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ABSTRACT
An object can be a basic unit for multimedia content analy-
sis. Besides similarity among common objects, each object
has its own unique characteristics which we cannot find in
other surrounding objects in multimedia data. We call such
unique characteristics object fingerprints. In this paper, we
propose a novel approach to extract and match object fin-
gerprints for multimedia content analysis. In particular, we
focus on the problem of street landmark localization from
images. Instead of modeling and matching a street land-
mark as a whole, our proposed approach extracts the land-
mark’s object fingerprints in a given image and match to a
new image or video in order to localize the landmark. We
formulate matching the landmark’s object fingerprints as a
classification problem solved by a cascade of 1NN classifiers.
We develop a street landmark localization system that com-
bines salient region detection, segmentation, and object fin-
gerprint extraction techniques for the purpose. To evaluate,
we have compiled a novel dataset which consists of 15 U.S.
street landmarks’ images and videos. Our experiments on
this dataset show superior performance to state-of-the-art
recognition algorithms [20, 33]. The proposed approach can
also be well generalized to other objects of interest and con-
tent analysis tasks. We demonstrate the feasibility through
the application of our approach to refine web image search
results and obtained encouraging results.

1. INTRODUCTION
The goal of multimedia content analysis is to extract se-

mantic meanings from the multimedia data such as a video
sequence with an accompanying audio track. Unlike a text
document, we do not have ”key words” in understanding a
multimedia document. In order to analyze video data, we
need some explicit structures. An object is something mate-
rial that may be perceived by the senses and it can be a basic
unit at the lowest level of such a structure. In video analy-
sis, many algorithms can be largely categorized in detectors,
such as face detector [34], text detector [32], and person de-
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Figure 1: An example from our street landmark
dataset. Model image resolution is 1280×960, while
test video frame’s is 320×240. Two images are re-
scaled to be equal size. In this example, it is even
hard for human eyes to recognize the Taco Bell sign
from clutter in (b) with knowledge of (a). But our
approach is able to localize the sign in video with
object fingerprints which this paper proposes.

tector [16], etc. Simple detectors can form a more complex
detector, e.g., a face detector and a shot classifier can be
combined as an anchor detector. Therefore object detection
plays an important role in multimedia content analysis.

Object detection determines whether or not the object is
present, and, if present, determines the location and scale
of each object in an given image. The challenge of this task
is largely because of the infinite combinations of scale, ori-
entation, viewpoint, lighting, and many other factors. To
model such variations, a machine learning algorithm usu-
ally requires extracting a number of features at every pixel
based on the statistics of the surrounding pixel values. For
example, we could train a good face detector using a large
number of data [34]. For some content analysis applications,
however, we might not have enough training data. For ex-
ample, we frequently must deal with only one query image.
In this research, we are interested in object recognition and
localization with very limited training data (e.g., one image
per object for training). An application of such a problem is
street landmark localization which is important to location-
aware multimedia applications and in-car navigation tasks.



In daily life, a street landmark means anything that is
easily recognizable, such as a monument, a building, a store
sign, or other structure [2]. In this research, we refer to
street landmarks as objects that can be used for giving di-
rections for driving navigation. In an urban environment,
commonly used street landmarks include gas stations, fast
food restaurants, and churches, etc. The research is a part
of our efforts in developing landmark-based navigation tech-
nologies for drivers. Current GPS based navigation systems
provide turn-by-turn instructions, e.g., turn left in 50 feet.
However, human drivers often use landmarks for helping
navigation. For example, we tell people to turn left after
a BP gas station and then make a right at Starbucks. The
application scenario is as follows: John is going to visit his
sister Linda in another city, to which John is new. To help
John, Linda sends him some street landmark images of her
city on his route to her place. John will drive a car with
a video camera that can capture the scene in front of his
car. We would like to build a system that could help John
to automatically recognize these landmarks from the video
sequence. We assume that only one image per landmark is
available for training in this task. In addition, the training
images and the test video sequences always have different
quality and resolution. An example from such a scenario is
shown in Fig.1.

