be tracked. The state space
consists of the location x and velocity ẋ of the person’s
head centroid in 3-dimensional space: s(i) = (x(i), ẋ(i)).
The state evolution p(st|st−1) is implemented as a 1st-order
motion model with additive Gaussian noise on the velocity
components.

A. Democratic integration and layered sampling

Multi-cue integration as described by eq. 4 is suitable for all
kinds of cues that are optional for the target, which means that
the target may or may not have the property implied by the cue
at the moment. There are, however, cues that are indispensable
as track foundation and therefore must not be ruled out by the
fusion mechanism. In our application, this applies to the stereo
cues: a track should not be able to exist if it is not supported
by at least one of the stereo cues as these represent strict
geometrical constraints. One way of ensuring this would be
to multiply the response of the stereo cues with the response
of the regular cues. A more efficient way is layered sampling
as described in section II-A. We use it to evaluate the stereo
cues CS ⊂ C before the regular cues CR ⊂ C, as shown in
Fig. 3. By evaluating the mandatory stereo cues first, followed
by a resampling step, the resulting particle set s1,(1..n)

t clusters
only in those regions of the state space that are well supported
by the stereo cues. The particles on the second stage can now
more efficiently evaluate the regular cues.

Apart from the geometrical constraints implied by the stereo
cues, there is a another strict constraint, namely the collision
penalty, which is enforced in the 1st layer of the algorithm
in Fig. 3. The function v(s) penalizes particles that are close
to other tracks. Thereby, we guarantee mutual exclusion of
tracks.

B. Track initialization

The question of when to spawn a new tracker and when to
terminate a tracker that has lost its target is of high importance,
and can sometimes become more difficult than the actual
tracking problem. In our system, we define the quality measure
for a tracker to be the joint response from both stereo and
regular cues at the tracker’s hypothesis ŝ:

Q(ŝ) =
∑
c∈CS

rcpc(z|̂s) ·
∑
c∈CR

rcpc(z|̂s) (12)

This formulation of Q(ŝ) is feasible because the cues are
normalized using their statistics µc and σc (section III-D). The
final quality measure Q is a result of temporal filtering with
a time constant ν:

νQ̇ = Q(ŝ)−Q (13)

Trackers falling below a certain threshold Q < Θ for a certain
amount of time Γ will be discarded.

In order to discover potential targets, we employ an ad-
ditional tracker termed visual attention tracker. The atten-
tion tracker permanently scans the state space, searching for
promising regions. It is, however, repelled by existing tracks
by means of the collision penalty v(s). Unlike regular trackers,
50% of the attention tracker’s particles are not propagated by
means of the state evolution model, but are drawn randomly
from the state space. This guarantees good coverage of the
state space and still allows some clustering around interesting
regions. As the attention tracker must remain general, its cues’
parameters are not allowed to adapt. After each frame, the
distribution of the attention tracker’s particles is clustered
with a k-means algorithm. If one of the clusters exceeds the
threshold Θ, a new regular tracker is initialized at that location.

VI. ACOUSTIC SOURCE LOCALIZATION

For the task of person tracking on a mobile robot, acoustic
source localization has some drawbacks compared to visual
localization: it is limited to speaking people, it gets distracted
by non-speech noises, and the localization accuracy especially
along the z-axis (distance to robot) is lower than for visual
tracking. On the other hand, the advantage of acoustic source
localization lies in its ability for permanent 360◦ covering of
the surroundings. Furthermore, an acoustic event is a strong
indication for the existence of a person at a certain direction.
For these reasons, we use acoustic source localization not as
an additional cue for the scoring of regular tracks, but rather as
a central component of the robot’s focus-of-attention control
mechanism (see section VII).

In order to localize acoustic events, we evaluate the space
of possible sound sources in the surroundings of the robot by
means of dedicated particle filter named the acoustic attention
tracker. Like for the visual attention tracker, 50% of the
particles are drawn randomly at each time instance, while the
remaining 50% are propagated regularly.

