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ABSTRACT
Distortion robustness is one of the most significant problems in au-
tomatic speech recognition. While a lot of research in speech feature
enhancement in automatic recognition has focused on stationary dis-
tortions, most of the observed distortions are non-stationary. To cope
with the non-stationary behavior, just recently, various particle filter
approaches have been proposed to track the non-stationary distor-
tions on speech features in logarithmic spectral or cepstral domain.
Most of those techniques rely on the prediction of the noise evolu-
tion model by a linear prediction matrix. The current estimation of
the linear prediction matrix, however, needs noise only observations
which have to be either given a priori or to be detected by voice activ-
ity detection. This makes it impossible to adapt the linear prediction
matrix to the dynamics of the noise on speech regions. In this publi-
cation we propose to estimate or update the linear prediction matrix
directly on the noisy speech observations. This is possible within the
particle filter framework by weighting the different noisy estimates
(particles) due to their likelihood in the estimation equation of the
linear prediction matrix.

Speech recognition experiments on actual recordings with dif-
ferent speaker to microphone distances confirm the soundness of the
proposed approach.

Index Terms— speech feature enhancement, particle filter, pre-
dicted walk, linear prediction matrix, automatic speech recognition

1. INTRODUCTION

Speech feature enhancement can be formulated as a tracking prob-
lem where the clean speech features x

k

have to be estimated, for
each frame k, given the observation history of the noisy speech fea-
tures y

1:k

. The clean and noisy features are related by the proba-
bilistic relationship p(x
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|y
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). As stated in Julier and Uhlmann
[1] the minimum mean square error solution to such a tracking prob-
lem consists in finding the conditional mean
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Assuming that (x
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)

k2N is a Markov process and that the current ob-
servation is only dependent on the current state facilitates sequential
calculation of the conditional mean, the solution is given by
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Introducing the noise n
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as a hidden variable
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a changed integration order we obtain
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The filtering density p(n
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) keeps track of the probability
throughout time which can be realized by sequential updating

p(n

k

|y
1:k

) =

p(n

k

,y

k

|y
1:k�1

)

p(y

k

|y
1:k�1

)

(2)

with

p(n

k

,y

k

|y
1:k�1

) = p(y

k

|n
k

)

· p(n

k

|n
k�1

)p(n

k�1

|y
1:k�1

)dn

k�1

and
p(y

k

|y
1:k�1

) = p(n

k

,y

k

|y
1:k�1

)dn

k

To avoid intractable integration, we aim to construct the empirical
density p(n

k

|y
1:k

) by Monte Carlo sampling [2]. The previous two
equations can then be expressed as
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) represents the corresponding importance weight
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for each sample m, and p(y
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) represents a normaliza-
tion term.

The solution of (2) requires a model of the evolution of noise
p(n

k

|n
k�1

). A simple solution is the so called random walk
n

k+1

= n

k

+ ✏ where ✏ describes random variations. However,
it might result in an unstable prediction, because the random walk
process provides a state transition of the target signal using random
noise which might be a bad approximation of the true noise. Thus, to
improve the estimate of the evolution one aims to use a model which
predicts the noise observation n

k+1

given the noise observation se-
quence n

1:k

. One way to predict the noise has been proposed by [3]
where the noise transition has been modeled by an extended Kalman
filter which has been augmented with Polyak averaging and feed-
back. If the noise is moving slowly, then the difference between the
Polyak average and noise has a small value and thus the parameter
range gets small and vice versa. Alternatively it is possible to use a
predicted walk which is modeled by a linear prediction matrix [4]. A



major drawback of the linear prediction matrix is that it has to be cal-
culated on noise only regions which have to be either given a prior or
to be detected by voice activity detection which might be unreliable
in particular for noisy signals. In addition, with the given approach,
it is impossible to adapt the linear prediction matrix to the dynamics
of the noise in speech regions. To overcome those drawbacks we
aim on estimating or updating the linear prediction matrix on noisy
speech observations. This can be established within the particle fil-
ter framework by weighting the different noise estimates due to their
likelihood in the estimation equation of the linear prediction matrix.

2. BRIEF REVIEW OF SPEECH FEATURE
ENHANCEMENT BY PARTICLE FILTERS

Different approaches to speech feature enhancement by particle fil-
ters exist. We follow Singh and Raj [4] who have proposed to track
the noise frame by frame in the logarithmic spectral domain and later
on subtract the noise estimates from the contaminated speech signal.
An extended algorithm of the original approach as stated by Singh
and Raj can be outlined as follows:

1. Draw noise samples
At the start frame k = 0, M particles (noise hypotheses)
n
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(m = 1, ..., M ) are drawn from the prior noise density
p
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(n) which is modeled as a Gaussian mixture model.
For frames k > 0, M particles n
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are sampled from the
noise transition probability p(n
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) where different mod-
els for p(n
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) are described in Section 3.
2. Evaluate noise samples

The importance weight for each particle n
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is evaluated
according to the likelihood
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where p

speech

(·) denotes the prior speech density represented
by the Gaussian mixture model which has been trained on
clean speech. Thereafter the importance weights are normal-
ized by
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Note that the likelihood p(y
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8 dimensions d = 1, 2, . . . , D. If the noise
exceeds the noisy observation in just a single spectral bin the
given noise hypothesis has to be rejected by setting the par-
ticle weight to zero. This causes a decimation of the parti-
cle population which can be remedied by a fast acceptance
test [5] that virtually boosts the number of particles by re-
drawing samples in case of rejection.