Although street landmark localization from video is an
object recognition problem, many object recognition algo-
rithms [23, 34, 27] may not work well for this application
because of the special characteristics of the problem. A fun-
damental challenge is lack of training data. Other challenges
include rigid object recognition with different viewpoints,
scale and illumination changes, partial occlusion, and mis-
matching resolutions between the model and testing images,
which also prohibit us from directly applying Content-Based
Image Retrieval algorithms [4, 18] and sub-image retrieval
methods [13] to this task. In order to address these chal-
lenges, we propose a unified approach for learning a model
based on a given landmark image such that the system can
recognize the landmark from a new street scene image. Our
main insight is to identify a set of features that are unique to
the landmark which we call fingerprints, and consider find-
ing any fingerprints in a new image as recognition of the
landmark.

We believe both appearance and context information of
the landmark are crucial for landmark recognition. However
we hypothesize that we do not need all the information to
model the entire landmark in order to recognize it. Rather,
we believe that the recognition of the landmark’s fingerprints
such as the star shape in the center of BP sign (Fig.2(a)),
suffices to provide a robust recognition of the landmark. The
contributions of this paper are:

• We propose a new landmark recognition approach by
mining and matching landmarks fingerprints. Appear-
ance and bag of features are surprisingly useful in gen-
eral object recognition [29]. We combine them to ex-
tract unique fingerprints of a given landmark. Given
a new image containing the landmark, our approach
not only recognizes the landmark, but also estimates
its scale and pose.

• Sliding window scanning is commonly used in object
recognition, however, more researchers have advocated
the use of image segmentation to get better spatial sup-
port for recognition. Inspired by [21], we use multiple
segmentations to extract landmark patches.

• We conduct extensive experiments to test our approach.
We compile a new and challenging street landmark
dataset of 15 U.S. street landmarks. Our approach
demonstrates promising results on this dataset.

• We demonstrate the proposed approach can be gener-
alized to other content analysis tasks through the ap-
plication of our object fingerprint-based approach to
refine web image search results and achieve improved
ranking outcomes.

2. RELATED WORK
To achieve robust object recognition from images and

videos, several approaches have been proposed [20, 7, 22]
to exploit object appearance and geometrical information.
Meantime, object detection has made tremendous progress
over past years in various directions: real-time deformable
object detection [24] and application of geometric scene con-
text for detection [9]. Location recognition has also been
recently studied using local feature descriptors in the con-
text of mobile phone cameras [19] and in the context of a
moving camera on a car [27]. Most of these pioneer works,
however, require modeling of the whole object, and recog-
nition is performed by matching the learned object model
to a new image. In contrast, our approach represents an
object by a set of object fingerprints and does matching of
fingerprints instead of the whole object.

On the other hand, recognizing a street landmark from
a moving camera is a difficult task because of combined ef-
fects of egomotion, blur, constantly changing illuminations
and restricted image quality. In addition, only one model
image is provided which invalidates many successful object
recognition techniques, such as algorithms requiring a cer-
tain amount of training data. While face recognition from
a single image has been extensively studied [34] and detec-
tion of pedestrians and vehicles has been successfully demon-
strated [17], little attention has been focused on recognition
of street landmarks, a large class of street objects.

Road signs are an important and special class of street
landmarks and have attracted much attention in various
fields in the past decade [23, 5]. Road signs provide drivers
with important and necessary information about the road
and navigation. They are designed to be easily recognizable
by human eyes through high-contrast patterns and colors.
Recent research has demonstrated promising road sign de-
tection results [32]. However, to recognize and localize gen-
eral street landmarks, road sign recognition methods may
not work well because general street landmarks have very
diverse patterns and usually do not contain text.

Feature phrases can effectively improve image indexing,
retrieval, and recognition [35, 36]. A bag of SIFT features
for an image has been successfully used in a text retrieval ap-
proach for object matching in videos [29]. Other directions
have been also pursued for object search in videos [11, 16].
Some recent research has utilized local features and SIFT de-
scriptors to match place-of-interest images or logos [14, 26],
among which the EXTENT system was proposed for auto-
mated photograph annotation [25] and focused on historic
buildings, a different problem from ours. Very recently, in
the data mining community, researchers have started investi-
gating frequent spatial patterns in images [15] for clustering
images, but not for recognition.

