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ABSTRACT
Sentence segmentation and punctuation recovery are critical compo-
nents for effective spoken language translation (SLT). In this paper
we describe our recent work on sentence segmentation and punctua-
tion recovery for three different language pairs, namely for English-
to-Spanish, Arabic-to-English and Chinese-to-English. We show
that the proposed approach works equally well in these very different
language pairs. Furthermore, we introduce two features computed
from the translation beam-search lattice that indicate if phrasal and
target language model context is jeopardized when segmenting at a
given word boundary. These features enable us to introduce short
intra-sentence segments without degrading translation performance.

Index Terms— Spoken Language Translation, Tight Coupling,
Sentence Segmentation, Punctuation Recovery

1. INTRODUCTION

Spoken Language Translation (SLT) is traditionally separated
into two independent components; Automatic Speech Recognition
(ASR) and Machine Translation (MT). Within this pipeline, ASR
provides an error-prone, audio segmented stream of non-punctuated
words. In contrast, the majority of MT training data consists of non-
speaking style bilingual text data with proper sentence segments and
punctuation marks. To address the mismatch between ASR output
and MT training data, it is possible to transform the ASR output
towards the style of MT training data (punctuation recovery, disflu-
ency removal, etc.). Another possibility is to transform MT training
data towards the style of ASR output (punctuation removal, spelling
out of numbers and dates, etc.) or to apply a mixture of both ap-
proaches. Sentence segmentation of ASR output and punctuation
recovery prior to translation play a major role in this transforma-
tion process. Besides tackling the mismatch between ASR output
and MT training data, sentence segmentation and punctuation re-
covery allows for better readability of the translation and may im-
prove downstream language processing. Both of these benefits can
be achieved by either inserting punctuation marks on the target side
after translation or recovering punctuation on the source side.
In this paper we describe our sentence segmentation and punctuation
recovery scheme applied to our GALE [1] 2007 Arabic-to-English
(Ar→En) and Chinese-to-English (Ch→En) SLT systems. Begin-
ning with our sentence segmentation / punctuation recovery sys-
tem used during the TC-STAR [2] 2006 and 2007 evaluations, we
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first develop and test this scheme on our TC-STAR 2007 English-
to-Spanish (En→Sp) SLT system and then transfer it to our GALE
systems. Our approach introduces sentence segments marked with
full stops as well as shorter, non-punctuated intra-sentence segments
on the first-best ASR hypotheses. Further, it recovers commas on
the target side during the translation process by applying modified
phrase tables. In the second half of this paper, we introduce two
novel features that indicate if phrasal context and target language
model (LM) context is jeopardized when segmenting at a given word
boundary. We analyze these features in the context of human style
sentence segmentation and in the context of intra-sentence segmen-
tation for machine translation.

2. EXPERIMENTAL SETUP

2.1. Data

Our experiments on En→Sp used the official ASR hypotheses files
that were provided during the TC-STAR 2006 and 2007 evaluations
for the SLT task. These two data sets are referred to as TC-Star06
and TC-Star07, respectively in this paper. ASR hypotheses were
generated by rovering the ASR system outputs from the individual
TC-STAR participating sides. Both evaluation sets had a WER
(lowercase) of 6.9%. Translation references were case sensitive and
included two references per source sentence.
For Ch→En and Ar→En two evaluation data sets, dev-Test and
eval06, were used. These sets were extracted from the shadow
data included in the ROSETTA team ASR output of the GALE
2007 evaluation. For Chinese, dev-Test consisted of 23K characters
from the official 2007 development set and eval06 consisted of 8K
characters from the 2006 evaluation set. The CER was 10.5% and
17.1%, respectively. For Arabic dev-Test consisted of 8K running
words from the 2007 development set and eval06 consisted of 9k
running words from the 2006 evaluation set. The WER was 12.1%
and 21.7%, respectively. Translation references for the Ch→En and
Ar→En data were lowercase and consisted of only one reference
per source sentence.

2.2. TC-STAR 2007 SMT System

The UKA TC-STAR 2007 En→Sp translation system for the SLT
task was trained using the parallel European Parliamentary Speeches
(EPPS) corpus provided within TC-STAR. Phrase tables were es-
timated via the GIZA++ toolkit [3] and University of Edinburgh’s
phrase model training scripts [4]. Part-of-speech based (POS) word
reordering was applied to the source side prior to translation. During
decoding a 4-gram LM built with the SRI LM toolkit and a 6-gram



TC-Star06 TC-Star07
baseline 38.70 / 46.21 36.57 / 45.58
fully mod. 39.23 / 45.84 38.29 / 45.39
mixed 40.16 / 45.57 39.00 / 45.22

Table 1. BLEU / TER scores for target side punctuation recovery
via modified phrase tables on En→Sp.

suffix array LM, both trained on the Spanish side of the EPPS corpus,
were applied. A detailed description of a UKA/CMU SMT system
using the same architecture can be found in [5].

