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Abstract 
While speaker identification performance has improved 
dramatically over the past years, the presence of interfering 
noise and the variety of channel conditions pose a major 
obstacle. Particularly the mismatch between training and test 
condition leads to severe performance degradations. In this 
paper we investigate speaker identification based on data 
simultaneously recorded with multiple microphones in a far-
field setup under different noise and reverberation conditions. 
Dramatic performance degradation is observed, especially when 
training and test conditions mismatch. To address this mismatch 
we apply our robust frame-based score competition approach in 
which we combine and compete models trained on multiple 
conditions. To further improve this approach we add simulated, 
i.e. artificially created training data on a variety of noise 
conditions for additional model training. Our experimental 
results show that the extended approach significantly improves 
speaker identification performance under adverse and 
mismatching conditions.  
 
Index Terms: Speaker Identification, Far-field, Frame-based 
Score Competition 

1. Introduction 
Over the years automatic Speaker IDentification (SID) has 
developed into a rather mature technology that is crucial to a 
large variety of spoken language applications. However, SID 
systems still lack robustness, i.e. their performance degrades 
dramatically when the acoustic training data mismatch with the 
given test conditions [1][2]. Robustness is currently the major 
challenge for real-world applications of speaker recognition. 
Traditional approaches, such as Gaussian Mixture Models 
(GMM) [3][4], achieve very high accuracies for speaker 
identification and verification tasks on high-quality data when 
training and test conditions are well controlled. Unfortunately, 
real-world applications are required to handle a large variety of 
speech signals which are often corrupted by adverse 
environmental conditions (noise, interfering speech, 
background, and channel). Furthermore, we cannot assume that 
training data are provided for all relevant conditions. Thus SID 
faces the situation that models for speakers are trained on one 
particular set of conditions but have to be applied to vastly 
different (mismatched) conditions. GMM-based systems are 
known to degrade significantly under adverse and mismatched 
conditions. This performance degradation becomes even more 
severe when speech signals are captured from the distance.  
We proposed the “Frame based Score Competition” (FSC) 
approach in [5] to improve speaker recognition in far-field 
situations. In this paper we further elaborate this approach by 
adding simulated data on a large variety of noise conditions, i.e. 
we artificially create additional data by applying a filter 

approach and extend the number and variety of models for the 
competition approach. The paper is organized as follows: In the 
next section we describe the far-field database as recently 
collected at CMU. Section 3 briefly reviews the Frame-based 
Score Competition approach. We describe the experimental 
setup and results in section 4, and discuss the outcome before we 
conclude in section 5.  

2. Data and Setup 
A Far-Field Speaker Identification (FarSID) Database has 
recently been collected at Carnegie Mellon University to 
study the performance of speaker identification algorithms in 
adverse conditions, including a far-field microphone setup, 
various interfering noise sources, and reverberant room 
characteristics. Similar to the database described in [5] the 
FarSID database consists of speech recordings from multiple 
far-distant microphones as depicted in Figure 1. In addition, to 
make the FarSID database even more challenging than its 
predecessor database, we additionally recorded under various 
noise and reverberation conditions. 

The FarSID database consists of conversational speech 
recorded in face-to-face dialog sessions under two different 
reverberation conditions (small vs. medium-sized room) under 
six noise conditions per room. The noise conditions were 
applied by playing interfering noises at different Signal to 
Noise Ratio (SNR) levels (music, white noise, speech) while 
recording the respective sessions. Each condition lasted for 
about 13 minutes per session per speaker. The different noise 
conditions and their respective SNR are indicated below: 

� No noise 
� Music Noise -5 dB SNR and 10db SNR 
� White Noise -5 dB SNR and 10db SNR 
� Speaker Interfering Noise -5 dB 