One close effort to ours is Ferencz, et al. [8] which has only
one image for training but ample data to train a category
classifier. While the two approaches agree in general princi-



Figure 2: Given a model image of the object that is marked in a red box (a), our method first extracts salient
features to select object fingerprints. Here three bigram fingerprints of the BP sign are shown in (b). For a
new video frame (c), our method first detects salient regions [9] (d) and extracts SIFT keypoints [17] Canny
edges and segmentation patches [5] to obtain (e)-(g) in which it matches the selected object fingerprints. (h)
shows the matched object part and estimated object boundary.

ple, our approach provides a different solution to recognize
street landmarks from one training image, while [8] focuses
on car and face instances. Furthermore, our approach ap-
plies multiple segmentations to extract patches, which has
been shown to give better spatial support for recognition
than regular patches [21], which are used by [8].

3. SELECTING OBJECT FINGERPRINTS
FOR CONTENT ANALYSIS

We highlight in this section key ideas of our object fingerprint-
based content analysis approach applied to street landmark
localization. Fig.2 provides an overview of core steps of our
approach. Let us first define how recognizing a seen land-
mark from an input image can be formulated as a object fin-
gerprint matching problem. During training, we construct
a set ∆ = δ1, ..., δM of M object fingerprints lying on the
landmark. Object fingerprints of an object are defined as
a list of selected feature phrases such as bigram edges, bi-
gram patches, and triplet keypoints which are unique to
the object. At runtime, given an input image Fig.2(c), we
first detect salient regions by removing backgrounds as in
Fig.2(d) and then decompose the image into a set of fea-
tures Fig.2(e)-(g) from which we want to decide whether or
not they contain the selected object fingerprints. In other
words, by representing the object through M object finger-
prints we transform the landmark recognition problem to a
fingerprint matching problem Fig.2(h). The underlying as-
sumption of our approach is each selected object fingerprint
represents the object identity.

Variations of object scale and viewpoint are challenging
issues in this problem. Keypoints have been shown to be
effective for matching object within certain scale changes,
while shape and appearance features can tolerate more scale
variations. By combining the two, we may achieve robust
feature combinations. In other recognition tasks, there is
usually a large set of training data available. However, in
our task of street landmark localization, it is impractical to

obtain many images per street landmark. Most likely, we
have only one image per landmark. In order to achieve ro-
bustness against viewpoint, scale, and illumination changes,
we synthesize many images of the landmark using a simple
rendering technique to extract robust features. The remain-
der of the paper is as follows.

Section 4 describes selecting object fingerprints from a
single object view; Section 5 presents object localization in
a new view; Section 6 presents experimental results; finally,
Section 7 gives discussions and future directions.

4. SELECTING OBJECT FINGERPRINTS
We describe here how to extract object fingerprints from

a single view of an object. We assume that only one object
exists in the view. The object location is provided by ground
truth or another algorithm. The task of learning is to start
with this single view of the object, synthesize different views
of the object, extract low-level features, and identify salient
feature phrases and select object fingerprints. The feature
phrases in our work include bigram and triplet features.

4.1 Augmenting Single Object View
The availability of object model views for content analysis

training is usually limited, and this issue pushes us to rely on
rendering new views of the object based on some geometric
assumptions. We further extract different types of image
features in these synthesized views as depicted in Fig.3. This
method allows us to easily determine stable features from
noises and perspective distortions, which in turn helps to
make matching in low quality video frames robust to changes
of viewpoint and illumination and clutter.