2.3. GALE 2007 Spoken Language Translation

For the GALE 2007 evaluation task, end-to-end SLT systems were
developed for Ch→En and Ar→En language pairs. For transcrip-
tion, multiple ASR systems were combined by applying cross-
adaptation and confusion network combination. Phrase-based SMT
systems were trained using an approach similar to that of the above
mentioned TC-STAR system. For the Chinese and Arabic systems,
no POS based reordering was applied. Instead, word reordering
which assigns higher costs to longer distance reorderings was used.
For the experiments reported in this paper, a reordering window of 4
and 2 was used for the Ar→En and Ch→En systems, respectively.

2.4. English Baseline Sentence Segmentation

The UKA/CMU sentence segmentation system [6], as it was used for
the En→Sp SLT task within TC-STAR, inserts a full stop, comma or
no punctuation mark at a given word boundary Bi based on the local
language model context wi−2Bi−1wiBiwi+1Bi+1wi+2. Bi−1 is
the boundary / punctuation mark type estimated in the previous step
i − 1 and for Bi+1 all possible punctuation are being considered.
An empirically estimated rule based on pause duration was used to
constrain the insertion of punctuation marks. If the pause duration p
is within 0.03s < p ≤ 0.7s punctuation is estimated via the LM. A
full stop is inserted for p > 0.7s. The LM was trained on the English
EPPS corpus and segmentation was tuned to minimize WER.

3. COMMA RECOVERY VIA MODIFIED
PHRASE TABLES

Punctuation recovery for speech translation can be performed either
on the source side before translation or on the target side, during
or after the translation process. In [7], the insertion of punctuation
marks during the translation process is achieved by removing punc-
tuation marks from the source side of the phrase table while retain-
ing punctuation on the target side of the phrase table. It is pointed
out that source punctuation should not be removed prior to word-
alignment, since this may negatively affect alignment accuracy.
We compare this approach to the source side punctuation recovery
performed in English baseline sentence segmentation (baseline), as
described in Section 2.4. We investigate the target side recovery of
full stops and commas (fully modified) as well as a mixed approach
(mixed) in which we insert full stops on the source side before trans-
lation and commas on the target side during translation. In both
cases, source sentence segmentation is defined by the baseline sen-
tence segmenter, i.e. the input to MT differs only in the retained
punctuation marks. The effectiveness of the two approaches com-
pared to the baseline system is shown in Table 1. The mixed ap-
proach obtained the highest translation quality.
For the Ch→En and Ar→En GALE systems similar improvements

dev-Test eval06

Ch→En baseline 8.31 / 80.45 8.72 / 77.82
mixed 8.77 / 79.58 10.09 / 76.64

Ar→En baseline 19.46 / 61.02 13.51/ 67.82
mixed 21.25 / 60.05 15.30 / 68.13

Table 2. BLEU / TER scores for target side comma recovery via
modified phrase table on Ch→En and Ar→En.

TC-Star06 TC-Star07
En baseline segm. 40.16 / 45.57 39.00 / 45.22
mWER segm. 41.40 / 44.11 41.25 / 42.82
dec tree segm. 40.30 / 45.25 39.50 / 44.66

Table 3. Translation performance in BLEU / TER on En→Sp for
tuning towards human style segmentation.

in translation accuracy were gained when applying the mixed ap-
proach (see Table 2). For the GALE systems, no baseline sentence
segmentation was available. For this reason, we inserted full stops
at the end of each audio segment. Subsequent experiments in this
paper are conducted with accordingly modified phrase tables.

4. DECISION TREE BASED SENTENCE SEGMENTATION

4.1. Tuning towards Human Segmentation

In order to train a machine learning based sentence segmentation
system, a set of ’ground truth’ training examples is required. In this
work we use punctuated ASR hypotheses during both training and
testing. We automatically align the ASR hypotheses to the human
provided transcripts by applying Universität Aachens multi word er-
ror rate (mWER) segmentation tool [8]. Thus, we achieve a human
style segmentation of the ASR hypotheses towards which we tune
the automatic sentence segmentation. Table 3 compares translation
accuracy for the En→Sp system when translating mWER (human
style) segmented ASR hypotheses, ASR hypotheses that were auto-
matically segmented using the English baseline segmenter and hy-
potheses that were automatically segmented using the decision tree
based segmenter. Table 4 gives a similar comparison for the Ch→En
and Ar→En systems. Since we did not have a baseline sentence
segmentation available for Arabic and Chinese, we compare here
towards the ASR audio segmentation. The results show that it is
desirable to tune the automatic sentence segmentation towards a hu-
man style sentence segmentation. In the following section we use
F-Measure to compare the quality of a computed segmentation to
the human style segmentation.

