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Abstract. In this paper, two multimodal systems for the tracking of
multiple users in smart environments are presented. The first is a multi-
view particle filter tracker using foreground, color and special upper body
detection and person region features. The other is a wide angle overhead
view person tracker relying on foreground segmentation and model-based
blob tracking. Both systems are completed by a joint probabilistic data
association filter-based source localizer using the input from several mi-
crophone arrays.
The systems are designed to estimate the 3D scene locations of room oc-
cupants and are evaluated based on their precision in estimating person
locations, their accuracy in recognizing person configurations and their
ability to consistently keep track identities over time.
The trackers are extensively tested and compared, for each separate
modality and for the combined modalities, on the CLEAR 2007 Eval-
uation Database.

1 Introduction and Related Work

In recent years, there has been a growing interest in intelligent systems for indoor
scene analysis. Various research projects, such as the European CHIL or AMI
projects [20, 21] or the VACE project in the U.S. [22], aim at developing smart
room environments, at facilitating human-machine and human-human interac-
tion, or at analyzing meeting or conference situations. To this effect, multimodal
approaches that utilize a variety of far-field sensors, video cameras and micro-
phones to obtain rich scene information gain more and more popularity. An
essential building block for complex scene analysis is the detection and tracking
of persons.

One of the major problems faced by indoor tracking systems is the lack of
reliable features that allow to keep track of persons in natural, unconstrained
scenarios. The most popular visual features in use are color features and fore-
ground segmentation or movement features [2, 1, 3, 6, 7, 14], each with their ad-
vantages and drawbacks. Doing e.g. blob tracking on background subtraction
maps is error-prone, as it requires a clean background and assumes only persons
are moving. In real environments, the foreground blobs are often fragmented or



merged with others, they depict only parts of occluded persons or are produced
by shadows or displaced objects. When using color information, the problem is
to find appropriate color models for tracking. Generic color models are usually
sensitive and environment-specific [4]. If no generic model is used, color models
for tracked person need to be initialized automatically at some point [3, 7, 13,
14]. In many cases, this still requires the cooperation of the users and/or a clean
and relatively static background.

On the acoustic side, although actual techniques already allow for a high
accuracy in localization, they can still only be used effectively for the tracking of
one person, while this person is speaking. This naturally leads to the development
of more and more multimodal techniques.

Here, we present two multimodal systems for the tracking of multiple persons
in a smart room scenario. A joint probability data association filter is used in
conjunction with a set of microphone arrays to detect speech and determine
active speaker positions. For the video modality, we compare the performance of
2 approaches: A particle filter approach using several cameras and a variety of
features, and a simple blob tracker relying on foreground segmentation features
gained from a wide angle top view. While the former system fuses the acoustic
and visual modalities at the feature level, the latter does this at the decision
level using a state-based selection and combination scheme on the single modality
tracker outputs. All systems are evaluated on the CLEAR’07 3D Person Tracking
Database.

The next sections introduce the multimodal particle filter tracker, the single-
view visual tracker, the JPDAF-based acoustic tracker, as well as the fusion
approach for the single view visual and the acoustic tracking systems. Section 6
shows the evaluation results on the CLEAR’07 database and section 7 gives a
brief summary and conclusion.

2 Multimodal Particle Filter-Based 3D Person Tracking

The multimodal 3D tracking component is a particle filter using features and
cues from the four room corners cameras and the wide angle ceiling camera,
as well as source localization hypotheses obtained from the room’s microphone
arrays. The tracker automatically detects and tracks multiple persons without
requiring any special initialization phase or area, room background images, or
a-priori knowledge about person colors or attributes, for standing, sitting or
walking users alike.

2.1 Tracking Features

The features used are adaptive foreground segmentation and upper body color
backprojection maps from all 5 cameras, as well as upper body detection cues
from the room corner cameras and person region hints from the top camera,
computed on reduced 320x240 pixel images.



– The foreground segmentation is made using a simple adaptive background
model, which is computed on grayscale images as the running average of the
last 1000 frames. The background is substracted from the current frame and
a fixed threshold is applied to detect foreground regions.