We focus on street landmark objects in this study. Since
most street landmarks are rigid bodies and planar in the real
world, a new view can be generated by warping the model
view of the street landmark using an affine transformation
which approximates homography. The affine transformation
can be decomposed as: H = RθR

−1
φ SRφ, where Rθ and Rφ



Figure 3: Synthesized views of the Taco Bell sign
and extracted keypoints and edges for these views.

are two rotation matrices respectively parameterized by the
angles θ and φ, and S = diag[λ1, λ2] is a scaling matrix. We
use a random sampling of the affine transformation space,
the angles θ and φ changing in the range [− 1

4
π,+ 1

4
π], and

the scales λ1 and λ2 changing within the range [0.15, 2.0].
We set [− 1

4
π,+ 1

4
π] as angle change range due to no visibility

beyond this range. We use a much large scale range because
of two reasons: 1) to select the most stable scale-invariant
features and 2) to later recognize the street landmark at
different distances. Therefore, we obtain a set of synthesized
landmark object views, K, including the model view.

4.2 Extracting Features
Local image features are basic representation blocks of an

object in images and videos. The spirit of our approach
is to identify the object’s unique fingerprints, and works
independently of any particular choice of feature detectors
and descriptors. In this work, we extract local keypoints,
edges, and patches. We choose the SIFT detector for its
robustness and rapidness [20]. Number of scales per octave
is set to be 3 and DoG thresh = 0.02. We choose Canny
edge detector to extract edges for its simplicity. Edges whose
length is greater than 20 pixels and loops whose length is
greater than 30 are selected.

It has been demonstrated that using multiple different
segmentations of the same image can improve recognition
accuracy [21]. This can be implemented if computational
complexity and speed are not concerns during training. We
choose the three most popular segmentation algorithms, Nor-
malized Cuts [28], Mean-Shift [3] and the FH algorithm
[6], to generate the ”soup of segments” for the given ob-
ject image. For Normalized Cuts, we generate 7 different
segmentations per landmark by varying the number of seg-
ments k = 5, 10, 15, 20, 25, 30, 40. For the Mean-Shift seg-
mentation, we get 9 segmentations by setting min region =
size(landmark)/15 and varying spatial band = 5, 7, 9 and
color band = 7, 14, 21. For the FH algorithm, we get 12 seg-
mentations by setting σ = 0.5, 1, 1.5, 2, k = 200, 500, 1000,
and min region = size(landmark)/15. From these 28 seg-
mentations, we let the user determine the most satisfactory
one as the landmark patch representation. Obviously, we
cannot afford the strategy of multiple segmentations on ev-
ery video frame; in contrast, we use one segmentation algo-
rithm with a single setting as described in Section 5.

We also apply SIFT, Canny detector, and Mean-Shift seg-
mentation algorithms on the synthesized set, K. For each

Figure 4: The minimal of conditional entropy
H(O|δj) indicates the most salient feature phrase
with respect to the existence of O. It is a func-
tion of x and y, the number of times δj occurs on
O and at other locations. The figure shows H(O|δj)
is minimized when δj occurs on every instance of O
and does not at any other locations.

feature, fi, which is detected in the original view we define
a missing score to measure what percentage of the feature
is not detected in K.

Γ(fi) = 1− Cj
C
, (1)

where Cj is the number of synthesized views in which fi
is present and C is the total number of synthesized views.
Γ(fi) is smaller, thus better.

4.3 Finding Salient Feature Phrases
The task of this section is to select the salient feature

phrases (which appear in the model view) about the ex-
istence of the object. This becomes extremely important
when conditions of the new object view differ greatly from
the model view and only signature information of the object
is preserved. We randomly select a set of 1000 natural scene
images from public datasets (denoted by S) as the feature
selection database.

For every image in S, we apply the same procedure to
extract SIFT keypoints, edges, and segmentation patches,
from which we determine the salient feature phrases about
O. Although this process seems computational heavy, how-
ever, we only need to perform feature extraction once, clus-
ter extracted features offline, and store constructed vocabu-
laries (one for each feature type) in memory when a new
model view comes. Intuitively, we want to find feature
phrases which occur on the landmark, but rarely or never
occur anywhere else. This intuition can be formally imple-
mented by the information gain criterion and is commonly
used for feature selection [27].