In total we recorded 10 native speakers of American English, 
where each speaker is engaged by an interviewer in a 
conversation about various topics. Each speaker participated in 4 
recording sessions, two in a small and two in a medium-sized 
room, totaling to 2 hours duration per speaker. We are aware 
that the identification of 10 speakers does not pose a major 
challenge to modern SID systems typically applied to identify 
hundreds or thousands of different speakers. The purpose is 
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Figure 1: Microphone setup in the FarSID database 
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rather to study in depth the impact of our proposed algorithms to 
speech under various noise, SNR, and distance conditions before 
applying them to real-life identification problems.  
Figure 1 shows the distant microphone setup in the FarSID 
database. The right-hand side illustrates the microphone 
positioning in the 3D space. Five microphones (labeled 9 to 12 
and 14) are hanging from the ceiling or are mounted to high 
microphone stands. Seven microphones (labeled 1 to 7) are 
building a microphone array, with a distance of 5cm between 
each microphone. The microphone array and two other 
microphones (labeled 13 and 15) are set up on the table which is 
arranged between the interviewer and interviewee. In addition, 
we use two lapel microphones, number 8 worn by the 
interviewer and number 16 worn by the interviewee, i.e. the 
speaker whose identity is to be recognized. The left-hand side of 
Figure 1 illustrates the distance between the speaker (marked by 
a red “X”) and these 16 microphones. One grid unit roughly 
corresponds to 0.25 meters.  

3. Frame-base Score Competition (FSC) 
In this section we first quickly review the decision process of 
our speaker identification systems based on GMM likelihood 
scores and then summarize our FSC approach which is 
described in more detail in [5]. Let S be the total number of 
enrolled speakers and � �kXLL �|  the log likelihood score that 

the test feature sequence X was generated by the GMM k�  of 
speaker k, which consists of M mixtures of Gaussian 
distributions. Then the recognized speaker identity *S is given 
by:   

� � SkXLLS k
k

,,2,1}|{maxarg* ����      (1) 

Since the vectors of the sequence ),,,( 21 NxxxX ��  are 
assumed to be independent and identically distributed, the 
likelihood score for speaker k and model k�  is computed as 

� � � �� ���
�

N

n
knk xLLXLL

1
|| . Our multiple microphone setup 

allows us to build multiple GMM models iCH
k�  for each 

speaker k and each channel CHi, resulting in a set 
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k
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kk ���� � for k speakers and C channels.  The 

key idea of the FSC approach is to use this set of multiple GMM 
models rather than a single GMM model for the speaker identity 
decision. In each frame we compare feature vector ix  provided 
by channel hCH  to the multiple GMMs of speaker k. The 
highest log likelihood score is chosen to be the frame score. In 
this case the likelihood score of the observed features given 
speaker k is computed as: 
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Note that this process does not rely on models for the test 
channel. Also, this competition process differs from the mono-
channel scoring process in that per-frame log likelihood scores 
for different speakers are not necessarily derived on the same 
channel. 

4. Experimental Setup and Results 
The experiments reported in this paper are based on the FarSID 
database. The aim of the investigation is to demonstrate the 
robustness of our FSC approach for far-field scenarios and show 
how it addresses the challenges posed by mismatched condition, 
i.e. the fact that speaker models are applied to acoustic channel 
conditions which have not been observed during training.  For 
this purpose we train and test our approach under four scenarios, 
where each scenario is designed to be more challenging than the 
previous one and more close to the challenges for real-world 
applications. The four scenarios are described next, followed by 
the experimental results in the respective subsections. 
[Match] Matched condition: train a speaker model with data 

recorded under the same conditions as in the test case – this 
is the golden line as it reflects the best case scenario. 

[Mis-MM] Mismatched condition with Multiple Microphone 
data: train speaker models with data simultaneously 
recorded by multiple microphones that cover a variety of 
conditions but the test condition. 

[Mis-SM-k] Mismatched conditions with Single Microphone 
data and knowledge about test condition: train speaker 
models with data recorded with one microphone under one 
condition and tested on a different condition using some 
prior knowledge about the test condition. 

[Mis-SM-nk] like [Mis-SM-k] but here we varied the number of 
microphone positions involved for model training. 

The experiments were carried out on data with the first noise 
condition of the FarSID database (see section 2), i.e. distant 
speech with common background noise such as air conditioning, 
computer fans, and reverberation recorded by the 16 
microphones (as described above) in a medium-sized room. We 
selected 60 seconds of these data per speaker to train the speaker 
model. For testing we selected 30 seconds per speaker of the 
same noise condition and same room. The major mismatch 
results from the selection of the microphone positions for 
training and test, as described above. In total we had 106 test 
trials. All described experiments are conducted as closed-set 
speaker identification. Performance is measured in terms of 
identification accuracy, i.e. the percentage of correctly identified 
test trials. The applied speech features X are Mel Frequency 
Cepstral Coefficients (MFCC); the speaker models consist of 
Gaussian Mixture Models (GMM) with 64 Gaussians per model. 