4.2. Feature Selection and Rule Creation

Our improved sentence segmentation architecture is based on a deci-
sion tree that uses multiple features computed for each boundary. We
use J.R. Qinlan’s C4.5 induction system [9] for decision tree training
and rule extraction. We trained decision trees on different feature set
combinations for the individual languages and selected the decision
tree / feature set combination that yielded the highest F-Measure in
regards to the human style segmentation. For English, we trained
the decision tree on the TC-Star06 ASR hypotheses and the final
feature set combination consisted of word duration of the word pre-
ceding the current boundary, pause duration and LM probabilities
for comma and full stop insertion (with the same local context as
described in Section 2.4).



dev-Test eval06

Ch→En Ch audio segm. 8.77 / 79.58 10.09 / 76.64
mWER segm. 9.38 / 78.82 10.97 / 75.46
dec tree segm. 8.92 / 79.58 10.73 / 75.97

Ar→En Ar audio segm. 21.25 / 60.05 15.30 / 68.13
mWER segm. 21.80 / 59.11 15.96 / 66.97
dec tree segm. 21.40 / 59.67 15.53 / 67.71

Table 4. Translation performance in BLEU / TER on Ch→En and
Ar→En for tuning towards human style segmentation.

TC-Star06 TC-Star07
En baseline segm. 54.79 52.48
dec tree segm. 65.97 62.14

Table 5. F-Measure of old and new automatic sentence segmentation
for English.

For Chinese, we trained the decision tree on shadow data included
in the ROSETTA team 2007 ASR dry-run. This data consisted of 6
shows from the 2006 development set and of the second half of the
2007 development set that was not included in dev-Test. For Arabic,
we used 4 shows from the BNAD05 data set. For both languages, the
final feature set combination consisted of pause and word duration as
well as LM probabilities for full stop insertion. For Arabic, we also
included a prosody based feature. Specifically, we encoded pitch in-
formation by combining pitch and delta pitch values in the vicinity
of 700 milliseconds of the candidate boundary. We also included the
signal power values in the same region as well as total signal power
on either side of the boundary. As high dimensional features cause
data sparsity problems and result in overfitting of the decision tree,
we reduced the dimensionality by training a SVM based classifier
on these features. We then used the scores of the SVM classifier as
features within the decision tree. The same prosody based features
were also considered for English and Chinese sentence segmenta-
tion. However, for these languages we did not observe any further
improvements in terms of F-Measure. Tables 5 and 6 compare the
F-Measures of the decision tree based sentence segmentation with
the F-Measures of the respective baseline segmentation. BLEU and
TER scores are listed in Table 3 and 4.

5. INCORPORATING PHRASAL AND TARGET LM
CONTEXT DURING SENTENCE SEGMENTATION

Different source side sentence segmentations lead to different source
phrase matches and different target side language model histories
during translation. Possible word and phrase re-orderings during
translation are also affected. Thus, translation quality is directly
influenced by source side sentence segmentation. For a better in-
tegration of source sentence segmentation and phrase based MT, we
apply knowledge derived from the translation beam-search lattice.
The motivation is not to break up source phrases that are valuable
for MT and also to pay attention to the target LM context during

dev-Test eval06

Chinese Ch audio segm. 30.75 31.59
dec tree segm. 59.16 53.38

Arabic Ar audio segm. 33.89 37.50
dec tree segm. 40.97 43.41

Table 6. F-Measure of ASR audio segmentation and automatic sen-
tence segmentation for Chinese and Arabic.
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Fig. 1. Percentage of sentence boundaries compared to the absolute
number of boundaries (words) within different phrasal split-point
probability ranges p.

sentence segmentation.
To compute a score indicating if phrasal context or target LM context
is jeopardized when segmenting at a given word boundary, we apply
a sliding window of 24 words with a step size of 6 words on the ASR
output. For each step, we translate the 24 word sentence and com-
pute two probabilities, phrSP and tbiSP , for each of the 11 word
boundaries between the innermost 12 words. These two probabilities
are computed from the translation lattice used by our beam-search
decoder. The edges in this lattice correspond to source words and
phrases (together with their translation) and the nodes to the bound-
aries between these words and phrases. The phrasal split-point prob-
ability phrSP for a given word boundary is computed as the number
of paths going over its corresponding node divided by the number of
paths visiting its node. We consider only the n-best pathes, i.e. the
n-best translations. A phrasal split-point probability of one indicates
that the word boundary is always seen between two source phrases
in the n-best translations. Introducing a segment boundary at such a
point should therefore not negatively affect possible phrase matches
during translation. The target LM split-point probability tbiSP is
computed only for word boundaries with phrSP > 0 and is based
on bi-gram probabilities. For all m word boundaries that are found
to lie between two phrases, the target LM probability tbi of the bi-
gram formed by the last word of the left source phrase and the first
word of the right source phrase is computed. If the target LM does
not include an according bi-gram, a bi-gram probability of 0 is as-
sumed. tbiSP is defined as: tbiSP = 1− (

∑m tbi)/m.