Information gain I(A|B) is a measure of how much uncer-
tainty is removed from a distribution by adding some addi-
tional information. It is defined based on the entropy H(A)
and conditional entropy I(A|B) = H(A)−H(A|B). In our
problem, information gain I(O|δj) is defined with respect to
the existence of the object O and a particular feature phrase
δj . O is a binary variable that is true when the landmark
is present and δj is a binary variable that is true when the
feature phrase δj is present. Therefore, the information gain
of feature phrase δj at presence of the object O is:

I(O|δj) = H(O)−H(O|δj). (2)



Figure 5: Extracted three types of features (a) and
select bigram object fingerprints for each type (b).

Recall that our goal is to find those feature phrases on
O which maximizing this information gain value. Since the
entropy H(O) is constant across all features on the object,
then maximizing I(O|δj) leads to minimize the conditional
entropyH(O|δj). We can computeH(O|δj) from four terms:
N ,NO, NδjO, andNδjO. The first two terms are constant: N

is the total number of images; NO is the number of object
instances. The last two terms vary with feature phrase:
NδjO is the number of times δj occurs on O. NδjO is the

number times fi occurs on other instances. Based on the
definition of the conditional entropy, H(O|δj) depends on
six probabilities and essentially is a function of N ,NO, NδjO
and NδjO. For simplicity, we substitute x and y for NδjO
and NδjO and then we have,

H(O|δj) =

−x+ y

N
(

x

x+ y
log(

x

x+ y
) +

y

x+ y
log(

y

x+ y
))

−N − x− y
N

(
NO − x
N − x− y log(

NO − x
N − x− y )

+
N −NO − y
N − x− y log(

N −NO − y
N − x− y )). (3)

This equation shows H(O|δj) is determined by a function
of x and y as shown in Fig.4. This leads to fast processing
of a new model view since we compute x on the new model
view and y by looking through the vocabularies.

4.4 Selecting Object Fingerprints
We adopt bigram and triplet features as the feature phrases,

which are our matching primitives. We allow combination
of features of different types to form a feature phrase. By
combining two or three features into a set, we increase their
discriminative power over unigram features. However, the
above definition of the conditional entropy only considers
saliency of a bigram or triplet while ignoring the robustness
of them to noises. To achieve the optimal trade-off between
selecting salient and stable features, we propose to rank ex-
tracted feature phrases by using the following value.

Figure 6: A cascade of selected object fingerprints
using 1NN classifiers. The most salient and robust
object fingerprints are selected to construct the cas-
cade. During localization, once an object fingerprint
is matched, the object will be localized.

Q(δj) = (1− µ) ·H(O|δj) + µ · Γ(δj), (4)

where Γ(δj) =
∑n
i=1 Γ(fi), fi ∈ δj , is the sum of missing

scores of each feature in δj , n = 2 for bigram and n = 3
for triplet. µ is a weighting factor. By computing Q(δj) for
extracted feature phrases on the object, we rank them in
ascending order and keep top M to form the set of object
fingerprints, ∆, for O. Fig.5 depicts the selected bigram
fingerprints for BP sign. These M fingerprints are used to
build the acceptance cascade to recognize O at runtime as
shown in Fig.6.

5. LOCALIZATION IN A NEW VIEW
Given a new view, J , our task is to detect whether the

object exists, localize where the object is, and estimate its
boundary. J can be a new image or video frame. We go
through the following steps: removing less-information re-
gions (e.g., sky and ground), extracting features, matching
the selected object fingerprints to extracted features, and
finally estimating the pose and boundary of the object if it
exists.

5.1 Saliency Detection and Feature Extraction
During training, the object location and boundary is given

by ground truth while for J we have no prior knowledge
whether the landmark exists and where it is. Instead, to
avoid greedy feature extraction on the whole image, we rely
on a simple method for visual saliency detection [10]. By
analyzing the log-spectrum of the input image, the method
extracts the spectral residual of an image in the spectral
domain and constructs the corresponding saliency map in
the spatial domain (Fig.2(d)).