4.1 Experiment on [Match] Scenario 
To get the upper bound performance, i.e. the best case scenario 
we trained and tested under the matched scenario. The second 
column of Table 1 shows the breakdown of speaker 
identification performance for each microphone position. To get 
the performance for microphone position y we trained all 
speaker models on the training trials recorded by microphone y 
and tested on the test trials recorded by microphone y.  So, on 
average we get 98.4% identification rate on 10 speakers for far-
field recordings if we assume that we know the test condition 
and that we do have recordings in this condition available for 
each speaker.  

4.2 Experiment on [Mis-MM] Scenario 
The results of the second experiment are described in column 3 
of Table 1. Here we assume that we do have simultaneous 
recordings from microphone positions 9-15. To calculate the 
performance on position 9 we train 6 speaker models per 

1894



speaker, one on each of the remaining positions 10, 11, 12, 13, 
14, and 15. For the final number given in the table we average 
over the identification rates for each of these mismatching 
conditions. We achieve 92.1% accuracy over all positions, i.e. a 
drastic drop from the matched condition.  
The fourth column in Table 1 compares this brute-force 
approach to our FSC technique. The same 6 models per speaker 
are now combined using competition at the scoring stage. As 
can been seen FSC significantly improves over the brute-force 
approach and even gets close to the [Match] performance. This 
result indicates that FSC compensates well for scenarios, in 
which recordings with multiple microphones but the matching 
one are available for a speaker. Our earlier results also showed 
that the SID performance further improves if the matching 
condition is available [5]. 

Table 1. Performance for Multi-Microphone Setup  

Test 
Microphone [Match] [Mis-MM] [Mis-MM] 

FSC  
Position 9 98.1 85.8 97.2 
Position 10 99.1 91.2 99.1 
Position 11 98.1 92.1 97.2 
Position 12 96.2 90.4 97.2 
Position 13 100.0 94.2 100.0 
Position 14 99.1 95.9 99.1 
Position 15 98.1 95.0 98.1 
Average 98.4 92.1 98.2 

4.3 Experiment on [Mis-SM-k] Scenario 
In this next set of experiments we investigate the performance of 
our FSC approach in the more realistic case where only single 
microphone recordings are available per speaker. We assume 
here without loss of generality to have training data from 
microphone position 4 [Mis-SM4]. As column 3 of Table 2 
(labeled as [Mis-SM4]) shows, the performance drops 
drastically compared to the matched and the multi-microphone 
performance. The gap is more substantial for microphone 
positions 9 – 12, which is intuitively clear as these are further 
away from microphone 4 than microphone positions 13 – 15. 

Table 2. Performance for Single-Microphone Setup 

Test 
Microphone [Match] [Mis-SM4] [Mis-SM4] 

FSC  
Position 9 98.1 57.5 84.9 
Position 10 99.1 66.0 93.4 
Position 11 98.1 68.9 93.4 
Position 12 96.2 71.7 94.3 
Position 13 100.0 94.3 97.2 
Position 14 99.1 95.3 98.1 
Position 15 98.1 93.4 97.2 
Average 98.4 78.2 94.1  

 
The key idea to make use of our FSC approach in the single 
microphone case is to simulate multiple microphone recordings 
from the single microphone data. In order to apply FSC, we 
simulated different channels from the microphone 4 speech. 
This simulation targets microphone positions 9-15 by 
convolving the source speech with the simulated Room Impulse 

Response (RIR) generated using [6]. While the RIR program 
incorporates the dependence of room impulse response on many 
different physical characteristics of the room and environment, 
we focused here on three major attributes, the room size, 
reverberation time, and distance between the speaker and the 
microphone.  
Column 4 in Table 2 (labeled [Mis-SM4]-FSC) shows the 
performance when simulating the 7 microphone positions. FSC 
on simulated channels significantly outperforms the baseline 
under mismatched conditions although it cannot beat the 
performance of FSC on real multi-microphone data “[Mis-MM] 
FSC” from Table 1. Please note that for both, the FSC on real 
multi-microphone data and on simulated multi-microphone data, 
we purposely exclude the data from the matching channel, i.e. 
we assume to not know the microphone position of the test 
condition. However, we do assume in the simulation to have 
some knowledge about possible microphone positions, i.e. the 
RIR filter do use the actual room size and reverberation time, 
and create realistic microphone distances. 