– The color features are computed in a modified HSV space and modeled in
a specially designed histogram representation, which eliminates the usual
drawbacks of HSV histograms when it comes to modeling low saturation or
variance colors.
The color space is a modified version of the HSV cone. First, colors for which
the variance and saturation values exceed 20% are set to maximum variance.
This reduces the effect of illumination, shadows or pose changes. The HSV
values are subsequently discretized as follows: Let hue, sat and var be the
obtained HSV values, then the corresponding histogram bin values, h, s and
v, are computed as:

v = var (1)

s = sat ∗ var (2)

h = hue ∗ sat ∗ var (3)

The effect is that the number of bins in the hue and saturation dimensions
decreases towards the bottom of the cone, and there is e.g. only one bin
to model colors with zero variance, in contrast to classial discretuzation
techniques, where there is no unique bin mapping for grayscale HSV values.
A maximum of 16 bins for hue, 10 bins for saturation, and 10 for variance
are used.
The color features for tracking of a person are gained for the detected upper
body region of subjects, as well as their immediatly surrounding background.
One upper body and one background histogram are kept per camera for
every track. Upper body histograms for corner cameras are adapted with
each detection hit from pixels inside the detection region. As soon as valid
color histograms for the corner cameras exist, the upper body histogram
for the top camera is continuously adapted using colors sampled from a
60cm diameter region centered around the tracked person position. This
is because the track is only considered reliable enough for continous color
model adaptation after it has been confirmed at least once by an upper body
detection. The background histograms for all views, in turn, are continuously
adapted in every frame, with the learnrate set such as to achieve a temporal
smoothing window of approximately 3 seconds.
All upper body histograms are continuously filtered using their respective
background histograms. Let H be an upper body and Hneg a background
histogram. Then the filtered histogram Hfilt is obtained as:

Hfilt = minmax(H) ∗ (1−minmax(Hneg)). (4)

The effect of histogram filtering is to decrease the bin values for upper body
colors which are equally present in the background. The motivation is that
since several views are available to track a target, only the views where the



upper body is clearly distinguishable from the immmediately surrounding
background should be used for tracking. The use of filtered histograms has
shown to dramatically increase tracking accuracies.

– The upper body detection hints in fixed corner camera images are obtained
by exhaustive scanning with Haar-feature classifier cascades, such as in [8,
9]. Using calibration information, the 3D scene coordinates of the detected
upper body as well as the localization uncertainty, expressed as covariance
matrix, are computed from the detection window position and size. This
information is later used to associate detections to person tracks and to
score particles.

– Person regions are found in the top camera images through the analysis of
foreground blobs, as described in [12]. It is a simple model-based technique
that dynamically maps groups of foreground blobs to possible person tracks
and hypothesizes a person detection if enough foreground is found within a
60cm diameter region in a certain time interval. The motivation is that top
view images present very little overlap between persons, making a simple
spatial assignment plausible.

2.2 Intialization and Termination Criteria

To detect persons and initialize tracking, a fixed number of “scout” particle filter
trackers are maintained. These are randomly initialized in the room and their
particles are scored using the foreground, color, and detection features described
above. A track is initialized when the following conditions are met:

– The average weight of a scout’s particles exceeds a threshold T , set such
that initialization is not possible based on the foreground feature alone, but
requires the contribution of at least an upper body detection or person region
hint.

– The spread of the particle cloud, calculated as the variance in particle posi-
tions, is above a fixed activation threshold.

– The target object’s color is balanced throughout all camera images. For this,
color histograms are computed in each view by sampling the pixel values at
the scout’s particles’ projected 2D coordinates, and histogram similarity is
measured using the bhattacharyya distance.

– The target object is sufficiently dissimilar to its surrounding background in
every view. Again, the bhattacharyya distance is used to measure similarity
between the computed track histograms and the corresponding background
histograms. For the latter, colors are sampled in each view from a circle of
60cm diameter, centered around the scout track’s position and projected to
the image planes. This measure helps to avoid initializing faulty tracks on
plane surfaces, triggered e.g. by false alarm detections or shadows.

Tracks are deleted when their average weight, considering only color, detection
and person region contributions, falls below a certain threshold, or the spread
of their particles, calculated as the variance in their positions, exceeds a fixed
limit.