We follow a similar procedure to extract image features as
we do during training. We apply a SIFT detector to extract
local keypoints which are represented by 128-dimension vec-
tors. Canny edge detector (σ = 1) is applied to extract edge
fragments. For patch features, we do not apply multiple
segmentations due to computation concern, but only ap-
ply the FH algorithm [6] by letting σ = 0.5, k = 250 and
min region = 50. This empirical setting was learned from
our experience with three segmentation algorithms. Thus,
we obtain three feature maps for J , as shown in Fig.2(e)-(g).



Figure 7: Precision recall curves using Lowe’s algorithm [17], bigram fingerprints, triplets and full model.

5.2 Localization via Object Fingerprints
For street landmark localization, we propose an accep-

tance cascade of M 1-Nearest Neighbor (1NN) classifiers in
Fig.6. Different from face or human detection using rejec-
tion cascades which combine a number of weak classifiers,
our object fingerprints-based cascade model recognizes and
localizes the object once verification occurs at any cascade
level. At each cascade level, we match the object fingerprint,
δj , to the image, J , via a pictorial model [7].

L∗δj = arg min
Lδj

(

n∑
i=1

mi(li) +
∑

(fi,fk)∈E,δj

dik(li, lk)), (5)

where L = (l1, .., ln) specifies an candidate matching feature
phrase in J to δj , where li specifies the matching location
of feature fi, fi ∈ δj . n = 2 for a bigram or n = 3 for a
triplet. (fi, fk) ∈ E, δj indicates fi and fk are connected in
δj . mi(li) measures the degree of mismatch when feature
fi is matched to the feature at location li in J . dik(li, lk)
measures the deformation of the model when fi is matched
to li and fk matched to lk. We define mi(li) as Shape Con-
text cost [1] for edge and patch features and 1− cosine(a, b)
distance metric for keypoint features (SIFT vectors). For
dik(li, lk), we choose either feature in the bigram, or the
middle feature in the triplet, as a reference point, say fi, and
its matched position in J , li. We then define dik(li, lk) as
the L2 distance from lk to fk. For triplets, the second term
in Eq.(5) is sum of deformation costs on two edges. Since
the pictorial model in our case is a two-node or three-node
tree, an efficient search algorithm [7] is applied to obtain the
minimal-distance match to δj in given J .

If the mismatch distance from δj to the minimal-distance
matching feature phrase in J (the first term in Eq.(5)) is
smaller than the sum of features’ mismatch thresholds, the
found feature phrase will be confirmed to match to δj and
the object is recognized. The mismatch thresholds for key-
points (ψk), edges (ψe) and patches (ψp) are learned from
the synthesized view set K.

The pose of the landmark can be estimated by projecting
back to the synthesized landmark views which give rise to
the minimal residual on the matched fingerprints. In order
to estimate the landmark boundary, we can either re-scale
and overlay the boundary of the synthesized view obtained
from the last step, or compute the landmark image height
from its image position, 3D height (obtained from the train-
ing image), and the viewpoint using the method introduced
in [9]. We use the first method in this work.

6. EXPERIMENTS
Due to the lack of established research in street landmark

recognition, it is difficult to obtain a standard dataset to
compare our approach with. Thus, we compile a new dataset
of 15 U.S. street landmarks including 4 categories: 1) gas
station, 2) fast food restaurant, 3) pharmacy and 4) store
(Fig.8). For each landmark, we have a single model image
and several test videos. We collected videos from a moving
vehicle, so it’s a real-world dataset. For each test video, a
human expert labels video frames which contain the street
landmark and those which do not. Precision, recall and
F1 are evaluated on the frame base. We consider a recog-
nition correct if the matched object fingerprint is within
the landmark region. The number of cascade levels are set
at M = 20. We used the UCLA implementation of SIFT
1,which are very similar to Lowe’s [20]. The vocabulary size
of each feature channel for clustering in training is set at
1000, as suggested in [31].