3. Compensate for noise estimates
Different methods to compensate for noise densities exist, e.g.
one popular method is the vector Taylor series [6]. However,
clean speech spectra can be estimated by using the discrete
Monte Carlo representation of the continuous filtering den-
sity and a direct calculation, the so called statistical inference
approach (SIA) [5], can be applied
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where �

n
(m)
k

denotes a translated Dirac delta function.

4. Resample noise
The normalized weights are used to resample among the noise
hypotheses n

(m)

k

(m = 1, ..., M) [7, 8]. This can be regarded
as a pruning step where likely hypotheses are multiplied and
unlikely ones are removed from the population.

Those steps are repeated with k 7! (k + 1) until all time-frames are
processed.

Working Domain

Particle filters for speech feature enhancements are typically applied
in the logarithmic spectral domain after dimension reduction by mel-
filterbanks. Due to the properties of the used spectral estimation
method provided by warped minimum variance distortionless re-
sponse [9], no filterbank is applied and thus the dimension in the
logarithmic spectral domain is not reduced. As the operation of a
particle filter with high dimensions (in our case 129) would be in-
feasible or very slow, we decided to work in the logarithmic spec-
tral domain after cepstral truncation to 20 dimensions by applying
an inverse Fourier transformation to the cepstral coefficients. In the
truncated logarithmic spectral domain the relation between the noisy
observation y, the clean feature x and noise n can be approximated
by

x ⇡ log(e

y � e

n
) = y + log(1� e

n�y
). (5)

3. EVOLUTION OF THE NOISE SPECTRA (SAMPLING)

As seen in previous sections particle filter tracking application re-
quires the prediction of the noise ˆ
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) given the
trajectory of the noise up to time k � 1. The noise transition prob-
ability p(n

k
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) can be modeled by a dynamic system model
which can be classified into random walk and predicted walk.

In this section we review the random walk model and the pre-
dicted walk model represented by a static autoregressive process
which has to be estimated on noise only regions. In addition we pro-
pose a novel method which can give an instant, and thus dynamic, es-
timate of the predicted walk model on a frame by frame basis which
can be estimated or updated on noise only as well as noisy speech
observations. Thus, the proposed approach is able to overcome the
problems associated with predicted walk models which have to be
determined on noise only regions.

3.1. Random Walk

The simplest way to model the evolution of noise features is a ran-
dom walk
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denotes the noise spectrum at time k while the "
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considered to be i.i.d. zero mean Gaussian, i.e. "
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),
where the covariance matrix ⌃
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is assumed to be Gaussian.

3.2. Predicted Walk by static autoregressive processes

To consider information about the evolution of the noise, Raj et
al. [10] proposed and investigated to use a lth-order autoregressive
process A

(1:l) to predict the evolution of the noise
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Learning the Autoregressive Noise Model

The autoregressive noise model consists of two components that
have to be learned for a specific type of noise:

• the linear prediction transition matrix A

(1:l) and

• the covariance matrix ⌃

noise

where once again the "

k

terms
are considered to be i.i.d. zero mean Gaussians.

Minimization of the prediction error norm results in the following
estimate of the linear prediction matrix:
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Those matrices can be derived from the noise data 1, 2, . . . , K as
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Note that it is sufficient to estimate the matrices from pieces of
noise as long as the pieces are long enough to contain enough history.
In our experiments we have train the linear prediction matrix on 150
seconds of noise only pieces, collected on silent regions among 35
minutes of speech which has been found by voice activity detection.

To learn a linear prediction matrix of model order length l re-
quires d

2

l coefficients to be reliably estimated which can only be
established if a huge amount of training data is available. For a rea-
sonable amount of training data only a small reduction in the mean
square error can be reached by using higher order models. Thus, a
first model order is sufficient for our investigations.

The diagonal covariance can be learned by
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. However, in practice, we have yielded better re-
sults by manually increasing the variance with identical values over
all dimensions.

