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ABSTRACT the power of the reverberated signal is 40 dB below its peak level
has the most damaging effect on the word accuracy of a far-field

Automatic speech recognition, which works well on recordings cap- automatic speech recognition system. Given that their duration is
tured with mid- or far-field microphones, is essential for a natural much longer than an analysis window, CMN cannot compensate for
verbal communication between humans and machines. While a these distortions. To obtain an estimate for these harmful late reflec-
great deal of research effort has addressed one of the two distor- tions, Kinoshita et al. [9] proposed to use multi-step linearprediction
tions frequently encountered in mid- and far-field sound capture, (MSLP). The resulting frame-by-frame distortion estimate behaves
namely non-stationary noise and reverberation, much less work has more like non-stationary additive distortion in the power frequency
undertaken to jointly combat both kinds of distortions. In our view, domain and thus can be easily removed through spectral subtraction
however, this joint approach is essential in order to further reduce without the need to explicitly estimate and invert the room impulse
catastrophic effects of noise and reverberation that are encountered response. This algorithm, however, is effective only against rever-
as soon as the microphone is more than a few centimeters from the beration.
speaker's mouth. We propose here to integrate an estimate of the To compensate for additive distortions as well as late reflec-
reverberation obtained by multi-step linear prediction into a particle tions it is possible to simply concatenate the different, previously
filter framework that tracks and removes non-stationary additive described, processing steps. The full potential of speech feature en-
distortions. Evaluations on actual recordings with different speaker hancement, however, can only be reached by jointly estimating both
to microphone distances demonstrate that techniques combating ei- kinds of distortions as the individual estimates are not independent
ther non-stationary noise or reverberation can be combined for good to each other.
effect.

Index Terms- speech feature enhancement, particle filter, 2. JOINT ESTIMATION AND COMPENSATION
multi-step linear prediction, joint denoising and dereveberation, FRAMEWORK
automatic speech recognition

In this section a generalized PF framework, which is capable of
jointly tracking noise and reverberation on a frame-by-frame basis,

1. INTRODUCTION is presented. The dimension of the PF which is able to track additive
distortions in the feature space is determined by the number of spec-While a great deal of research in speech feature enhancement for tral bins. To jointly consider additive and reverberant distortions the

automatic speech recognition has focused on compensating either dimensionality of the PF has to be extended. In the proposed frame-
stationary additive noise or revberbeation with a stationary room im- work the new dimensions do not represent the reverberation directly,
pulse response most of the observed distortions are non-stationary, but scaling terms of the reverberation estimate.
additive and convolutive. Those non-stationary distortions, how- An overview of the joint PF framework is given in Figure 1.
ever, can neither be represented well under the stationary assump- A corresponding outlined of the different components is presented
tions in the feature space by methods such as spectral subtraction [1] in the following sections where the steps described in Sections 2.4
or feature space adaptation (FSA) [2] nor in the model space by through 2.8 are repeated with k ) (k + 1) until all frames are
adaptation techniques such as maximum likelihood linear regres- processed or the track is lost and has to be reinitialized with the step
sion (MLLR) [3]. Hence, such non-stationary distortions are in fact described in Section 2.3.
one of the most significant problems in hands-free automatic speech
recognition.

To cope with just such non-stationary distortions, various algo- 2.1 Reverberation Estimation
rithms based on the particle filter (PF) have recently been proposed
to track distortions in speech features in logarithmic spectral or cep- In order to estimate the correlation in the speech signal Kinoshita
stral domains [4, 5, 6]. While such algorithms cope well with non- et al. [9] have proposed to use MSLP [10]. In contrast to the well
stationary additive distortions, they are not able to reduce or remove known linear prediction (LP), MSLP aims to predict a signal after a
the effects of convolutive distortions. Cepstral mean normalization given delay D, the so called step-size. With the prediction error e[n]
(CMN), on the other hand, is able to handle convolutive distortions, we can formulate MSLP as
but only those which are no longer than an observation window, typ- M
ically 32 ms or less. Tashev et al. [7] as well as Petrick et al. [8] Y[]Cmy[ - m -D] + e[n],
found that late reverberation between 50 ms and the time when

m=l
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Fig. 1. Schematics of joint particle filter estimation of additive and reverberant distortions. Solid arrows represent the flow of the sig-
nal/features. Dotted arrows represent the flow of particle information such as the particle weight and the particle values which represent either
estimates of additive distortions or estimates of the scaling factors of the estimated reverberation.