Given a pair of microphones and a hypothesized speaker
position x, the speech signal arrives with a certain time delay
of arrival (TDOA) τ(x) depending on the spatial geometry



of the setup. To measure how well the signals from a given
microphone pair support the hypothesis of a sound source at
τ(x), we calculate the phase transform (PHAT) [10], which
can be expressed as

R(τ(x)) =
1

2π

∫ ∞
−∞

X1(ejωτ(x))X∗2 (ejωτ(x))∣∣X1(ejωτ(x))X∗2 (ejωτ(x))
∣∣ ejωτ(x) dω

(14)
where X1(ω) and X2(ω) are the Fourier transforms of the
signals of the microphone pair.

The observation model p(z|x) of the acoustic attention
tracker given a particle x and the acoustic observation z is
defined by interpreting the PHAT as a pseudo probability
density function. We integrate the scores from all those mi-
crophone pairs M(x) that are exposed to direct sound given
the particle’s location x:

p(z|x) ∝ 1
|M(x)|

∑
m∈M(x)

S(Rm(τm(x))) (15)

with S being a function that cuts off negative values and
smoothes the PHAT.

In addition to the acoustic attention tracker, we also evaluate
the positions of all regular tracks with the acoustic observation
model. If a significant correlation can be observed at a track’s
position, we assume that the respective person is currently
speaking.

VII. ATTENTION-BASED HEAD CONTROL

Natural head control for a humanoid robot requires selecting
one of many competing targets for the robot’s focus-of-
attention. In the framework of person tracking, the task is to
find and to follow people with the camera head in order to
keep track of the surroundings. In addition, a humanoid robot
should signal its interest in a human communication partner
by actively focusing him or her – while ignoring the rest of
the scene. The decision rules for head control in this situation
can be classified into two categories:
• Top-down: Focus on one of the existing tracks. Prefer

people that are likely interaction partners because they
are speaking, standing close to the robot, facing the robot,
etc.

• Bottom-up: Focus on the source of a visible or audible
event in order to discover new people. Scan areas that
have not been observed for a while.

Due to the conflicting nature of these requirements we
propose to integrate all factors that influence the robot’s focus-
of-attention in a joint multi-modal attention map. The attention
map (see Fig. 4) is a 2-dim histogram in the discretized space
of all possible pan/tilt positions. The value of a bin represents
the attractiveness of the respective viewing direction. For each
frame, the attention map is generated as follows:
• The particle distributions of all tracks are projected onto

the attention map. Each bin’s value increases by the
accumulated particle weights π(i) of all particles falling
into the respective bin. A sigmoidal weighting function
is used to boost the influence of particles that are close to

camera coordinate system

pan

tilt

0°

0°

-180° 180°

-30°

30°

field of view

x

y

z

Fig. 4. The attention map is a 2-dim histogram in the discretized space of
all possible pan/tilt positions.

the robot. Another boosting factor is applied to particles
belonging to the track that is currently speaking.

• The particles of the acoustic as well as of the visual
attention tracker are likewise projected to the attention
map. The attention trackers represent information about
visual or acoustic events that are currently below the track
level, but may become a regular track in the future.

• Before processing the next frame, the bins outside the
current field-of-view (FoV) are multiplied with an aging
factor fo < 1. The bins inside the FoV are multiplied
with a stronger aging factor fi < fo < 1. As a result, the
non-observed regions become more and more attractive
over time – unless a strong attractor within the current
FoV compensates the effect.

After each frame, the attention map is searched for a pan/tilt
position that maximizes the bin values in a neighborhood
having the size of the FoV. To prevent the system from shifting
the focus too frequently, positions far away from the current
pan/tilt position are penalized by means of a sigmoid function.
The influence factor of this penalizing function reduces over
time to allow for big attention shifts every once in a while.
After such a big shift, the influence factor is reset again to a
prohibitively high value.

VIII. EXPERIMENTS

Overall, the tracker showed solid performance throughout
our experiments. Critical situations for track loss – although
it occurred rarely – were periods in which the user rested
virtually motionless either at far distance or in a turned-away
position, so that in consequence the detectors did not respond.
Then, the tracker had to rely solely on the automatically initial-
ized color models, which were not always significant enough.
A bigger issue were phantom tracks that were triggered by
non-human motion or false detections. They were sometimes
kept alive for some seconds by the color models which adapted
to the false positive region.