3.3. Predicted Walk by dynamic autoregressive processes

In this section, instead of estimating the linear prediction matrix pre-
vious to the application of the particle filter based on a priori knowl-
edge of the noise or noise pices found by voice activity detection,
we aim for an instantaneous and integrated estimate of the linear
prediction matrix. Thus, we have to solve for the minimization of
the prediction error norm for each frame k by estimating the linear
prediction matrix as
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Instead of deriving the two matrices from noise only frames, as
demonstrated in Section 3.2, we estimate the matrices on the cur-
rent n
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k

and previous n
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noise estimates for all particles m =

1, 2, . . .,M. To ensure that the prediction estimates which lead to a
good noise estimate are emphasized and those predictions who lead
to a poor estimate are alleviated, we have to weight the contribution
of each particle to the matrices due to their likelihood p(y
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as given in (3). Thus, the matrices can be evaluated for each frame k

by using

E[n

k

n

T

k�1

] =

1

M

M

m=1

p(y

k

|n(m)

k

) · n

k

· n(m)

k�1

T

and

E[n

k�1

n

T

k�1

] =

1

M

M

m=1

p(y

k

|n(m)

k

) · n

k�1

· n(m)

k�1

T

to solve for (7).
A smoothing over previous frames might help to improve the

reliability of the estimate. With the introduction of the forgetting
factor ↵ we can write the smoothed matrices A
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The sample variance can now be calculated according to the nor-
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Note that the subscript d representing each vector component of the
noise n

k

at frame k has been neglected to improve readability.

4. EXPERIMENTS

In order to evaluate the performance of the proposed particle fil-
ter enhancements under realistic conditions we have recorded 35
minutes of lecture speech with different microphone types and
speaker to microphone distances (similar to RT-06s development and
evaluation data [11]).

As a speech recognition engine we used the Janus Recognition
Toolkit (JRTk) with the same setup as described in [12]: The acoustic
training material, approximately 100 hours, used for the experiments
reported here was taken from the ICSI, NIST, and CMU meeting
corpora, as well as the Translanguage English Database (TED)
and CHIL lecture corpora resulting in a discriminatively trained
semi-continuous quint phone systems that contain 16000 distribu-
tions over 4000 codebooks, with a maximum of 64 Gaussians per
model. The 3-gram language model contains approximately 23,000
words and has a perplexity of 125 on the test corpora. The used
warped minimum variance distortionless response cepstral coeffi-
cients [9] have been shown to outperform mel frequency cepstral
coefficients [13] in combination with and without speech feature en-
hancement. The particle filter has used 100 particles with the fast
acceptance test and a fixed, identical variance for all evaluated sam-
pling techniques, unless stated otherwise.

We evaluated on unadapted (first pass) acoustic models and
acoustic models (second pass) which have been unsupervised
adapted by maximum likelihood linear regression (MLLR), con-
strained MLLR and vocal track length normalization (VTLN). The
determined VTLN factors have also been used in the second pass of
the particle filter.

Comparing the different word error rates on actual recodings
with different speaker to microphone distances, given in Table 1,



Microphone CTM Lapel Table Top Wall
Distance 5 cm 20 cm 100–150 cm 300–350 cm

SNR 24 dB 23 dB 17 dB 10 dB
Pass 1 2 1 2 1 2 1 2

Particle Filter Word Error Rate
no particle filter 11.6% 09.8% 11.7% 09.9% 19.0% 14.6% 45.6% 29.0%

random walk 12.3% 09.8% 12.0% 09.8% 20.7% 14.5% 46.5% 26.3%
predicted walk (static) 11.6% 09.4% 11.6% 09.8% 19.3% 13.9% 43.5% 25.7%

predicted walk (dynamic1) 11.4% 09.7% 11.6% 09.5% 17.9% 13.1% 44.3% 25.8%
predicted walk (dynamic2) 11.5% 09.9% 12.0% 09.8% 18.3% 13.7% 43.5% 25.7%

Table 1. Word error rates without particle filter and particle filter enhanced features using different sampling strategies.
1 fixed variance, 2 variance determined on speech frames (8)

indicates that the proposed approach (dynamic) can reach at least
equal performance as compared to the previous approach (static).
The proposed approach has several advantages. Namely it can be
used in runtime systems, as it gives an instant estimate of the linear
prediction matrix and it offers a reliable estimate without the need
for silent regions. To determine the variance on the noise hypothe-
sises (dynamic2) can not improve the performance over a fixed, in
average higher, variance (dynamic1) which is consistent to previous
experiments and might be explained by the enlarged search space. In
addition we played with various smoothing values for ↵, however,
were not able to improve (in average over all speaker to microphone
distances) over ↵ = 0.

5. CONCLUSIONS

We have introduced an instantaneous and integrated approach to esti-
mate the linear prediction matrix which is used in the predicted walk
model. In comparison to the previous estimation of the linear pre-
diction matrix which has to rely on noise only regions, the proposed
model performs at least equally well and has several advantages on
hand: It can be used in runtime systems, as it gives an instantaneous
estimate of the matrix and offers a reliable estimate without the need
for noise only regions.
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