where cl, , cm represent the LP coefficients, y[n] the observed is due to a phase difference 0 between x and d. Deng et al. [12] have
signal and M the model order. The minimum mean square error shown that this phase difference is zero-mean and Gaussian distrib-
solution for the MSLP coefficients c [Cl, C2, CM]T is given uted, at least in higher mel-scaled frequencies where the central limit
by theorem holds. The second error term eenvelope is caused by the ap-

- 1 plied spectral and cepstral envelope techniques. Both error terms are
c = (E {y[n - D]y[n - D]T}) E {y[n - D]y[n]T} small enough that the approximation in (1) is sufficient.

In order to avoid any detrimental effects from using a PF of
which can be efficiently solved using the Levinson-Durbin recursion. lower dimensionality than that of the reverberation estimate, it is

An estimate of the reflection sequence r [n] can be obtained by important to use the processing chain shown in Figure 2.
filtering the observation sequence y[n] with the MSLP filter

M Distorted Signal (time domain)
r[n] = cmY[n- m - D + 1] 129

m= 1
l 129 20 20

where the delay D has been set to 60 ms in our experiments. As pro- L DCT IDCT
posed by Kinoshita et al. [9] the reflection sequence r[n] can now Lo D
be converted into short-time power spectra rk. This highly non-
stationary distortion estimate can now be treated just like an addi- Reverberation Estimate (log. frequency domain)
tive distortion and removed from the distorted sequence Yk by well
known methods, such as spectral subtraction [1]. Fig. 2. Diagram of the reverberation estimate in the logarithmic fre-

As the reflection sequence rk might still contain some correla- quency domain. STSE stands for short time spectral analysis, DCT
tion due to the speech production filter, it has been suggested to use and IDCT for discrete cosine transformation and its inverse respec-
pre-whitening prior to the estimation of the MSLP coefficients [9]. tively and MSLP for multi-step linear prediction. The small numbers
We have not observed consistent gains with this technique and thus give the dimension of the feature stream.
the pre-whitening filter has not been used for the experiments re-
ported here.

2.3. Distortion Estimation & Particles Initialization
2.2. Spectral Estimation and Working Domain

The first step in any PF framework is its initialization by drawing
The reverberant rkc and distorted YkC spectra have to be estimated for
all frames, k = 0; , K, from r[n] and y[n] respectively. In order samples from the prior particle density. In our framework, the prior
to prevent the PF to work in a very high dimensional space (in our particle density,
case the spectra, 129 bins, has been estimated by warped minimum p(po) = .(..)
variance distortionless respons [11] without a dimension reduction p(so)
by a filter bank) we decided to work in the logarithmic spectral do- is a concatenation of the prior additive distortion density p(ao) and
main after cepstral truncation to 20 dimensions. The truncated log- the prior scale density p(so) of the reverberation estimate. Unfor-
arithmic spectra was calculated by an inverse discrete cosine trans- tunately, the prior additive distortion density p(ao) can not be esti-
formation established by a simple 20 x 20 matrix multiplication. In

mated directly. It can, however, be decomposed into two densitiesthis domain the relation between the noisy observation y, the clean which can be estimated:
feature x and distortion d can be approximated by

x y+1 n(1 - dY)+e evl y + n1 - edY) (1) * The prior overall distortion density p(do) derived on silencex-y n -e ea + eenvelOpe y + n( -e ) ( )regions of the input signal which contains additive and con-
The first error term volutive distortions and