2.3 Particle Filtering

The tracking scheme presented here uses as separate particle filter tracker for
each person. Each particle represents a hypothesized (x, y, z) person position
in the scene. After scoring, normalization, and resampling, the mean of the
particle’s positions is taken as the track center. Propagation is then done by
adding gaussian noise to the resampled particle’s positions in the following way:
The particles are first split into 2 sets. The first set comprises the highest scoring
particles, the “winners” of the resampling step, and contains at most half of the
particle mass. The rest of the particles comprises the second set. The speed of
propagation is then adjusted differently for each set, such that the high scoring
particles stay relatively stable and keep good track of still targets, while the low
scoring ones are heavily spread out to scan the surrounding area and keep track
of moving targets. A total of only 75 particles is used per track. The tracking
system implementation is distributed over a network of 5 machines to achieve
real-time computation speed. The system was extensively tested and achieved
high accuracy rates, as shown in section 6.

3 Single-View Model-Based Person Tracking on
Panoramic Images

In contrast to the above presented system, the panoramic camera tracker relies
solely on the wide angle images captured from the top of the room. The advan-
tage of such images is that they reduce the chance of occlusion by objects or
overlap between persons. The drawback is that detailed analysis of the tracked
persons is difficult as person-specific features are hard to observe (see Fig. 1).
This system has already been tested in the CLEAR 2006 evaluation, and is de-
scribed in detail in [12]. No modifications to the system or its parameters, and
no tuning on the 2007 data was done, to provide for an accurate baseline for
comparisons. The following gives only a brief system overview.

The tracking algorithm is essentially composed of a simple but fast foreground
blob segmentation followed by a more complex EM algorithm based on person
models.

At first, foreground patches are extracted from the images by using a dy-
namic background model. The background model is created on a few initial
images of the room and is constantly adapted with each new image with an
adaptation factor α. Background substraction, thresholding and morphological
filtering provide the foreground blobs for tracking.

The subsequent EM tracking algorithm tries to find an optimal assignment of
the detected blobs to a set of active person models. Person models are composed
of an image position (x, y), velocity (vx, vy), radius r and a track ID, and are
instantiated or deleted based on the foreground blob support observed over a
certain time window.

The approach results in a simple but fast tracking algorithm that is able to
maintain several person tracks, even in the event of moderate overlap. By as-
suming an average height of 1m for a person’s body center, and using calibration



Fig. 1. The output of the top camera tracker. The colored circles represent the person
models

information for the top camera, the positions in the world coordinate frame of
all tracked persons are calculated and output.

The system makes no assumptions about the environment, e.g. no special
creation or deletion zones, about the consistency of a person’s appearance or
about the recording room. It runs at a realtime factor of 0.91, at 15fps, on a
Pentium 3GHz machine.

4 JPDAF-based Acoustic Source Localization

The acoustic source localization system is based on a joint probabilistic data
association filter (JPDAF) [15, 19]. This is an extension to the IEKF used in
previous approaches [18], that makes it possible to track multiple targets at
once and updates each of the internally maintained IEKFs probabilistically. It
also introduces a “clutter model” that models random events, such as door slams,
footfalls, etc., that are not associated with any speaker, but can cause spurious
peaks in the GCC of a microphone pair, and thus lead to poor tracking perfor-
mance. Observations assigned with high probability to the clutter model do not
affect the estimated positions of the active targets.

First of all the timedelays and corresponding correlation values are calculated
for all possible microphone pairs within each of the T-arrays and 14 pairs of
the available MarkIIIs by calculating the GCC-Phat [16, 17] of the frequencies
below 8000 Hz. The timedelays are estimated 25 times per second resulting in
a hamming window size of 0.08 ms with a shift size of 0.04ms. For the GCC we
used a FFT size of 4096 points. The maximum search in the resulting correlation
function is restricted to be in the valid range of values as conditioned on the room
size and the microphone positions.

Then, for each of the seminars and each of the used microphone pairs, a
correlation threshold is estimated separately by calculating the histogram of all



correlation values of that pair and seminar and using the value that is at 85%
of it, i.e. the smallest value that is greater than 85% of the correlation values.

The JPDAF is then fed with one measurement vector for each time instant
and microphone array that is made up of the TDOAs of those microphone pairs
of that array with a correlation higher than the previously estimated one. As
observation noise we used 0.02ms. The measurement vector is only used for
position estimation if it has at least 2 elements.