1http://vision.ucla.edu/∼vedaldi/code/sift/sift.html

Figure 8: Example images from our street landmark
dataset, which consists of 15 U.S. street landmarks.
(a) training images; (b)-(e) test video images.



Figure 9: (a) The number of first detections at each
cascade level on all videos. (b) The video frame
numbers when the landmark is first recognized after
averaging all videos for each landmark.

Fig.7 depicts the detection performance using precision-
recall curves on four landmark examples, i.e., 1) BP, 2) KFC,
3) CVS and 4) Lowe’s, which in general represents the de-
tection patterns of general street landmarks. Each subfig-
ure contains the precision recall curves of four detection al-
gorithms, i.e., SIFT [20], bigram only fingerprints, triplets
only, and the full model that uses both bigrams and triplets.
Parameters such asDoG thresh,match thresh, µ, ψe, ψk, ψp
are varied to obtain precision-recall curves for Lowe’s al-
gorithm and our methods.The figure shows several inter-
esting observations. First, we observe that four methods
consistently perform better on some landmarks than others.
Best performance appears for the BP sign, which can be
explained by its salient green star logo with high contrast
pattern. However, for landmarks which mainly contain text
such as CVS, four methods all perform poorly due to lack of
appropriate low-level features to capture saliency of text on
the landmark. Second, we can see that our three methods all
perform better than SIFT on these four examples. Third, for
most examples, the bigram-based method achieves higher re-
call while lower precision than the triplet method. This can
be understood by the fact that the triplet method requires
stronger verification than the bigram method. Finally, by
combining both bigram and triplet feature phrases, the full
model obtains the best performance in F1 across all exam-
ples.

To further examine the proposed algorithms, Table 1 lists
a quantitative comparison on a dataset of 15 U.S. street
landmarks. There are about 7000 labeled video frames and
images. F1 (defined as 2pr

p+r
) is reported for each landmark

using three algorithms, Lowe’s [20], Zhang’s [33]2 and our
object fingerprint-based approach. Our proposed algorithm

2We implemented the method as in [33] without motion es-
timation .

Figure 10: The effect of different µ on running time
in Log scale of seconds (a) and overall performance
of our approach on the dataset (b).

consistently performs better than two other state-of-the-art
SIFT-based recognition algorithms. Overall, the average F1

increases 32.02%, from 0.506 to 0.668. By combining both
selected object fingerprints from different feature types, our
proposed approach achieves the best performance for each
landmark. As we can see, our approach performs very well
on gas station landmarks which are generally big with salient
appearance, performs well on fast food and store categories
which also often contain signature logos or shapes. In con-
trast, pharmacy landmarks such as CVS and Eckerd only
have text in their signs, which is hard to recognize by our
approach and two other algorithms. In addition, pharmacy
signs are much smaller than other landmarks; sometimes
even hard for humans to distinguish in videos. Another ad-
vantage of our approach is to combine low level features
such as edges and keypoints with mid-level features such as
segmentation patches to detect landmarks in various scales,
which is an essential ability for street landmark localization
and other content analysis tasks. Our approach usually runs
for about half a minute processing a video frame of 320×240
on a PC with 3.2GHz CPU and 2GB RAM. Although it is
still far from real time, our approach can be applied to real-
time tasks with good sampling strategy.

Fig.9(a) depicts the number of first detections at each
cascade level for all test videos. As we can see, the majority
of test video landmarks are first detected before the 10th
level. This observation corroborates saliency and robustness
of top fingerprints selected by our approach. Fig.9(b) shows
when each landmark is usually first recognized in video. It
confirms that gas station landmarks are usually detected
earlier than other kinds of landmarks. Also, pharmacy signs
are more difficult and take longer to detect.

We have also conducted experiments to study the influ-
ence of µ on the performance of our approach and computa-
tional complexity at runtime as shown in Fig.10. We can see
from Fig.10(b) that in our dataset the best performance ap-
pears when µ = 0.012. Although this parameter is not nec-
essarily a generalized good setting for any dataset, nor does
it lead to the lowest computation complexity (Fig.10(a)), it
shows that a good trade-off between selecting informative
and robust features can achieve better results. For instance,
F1 = 0.652 when selecting the most informative fingerprints
µ = 0, is lower than F1 = 0.668 when emphasizing robust-
ness of selected fingerprints µ = 0.012.