����

����

����

����

����

	����



�
�


�



�
�


	
�



�
�


	
	



�
�


	
�



�
�


	
�



�
�


	
�



�
�


	
�

�
�
�

Test Channel

������� ��������
�� 

���������
�� ���
������

 
Figure 2: SID Performance comparison under all setups 

Figure 2 summarizes our findings on the four cases, i.e. trained 
and tested on microphone 4 [Match], real multi-microphone 
conditions with FSC [Mis-MM]-FSC, single microphone 
conditions with simulation [Mis-SM4]-FSC, and the 
mismatched case [Mismatched], in which the models are trained 
on single microphone data at position 4 and applied to position 
9-15 microphones. 

4.4 Experiment on [Mis-SM-nk] Scenario 
In this final set of experiments, we compared the impact of the 
number of microphone positions on performance. We tested this 
by repeating the [Mis-SM4]-FSC experiments but this time 
applying FSC on different numbers of simulated multi-
microphone data streams. FSC6 refers to the case, in which we 
used all 6 mismatched microphone data (position 9 -15 except 
the position matched with test condition) to train 6 models. This 
corresponds to experiment [Mis-SM4]-FSC. FSC5 refers to the 
case where we used only 5 out of 6 simulated multi-microphone 
data. Since we can have 6 over 5 = 6 different choices, we 
averaged the performance over all different choices. In addition, 
we calculated the best and worst performance depending on the 
choice. FSC4, FSC3, FSC2 repeated the same experiments with 
fewer microphones giving us 6 over 4 = 15, 6 over 3 = 20, and 6 
over 2 = 15 choices, respectively. Figures 3 and 4 show the best 
and worst performance for all selections.  
As can been seen the worst selection of microphone positions 
for the data simulation does not have a significant impact on the 
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system performance compared to the best choice. In other 
words, the success of the FSC approach does not depend on a 
proper selection of microphone positions for the simulation.  
Figure 5 compares the worst, average, and best case and with the 
mismatched condition. Even in the worst case, FSC still 
significantly improves performance compared to the baseline 
performance under mismatched condition (noFSC in Figure 5). 
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Figure 3: Best performance of [Mis-SM4]-FSC 
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Figure 4: Worst performance of [Mis-SM4]-FSC 
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Figure 5: Performance summary of FSC with different number 
of channels 

5. Discussion and Conclusions 
In this paper we reported far-field speaker recognition 
performances under mismatched conditions. The aim of the 
investigation is to demonstrate the robustness of our frame-

based score competition approach (FSC) for far-field scenarios 
and show how it addresses the challenges posed by mismatched 
condition, i.e. the fact that speaker models are usually applied to 
acoustic channel conditions which have not been observed 
during training.  For this purpose we trained and tested our 
approach under four scenarios, where each scenario is designed 
to be more challenging than the previous one and more close to 
the challenges for real-world applications. The first scenario 
assumes to know the test condition, i.e. the best but most 
unlikely case. The second case assumes to not know the test 
condition but to have training samples recorded from multiple 
microphone positions for the speaker in question. Here, FSC 
significantly improves over the mismatched case, i.e. applying 
multi-microphone data gives more robustness since they cover 
multiple microphone positions and thus better prepare for the 
unknown. In the third scenario we assume to have only single-
microphone data available and compensate this lack by 
simulating multi-microphone data using room impulse response 
filters. FSC manages to still significantly outperform the 
mismatched scenario. In other words, even when only single 
microphone recordings from a speaker are available, the 
simulation of multiple microphone recordings combined with 
our FSC approach improves the overall performance 
significantly. In the last scenario we vary the selection of 
microphone positions for the simulated data and show that even 
if we make the worst choice of microphone positions, we still 
see significant improvements over the mismatched case.  
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