The first step in the JPDAF algorithm is the evaluation of the conditional
probabilities of the joint association events

θ(t) =
mt⋂
i=1

θiki
, t = 0, . . . , T (5)

where the atomic events are defined as

θik = {observation i originated from target k} (6)

Here, ki denotes the index of the target to which the i-th observation is associated
in the event currently under consideration. In our case we chose the maximum
number of targets to be T ≤ 3 and the maximum number of measurements per
step to be mt ≤ 1. From all the theoretically possible events only feasible events
are further processed. A feasible event is defined as an event wherein

1. An observation has exactly one source, which can be the clutter model;
2. No more than one observation can originate from any target.

An observation is possibly originating from a target when it falls inside the
target’s validation region given by the innovation covariance matrix and a gating
threhold of 4.0.

Applying Bayes’ rule, the conditional probability of θ(t) can be expressed as

P{θ(t)|Yt} =
P{Y(t)|θ(t),Yt−1}P (θ(t)

P{Y(t)|Yt−1}
(7)

where the marginal probability P{Y(t)|Yt−1} is computed by summing the joint
probability in the numerator of (7) over all possible θ(t). The conditional prob-
ability of Y(t) required in (7) can be calculated from

P{Y(t)|θ(t),Yt−1} =
mt∏
i=1

p(yi(t)|θiki
(t),Yt−1) (8)

The individual probabilities on the right side of (8) can be easily evaluated given
the fundamental assumption of the JPDAF, namely,

yi(t) ∼ N (ŷki
(t|Yt−1),Rki

(t)) (9)

where ŷki
and Rki

(t) are, respectively, the predicted observation and innovation
covariance matrix for target ki. The prior probability P{θ(t)} in (7) can be



readily evaluated through combinatorial arguments [15, §9.3] using a detection
probability of 85%. Once the posterior probabilities of the joint events {θ(t)}
have been evaluated for all targets together, the state update for each target can
be made separately according to the update rule of the PDAF [15, §6.4].

As the JPDAF can track multiple targets, it was necessary to formulate rules
for deciding when a new track should be created, when two targets should be
merged and when a target should be deleted. The JPDAF is initially started with
no target at all. A new target is created every time a measurement can not be
assigned to any previously existing target. A new target is always initialized with
a start position in the middle of the room and a height of 163.9cm and a diagonal
state error covariance matrix with a standard deviation that is essentially the
size of the room for x and y and 1m for z. This initialization is allowed to take
only 0.1s otherwise the target is immediately deleted. The initialization is said
to be finished when the target is detected as active. This is when the volume of
the error ellipsoid given by the state error covariance matrix is smaller than a
given threshold. If a target didn’t receive any new estimates for 5s, it is labeled
as inactive and deleted. If two targets are less than 25cm apart from each other
for at least 0.5s the target with the larger error volume is deleted.

To allow speaker movement, the process noise covariance matrix is dynam-
ically set to a multiple of the squared time since the last update. For stability
reasons, the process noise as well as the error state covariance matrix are upper
bounded.

Since the filters used for each of the targets is built on top of the IEKF, there
are at most 5 local iterations for each update.

The selection of the active speaker out of the maintained targets is done by
choosing the target with the smallest error volume that has a height between
1m and 1.8m. Additionally, an estimate is only output when it is a valid esti-
mate inside the physical borders of the room. If no estimate is output for 1.8
seconds, the timestamp of the last output plus 0.9s is output. If an estimate is
available after 0.9s since the last output, the current estimate is duplicated at
the timestamp of the last output plus 0.9s.

The JPDAF algorithm used here is a fully automatic two-pass batch algo-
rithm, since the correlation thresholds are first estimated on the whole data and
then the position is estimated using the precalculated time delays. If those cor-
relation thresholds would be used from previous experiments, it would be a fully
automatic one-pass online algorithm. The algorithm runs at realtime factor 1.98
on a Pentium 4, 2.66GHz machine.

5 State-Based Decision-Level Fusion

For the panoramic camera system, the fusion of the audio and video modalities
is done at the decision level. Track estimates coming from the top camera vi-
sual tracker and the JPDAF-based acoustic tracker are combined using a finite
state machine approach, which considers their relative strengths and weaknesses.
The visual trackers can be very accurate at determining a person’s position. In



scenarios involving several persons and requiring automatic intialization, they
can, however, fail to detect persons completely for lack of observable features,
poor discernability from the background, or overlap with other persons, when
using color, shape or motion features. The acoustic tracker, on the other hand,
can precisely determine a speaker’s position only in the presence of speech, and
does not produce accurate estimates for several simulaneous speakers or during
silence intervals.