Organization of web image search results have been re-
cently studied in the multimedia community [12]. To demon-
strate that our object fingerprint-based approach can be
generalized to other content analysis tasks, we apply our
method to refine web image search results by re-ranking re-



Figure 11: Refine web image search results by our approach. Google search results by 3 queries, i.e. BP logo,
Pizza Hut and Lowe’s, are shown. For each query, the first row shows top 10 images returned by Google and
the second row shows refined top 10 images by our method using the first returned image as model image.

turned images. We used Google image search in this exper-
iment. We assume that the No.1 returned image is correct
and use it as the model image to re-rank the rest of the top
100 images returned by Google. Instead of quitting after ac-
ceptance, we run matching through all object fingerprints in
the cascade and count the number of matched fingerprints
for each image. Use the count as the ranking score and im-
ages with same counts are ranked by their sizes. Images

Lowe Zhang F.P. ↑(%)

Shell (404) 0.512 0.480 0.689 34.57
BP (448) 0.605 0.582 0.827 36.69
Sunoco (660) 0.619 0.581 0.761 22.94
Exxon (540) 0.633 0.605 0.756 19.43
Gulf (411) 0.625 0.587 0.776 24.16

KFC (488) 0.430 0.415 0.584 35.81
Wendy’s (408) 0.448 0.429 0.608 35.71
Ta∼Bell (490) 0.667 0.637 0.815 22.19
McDona∼(519) 0.501 0.471 0.651 29.94
Piz∼Hut (492) 0.485 0.468 0.708 45.98
Arby’s (475) 0.472 0.470 0.637 34.96

CVS (415) 0.316 0.304 0.419 32.59
Eckerd (484) 0.293 0.257 0.386 31.74

Target (498) 0.469 0.455 0.740 55.22
Lowe’s (427) 0.512 0.472 0.669 27.73
Avg F1 0.506 0.493 0.668 32.02

Table 1: Performances on our dataset of 15 U.S.
street landmarks in F1 measure. Lowe uses the al-
gorithm as in [17]; Zhang use supplementary cosine
criterion as in [31]; F.P.: our approach; ↑(%) is rel-
ative improvement of F.P. over Lowe. Numbers in
the first column are numbers of test images.

with at least one matched fingerprint are included in the
re-ranking list. Fig.11 depicts the refined top results by our
approach. On the other hand, to achieve diversity of search
results, our approach can also be applied to eliminate near-
duplicates from search results.

7. DISCUSSIONS AND FUTURE WORKS
Objects are basic units for multimedia content analysis.

Much research has focused on exploring similarity among
objects and contexts for content analysis. In this paper, we
have proposed a novel approach for multimedia content anal-
ysis based on objects’ unique characteristics which we call
object fingerprints. In particular, we have demonstrated its
performance on the problem of street landmark localization.
We introduce the concept of object fingerprints to represent
salient appearances of the object as well as the geometric
relationships among local features. Another contribution of
this work is a way to deal with object recognition and lo-
calization with very limited training data. We have focused
on single landmark recognition from images. However, our
approach can be well generalized to tackle other kinds of
content analysis tasks. Our approach employs some state-of-
the-art techniques for feature extraction, and has achieved
better results than existing methods. In addition, occlusion
can be handled by matching object fingerprints at various
locations of the object as long as at least one object fin-
gerprint is matched. There is still much room to improve
the approach. We expect that using more advanced fea-
tures would boost performance. While our approach really
focuses on the content of the object given a model image,
a sound future direction is to combine context with content
for more robust recognition and localization. Some pioneer
work in this direction has been published, using image con-
text [30], geometric scene context [9], and image location



tags [14]. Another future direction is to study the impor-
tance of various features in matched object fingerprints for
different street landmarks.
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