5.1. Experimental Evaluation

We analyzed the correlation of the phrasal split-point probability
phrSP with actual sentence boundaries. We computed phrSP for
all word boundaries found in the human transcriptions of the TC-
Star06 set using the 100-best translations. We then selected six
split-point probability ranges. For each range, we computed the per-
centage of sentence boundaries compared to the absolute number
of boundaries within the range. Figure 1 shows the result. While
a high phrasal split-point probability does not necessarily predict a
sentence boundary, a low phrasal split-point probability seems to be
a strong indicator of a non-sentence boundary. However, augment-
ing our decision tree based sentence segmentation with phrSP as an
additional feature did not lead to any significant improvements. We
repeated a similar experiment for the target LM split-point probabil-
ity tbiSP . No clear correlation between tbiSP and human sentence
boundaries could be found.

6. INTRA-SENTENCE SEGMENTATION

Since the computed phrasal split-point probability indicates safe
segmentation points in regards of MT phrase table knowledge, we
examined the impact of introducing shorter intra-sentence segments
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Fig. 2. BLEU scores for different segment lengths and different con-
straints on comSP . For the experiments marked with *, we retained
the target LM context after each translation sentence.

at these split points on MT performance. The motivation for this was
on the one hand the demand of our confusion network translation
for short source segments in order to keep memory consumption
and run-time within reasonable boundaries. On the other hand,
we followed the results presented in [10]. Here, it was shown that
significant improvements in BLEU can be gained when introducing
intra-sentence segmentation on top of given sentence boundaries.
To perform intra-sentence segmentation, we further segment
the output generated by our decision tree based segmenter, by
constraining the maximal allowed segment length. Each segment
longer than this maximal allowed segment length is repeatedly
split until the constrained is fulfilled. Only word boundaries
with a combined phrasal and target LM split-point probability
comSP = a ∗ phrSP +(1−a) ∗ tbiSP bigger or equal than x are
considered and the final split point is selected with regards to pause
duration and LM information. If no word boundary within the given
segment fulfills the constraint comSP ≥ x, the word boundary
with the highest combined split-point probability is selected.
We computed BLEU and TER scores for different maximal segment
lengths l with the combined split-point probability (a = 0.5)
constrained to comSP ≥ 0.75 and without any constrained on the
combined split-point probability, i.e. comSP ≥ 0.0. Results in
BLEU for the En→Sp system on TC-Star06 are shown in Figure 2.
Due to decoder constraints, we only used a 4-gram SRI LM during
translation, thus the overall translation performance is slightly lower
than in Section 4. The results show that a significant advantage for
computing comSP is only given when creating short segments of
less then 20 words per segment. However, for these small segment
length we already observe a significant overall loss in translation
performance due to the disrupted target LM context. For this reason,
we changed our decoder to retain the LM state after decoding a
sentence. By doing so, we are now able to constrain the maximal
segment length to 30 words without any significant loss in BLEU
(0.09 absolute) and with even a small improvement in TER (0.07
absolute). Furthermore, the degradation in MT performance for
short segments of less than 20 words is now significantly smaller.
While such short segments are not of interest for traditional SLT
systems, they are necessary in the context of real-time translation
systems. As described in [11], such simultaneous MT systems
require a continuous input of small and usefully translatable
ASR hypotheses ’chunks’ in order to achieve an acceptable MT
performance while maintaining low latency.

7. CONCLUSION

We described our sentence segmentation and punctuation recov-
ery scheme for spoken language translation. By applying modified
phrase tables for implicit target side comma recovery during transla-
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Fig. 3. Improvements in BLEU by applying our sentence seg-
mentation and punctuation recovery scheme on our 2007 TC-STAR
(eval07 data set) and GALE 2007 (eval06 data sets) systems.

tion and by introducing a decision tree based sentence segmentation
for insertion of full stops on the source side, we significantly im-
proved translation performance on three language pairs. Detailed
results in BLEU are summarized in Figure 3. Furthermore, we in-
vestigated two novel features indicating if phrasal context and target
language model context is jeopardized when segmenting at a given
source word boundary. Incorporating these features enabled us to
realize an intra-sentence segmentation that constrains the maximal
segment length to 30 words without degrading translation perfor-
mance and to achieve a graceful degradation in translation perfor-
mance when translating short segments of less than 20 words. Such
short intra-sentence segments are of interest for real-time translation
systems where translations have to be provided with a low latency.
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