Based on this, the fusion of the acoustic and visual tracks is made using a
finite state machine weighing the availability and reliability of the single modal-
ities.

– State 1: An acoustic estimate is available, for which no overlapping visual
estimate exists. Here, estimates are considered overlapping if their distance
is smaller than 500mm. In this case, assume the visual tracker has missed the
speaking person and ouptut the acoustic hypothesis. Store the last received
acoustic estimate and keep outputting it until an overlapping visual estimate
is found.

– State 2: An acoustic estimate is available, and a corresponding visual es-
timate exists. In this case, output the average of the acoustic and visual
positions.

– State 3: After an overlapping visual estimate had been found, an acoustic
estimate is no longer available. In this case, we assume the visual tracker has
recovered the previously undetected speaker and keep ouputting the position
of the last overlapping visual track.

The results of the so developed multimodal tracker are presented in section
6.

6 Evaluation on the CLEAR’07 3D Person Tracking
Database

The above presented systems for visual and multimodal tracking were evalu-
ated on the CLEAR’07 3D Person Tacking Database. This database comprises
recordings from 5 different CHIL smartrooms, involving 3 to 7 persons in a small
meeting scenario, for a total of 200 min.

Table 1 shows the results for the Single- and Multi-view visual systems (Par-
ticle, Top), for the acoustic tracker (JPDAF), as well as for the correspond-
ing mutimodal systems (PFusion, TFusion). For details on the Multiple Object
Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA)
metrics, the reader is referred to [11].

As Table 1 shows, the particle filter tracker clearly outperforms the base-
line top view system, while still remaining competitive in terms of computation
speed.

Factors that still affect tracking accuracies can be summed up in 2 categories:



Table 1. Evalution results for the 3D person tracking systems

System MOTP m fp mme MOTA

1:Visual 217mm 27.6% 20.3% 1.0% 51.1%

1:AV CondB 226mm 26.1% 20.8% 1.1% 52.0%

2:Visual 203mm 46.0% 24.9% 2.8% 26.3%

2:AV CondB 223mm 44.4% 25.8% 3.3% 26.4%

– Detection errors: In some cases, participants showed no significant motion
during the length of the sequence, were only hardly distinguishable from the
background using color information, or could not be detected by the upper
body detectors, due to low resolution, difficult viewing angles or body poses.
This accounts for the relatively high amount of missed persons. The adapta-
tion of the used detectors on CLEAR recording conditions or the inclusion
of more varied features for detection could help alleviate this problem.

– False tracks: The scarce availability of detection hits for some targets leads
to a system design that aggressively initializes person tracks whenever a
detection becomes available and keeps them for extended periods of time
even in the absence of such. This unfortunately can lead to a fair amount of
false tracks which can not be distinguished from valid tracks and effectively
eliminated based on color or foreground features alone. Again, the design of
more reliable person detectors should help reduce the number of false tracks.

The MOTP numbers range from 222mm for the top camera visual system
to 140mm for the acoustic tracker. The acoustic tracker reached an accuracy of
55%, with the main source of errors being localization uncertainty. On the visual
and the multimodal side, the particle filter fusion approach (70% / 55%) outper-
formed the baseline approach (58%, 51%). One can also see that for the particle
filter based feature-level fusion approach, the addition of the visual modality
could help improve tracking accuracy, compared to acoustic tracking alone, al-
though in the multimodal case, track of the speaker had to be kept also during
silence segments.

7 Summary

In this work, two systems for multimodal tracking of multiple users are pre-
sented. A joint probabilistic data association filter for source localization is used
in conjunction with two distinct systems for visual tracking: One particle filter
using multiple camera images, based on foreground and color features and up-
per body detection and person region cues. The other using only a wide angle
overhead view, and performing model based tracking on foreground segmenta-
tion features. Two fusion scheme are presented, one at feature level, inherent in
the particle filter approach, and one at decision level, using a 3-state finite-state
machine to combine the output of the audio and visual trackers. The systems



were extensively tested on the CLEAR 2007 3D Person Tracking Database. High
accuracies of up to 70% could be reached, with position errors below 15cm.
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