( 2cos0(Q) * theprior reverberation density p(ro) which is estimated over
eo =ln t1+ cosh {ln ID(Q) - ln |X(Q) }) all frames derived on the reflection sequence rk.
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With the prior overall distortion density and the prior reverberation 2.6. Distortion Evaluation
density it is now possible to derive the prior additive distortion den-
sity as With the prior speech density Pspeech (k) each distortion sample d

p(ao) = ln (expp(do) - expp(ro)). is evaluated according to the likelihood

The prior scale density p(so) is given by a Gaussian V(1.0, Es) (')
with mean 1.0 and a small variance term E, as we assume the re-

P
d(s)) -Pspeech(yk + ln(l - k (2)

verberation energies in the spectra to be accurately estimated. P(Yk k HGO 1 -

2.4. Particle Evolution

The evolution for each particle p(s), s = 0, ... S-1, is estimated and its normalized weight
by an autoregressive process

(s)~~~~~s (s) , r '2. P(Yk (3p(s) = Pk1P(1 + E() S

The estimate of the AR matrix Pk-I can be represented as a joint
matrix. We obtained better results, however, by considering the addi- is calculated. Note that the likelihood can only be evaluated if
tive distortion and the scale terms as independent components, such
that, d(S) < Yk,b Vb C B,

Pk ol°
otherwise the particle weight is set to zero. This causes a decimation

L Sk of the particle population which we prevent by the fast acceptance
where the additive distortion matrix Ak is recalculated for each test [14]. In this procedure, a drawn sample is only accepted if its
frame k by the dynamic autoregressive process [13]. The scale likelihood can be evaluated. Otherwise, a new sample is drawn from
terms 8k [b], b = 0, 1,... , B - 1 can either another randomly chosen particle.

* share a scaling factor

s[b] = p[B]; Sk = 1, 2.7. Distortion Compensation

adding one dimension to the PF, The clean feature is estimated with the distortion samples d(S) and
* share a scaling factor and a tiltfactor their corresponding importance weights w(s) over all particle sam-

ples S using the non-linear relationship between Xk, dk and Yk as
s[b] = p[B] + p[B + 1](b-(B + 1)/2); Skh [1 0] in [14],

which enables the lower and higher frequency bins of the E{X Y}-Y)
two dimensions to the PF, or Z~~~~EXkIY:kl Wk5 (Yk +ln(l - edPYk) (4)spectral reverberation estimate to be scaled differently, adding

two dimensions to the PF, or

2.8. Importance Resampling & Prediction Model Estimation
s[b] = p[B+b]

After every time step, the particles are resampled, in order to avoid
which doubles the dimensions of the PF. While in the previ- the concentration of the vast majority of probability mass in very few
ous approaches a random walk is used to model the evolution particles, and the prediction model,
of the scale terms, here Sk can be either modeled as a random
walk Sk = I or by a dynamic autoregressive process. Ak = E{akaUTI }E{aklaUl } , (5)

As an individual scaling of each bin significantly increases the
search space and execution time and furthermore has not been able is estimated by the dynamic autoregressive process [13]. Within this
to outperform the alternative approaches with lower dimensionality, framework the expectation of the required matrices
it will not be further investigated, however has been presented here
for the sake of completeness.

I
s

E{aka lk} ) akak_
2.5. Distortion Combination s=l
The distortion samples d(S) [b] are calculated for each particle and
pk(s) s = 0, ... S-1 and frequency bin b = 0, ..., B-1 as

dk )[b] ln{ex (h [b1 + Sh [b]exprk[b]} E{ak1l} =h)

where a[b] =p[b] represents additive distortions, s [b] represents the
scale terms and r [b] represents the spectral distortion due to rever- are calculated by a weighed summation over all additive distortions
beration. a(S), s =1,2,... ., S due to their corresponding likelihoods (2).
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Microphone CTM Lapel Table Top Wall
Distance 1 cm 20 cm 150-200 cm 300-400 cm
SNR 24dB 23 dB 17 dB 10 dB
Pass 1 2 1 2 1 2 1 2