A. Implementation details

In the implementation, we made the following modifications
to the algorithm: The color cue for the head region (C-H)
is expected to converge to general skin color; its model is
therefore shared among all trackers. None of the 3 boxes
depicted in Fig. 2 was used for the upper body detector; instead
the detector employs an additional box-type that comprises
head and upper half of the torso. To avoid dominance, we
limited the range for a cue’s influence to 0.03 ≤ rc ≤ 0.5. We
found, however, that these situations rarely occur. Boxes that
get projected outside the visible range or that are clipped to
less than 20% of their original size, are scored with a minimum
score of 0.001. The approximate runtime of the algorithm was
20ms per frame for an empty scene, plus another 10ms per
person being tracked. These values are based on an image
size of 320× 240 pixels, and a 2.4GHz single core CPU. The
number of particles was n = 100, the track threshold was set
to Θ = 2.5.

B. Example sequences

The first video sequence, comprising 5148 frames in total,
was recorded in an office: a person stands, sits, walks around,
and pretends to have a conversation with the robot head from
time to time. The camera motion is controlled by a human
operator. Figure 5 discusses the evolution of cue reliabilities
for a selected interval of sequence 1.

Sequence 2, comprising 886 frames, was recorded without
camera motion. It shows two people walking around at a
distance of 1-6m from the camera; they sometimes leave the
visible range or walk behind the cabinet in the center of the
scene. Fig. 6 shows a snapshot from this sequence. Track loss
occurred when a person was not visible for more than about
3s. A new track got initialized as soon as the person entered
the scene again.

The attention map is work-in-progress and could not be
evaluated methodically yet. Fig. 7 shows a snapshot from an
attention map at runtime. Both effects like smooth pursuit
of people as well as sudden attention-shifts could well be
observed.

IX. CONCLUSION

We presented a complete 3-d person tracking system for
a humanoid robot head. It implements a new approach for
dynamic cue combination by combining the concepts of
democratic integration with layered sampling, and enables a
generalized kind of competition among cues. Cues based on
different feature types compete directly with cues based on
different target regions so that the self-organizing capabilities
of democratic integration can be fully exploited. The proposed
stereo and detector cues demonstrate the increase in efficiency
that lies in particle filter-based tracking: the sampled repre-
sentation of the search space allows for local evaluation of
features that would otherwise be expensive to process.

The same consideration led to the development of the audio-
visual attention trackers: instead of searching the state space
exhaustively, the attention trackers sample the search space

and cluster around the most promising regions. For humanoid
head control, we proposed a multi-modal attention map that
fuses both top-down knowledge like the positions of the known
tracks as well as bottom-up stimuli which are below the
track level. Future work is needed to reduce the number of
parameters involved in the composition of the attention map
to a small set of descriptive factors.
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Fig. 5. Evolution of cue reliabilities in sequence 1. The cues are grouped with respect to their feature types. The three stereo cues constitute the 1st layer
of the algorithm, their reliabilities sum up to 1. The remaining ten cues are used in layer 2 and sum up to 1 likewise. In the beginning of the interval around
frame 2000, we can observe that the three motion cues gain influence as the person starts walking. This is compensated a moment later when the camera starts
to move in order to follow the person. Throughout the selected interval, the detector cues are the most dominant ones because the person is close enough
for the detectors to respond. Exceptions are frames 2100-2150, where motion blur prevents detections. The automatic invalidation of body regions can be
observed twice for the legs region of the stereo cue: the first time around frame 2200 when the person gets occluded by the desk, and a second time around
frame 2400 when the person stands in front of the camera in a way that the legs region is unobservable.

a) left cam. image b) diff. image c) color person 1 d) color person 2 e) detectors f) plan-view

Fig. 6. Snapshot from sequence 2. In c) and d), the color support maps for head, torso and legs of the respective person are merged into the red/green/blue
channels of the image. Image f) is a plan view of the ground plane displaying the particle distribution of the two active tracks; the camera is located at the
origin of the depicted coordinate system.

Fig. 7. Attention map at runtime. The green box in the center represents the robot’s current field-of-view. The system proposes an attention shift towards
an acoustic stimulus at approx. 90◦ to the right (yellow box). The horizontal belt of medium bin values (shades of red) stems from random a/v attention
particles that explore visually un-observed regions. The resolution of the attention map was chosen to be 4◦ in both pan and tilt.