Front-End Compensation Word Error Rate %
Additive Reverberation

power spectrum no no 11.3 9.5 12.3 10.3 18.0 14.2 45.9 30.0
warped MVDR no no 11.2 9.1 10.9 9.2 18.6 14.0 45.4 28.6
warped MVDR yes no 10.6 9.0 10.7 9.0 17.8 13.2 42.8 25.4
warped MVDR no yes 14.4 9.5 15.1 9.6 17.7 13.4 39.2 23.9
warped MVDR yes yes 12.1 9.3 13.4 9.5 17.7 13.3 38.3 23.3
warpedMVDR joint 1 11.7 9.3 11.8 9.3 17.4 12.8 37.9 22.7
warped MVDR joint 2 11.5 8.6 11.9 9.0 16.9 12.6 38.4 22.2

Table 1. Speech recognition experiments on single channel recordings with different speaker to microphone distances.

3. EXPERIMENTS AND CONCLUSION [4] M. Fujimoto and S. Nakamura, "Particle filter based non-
stationary noise tracking for robust speech feature enhance-

In order to evaluate the performance of the proposed algorithm un- ment," Proc. ofICASSP, 2005.
der realistic conditions we have recorded and transcribed 35 minutes [5] R. Singh and B. Raj, "Tracking noise via dynamical systems
of lecture speech with different microphone types and speaker to with a continuum of states," Proc. ofICASSP, 2003.
microphone distances (similar to NIST's RT-06s development and
evaluation data [15]). As a speech recognition engine we used the [6] F. Faubel and M. Woilfel, "Coupling particle filters with au-
Janus Recognition Toolkit (JRTk) with a configuration identical to tomatic speech recognition for speech feature enhancement,"
the one used by our lab at NIST's RT-07 evaluation campaign [16]. Proc. ofInterspeech, Sep. 2006.
The three-gram language model consists of 25k words and has a per- [7] I. Tashev and D. Allred, "Revereberation reduction for im-
plexity of 125 on the test set. proved speech recognition," in Proc. ofHSCMA, 2005.

We evaluated on unadapted (first pass) acoustic models and [8] R. Petrick, K. Lohde, M. Wolff, and R. Hoffmann, "The harm-
acoustic models (second pass) which have been unsupervised ing part of room acoustics in automatic speech recognition,"
adapted by MLLR, FSA and vocal tract length normalization Proc. ofInterspeech, pp. 1094-1097, 2007.
(VTLN). The determined VTLN factors have also been used inVThescNd. pass ofethepartiledV filter. have also beenusedin

[9] K. Kinoshita, T. Nakatani, and Miyoshi M., "Efficient derever-
thesecomdparingfthewordilerro rates. ofth xprietsprsntdberation framework for automatic speech recognition," Proc.Comparing the word error rates of the experiments presented

O nesec,p.34-18 05
in Table 1 demonstrates that individually compensating additive or ofInterspeech, pp. 3145-3148, 2005.
reverberant distortions improves the accuracy, except for the com- [10] D. Gespert and P. Duhamel, "Robust blind identification and
pensation of reverberation on the CTM and the lapel microphones. equalization based on multi-step predictors," Proc. ofICASSP,
Compensating for both kinds of distortions leads to further improve- vol. 26, no. 5, pp. 3621-3624, 1997.
ments over a single compensation technique. The proposed joint ap- [11] M. Wolfel and J.W. McDonough, "Minimum variance distor-
proaches are again superior to the independent treatment of the com- tionless response spectral estimation, review and refinements,"
ponents and demonstrates significant gains for unadapted as well as IEEE Signal Processing Magazine, vol. 22, no. 5, pp. 17-126,
unsupervised adapted acoustic models. The introduction of the tilt Sept. 2005.
factor (joint 2) in addition to the scaling factor (oint 1) further im-
proves the accuracy. Furthermore, the proposed joint approach is [] Den,h Droppo, andeA. Acero, "A bayia apprac
able to limit the performance reduction on close and lapel micro- priors" in Proc. ofICASSPn 2002.
phones due to multi-step linear prediction and thus can be applied p i
without constraints to all microphone conditions. [13] M. Wolfel, "Integration of the predicted walk model estimate

into the particle filter framework," in Proc. ofICASSP, 2008.
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