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Abstract 

We describe an integrated approach for statistical 
modeling of di&cotu&e &tructure for natural conversa­
t,ional speech. Our model is based on ·12 'dialog acts' 
( e.g., Statement, Question, lla.ckchannel, Agreement, 
Disagrccrne11 L, ;\ pology ), wl1 ich were l1 a11d-lahclecl i 11 

11.'i.5 c:onvcrsa.Lio11s rrom I.he Swil.chboarcl corpus or 
spontaneous human-to-human telephone speech. \Ve 
developed several modeb and algorithms to automati­
cally detect dialog acts from transcribed or automati­
cally recognized words and from prosodic propert.ies of 
Lhc spc(,c:h sig11al a.ncl hy using ,L sl,at.is1.ic:a,l discourse 
grammar. :\11 or l.11c~c c:0111por1c11t~ wen, prohahilisl,ic 
in nature and estimated from data, employing a vari­
ety of technique& (hidden }farkov models, N-gram lan­
guage models, maximum entropy estimation, decision 
t.ree classifiers, and neural networks). ln preliminary 
sL11clics, we ad1icvccl a dialog ;u:L la.bcli11g a.c:c:11racy or 
6;';% hasecl 011 recog11iy.ecJ word~ a11cl prosody, a11cl a.11 
accuracy of 72% based on word transcripts. Since hu­
mans achieve 84% on this task (with chance perfor­
mance at, 3,3%,) we find these results encouraging. 

Introduction 
ThP ability to modP-1 and automatically dPtPct dis­
course structure is essential as we address problems 
such a8 ·undersianding sponianeo·us dialog (a meeting 
summarizer needs Lo know who said wlia.L Lo whom), 
building h.uman-r:omputer dialog systems ( a conwrsa.­
tional agent needs to know ,vhether it just got asked 
a question or ordered to do somethinp;), and simple 
irnnscriplion of con versa/ion al SfJU'<.:h ( ~LLerances wiLh 
difforPnt discoursP function a lso havP wry diiforent 
words). This paper describes an effort to automate 
the annotation of natural dialog at the level of dia­
log ads (DA8), a shallow fir8L level of analy8is LhaL i8 
es.senlial Lo Lhe La.sh mentioned. Table 1 8hows a sam­
ple of the kind of discomse strudure we are modeling 
and detecting. Each utterance is categorized into one 
of several utterance types according to syntactic and 
pra.gma.Lic criLeria. 

0111' approach was to build statistical modPls for var­
ious asppd.s of dialog acts, Sll('.h as tlw ir lPxical rP­
alizations, prosodic characteristics, and sequence dis-

tribution, and to integrate these into a probabilistic 
DA detector. There arc many excellent previous at­
Lempl.8 Lo build predict.ive, sLochasLic modeb of dia­
log sLruclure (KiLa d al. 199fi; MasL el (i/. 199(l: 
l\agata & l'Vlorirnoto 1DD4; f{pithingPr et al. HHJ6: 
Suhm &: Waibel 1994: Taylor ct a.I. 1997: Woszczyna 
&: \Vaibcl 1994; Yamaoka &: Iida 1991), and our effort 
is in many way.s in.spired by Lhi.s work. Our project. 
PxtPnds this earliPr work, partirn larly in its scalp; our 
models WP,rP nainPd on an ordPr of magnitudP morp 
data than any previous system. In addition, whereas 
previous work ha.,; largely dealL w iLh con~Lra.ined, La~k­
orienled dialog , our focu.s is on uncornlrained, 8ponLa­
neous conversn,rion. Finally, ,ve beli eve our approach 
to model integration, in particular our use of automat­
ically recognized words, to be novel. A more complete 
account. of Lhis work can be found in .T ura.foky d (i/. 
( I UU7). 

The Dialog Act Labeling Task 
The data consisted of a substantial portion of the wave­
forms and corre8pomling Lra.rncripls from Lhe SwiLch­
hoard corp11s of convPrsational t PlPphonp spePch (God­
frpy, Holliman, & 1\-kl)aniPl 1DD'2) distrihutPd hy thP 
Linguistic Data Consortium (LDC). The raw Switch­
board daLa i8 not. segmenled in a. linguisLically cornii:;­
Lenl wa.y; we Lherefore made use of a version Lha.L had 
hePn hand-sPp;mPntP,d at the mtPrnncP levP-1 ( MetPPr & 
others 1995). Automatic segmentation of spontaneous 
speech is an open research problem in its own rip;ht 
(Ma..,;L el al. 199fi; SLolcke ,t;, Shriberg 199fi), but. -we 
dPcidPd not to confound thP l)i\ ddPction task with 
the additional problems inrroduced by automatic seg­
mentation . 

\Ve cho8e Lo follow a recenl sLanda.rd for shallow dis­
course sLrudure annoLa.Lion, Lhe Dialog A.cl Markup in 
Severn] 1 .. ayers (I):\ \'1SL) tag set , which was recenrly 
designed by the natural-language processing commu­
nity (Core &: Allen 1997). We began with this markup 
system and modified it. in several way8 Lo make iL m ore 
uspfo 1 for Olll' corpus . Tlw tag sPt distinguishes 42 
mutually Pxch1sivP, uttpran ce typPs; Tab] p 2 shows thP 
10 m ost frequent categories with examples and rda-



Ta.ble 1: A fragmenL of a. labeled switchboard conver::;a.t.ion. 
I Spkr Dia.log :\c:t U1.1.cra.ncc· 

A Wh-Qucstion What kind do you have now? 
B Statement Uh, we have o, a !vfa:oda nine twenty nine and a Ford 

Crown Victoria and a little two seater cnx. 
A Acknuw le<lge-Am;wer Oh, okay. 
B Opinion Uh, ii '.s m/Jw,· di.l71cull lo, /.o projcd wlwl hwl of. ,1h, -
A Statement we'd, look, always look i11t.o, ul1 , c:011s11111er reports t.o sec what. kincl 

of, uh, report, or, 
B Tnrn-Ex1t. So, uh, -
A Yes-No-Qm~st. /\11cl clid you ri11cl 
B Answer-Yes Uh, ywh, 
n State1nent ~Ve 've been 
A Bac.kc.hannP.l-Q11est. Oh, really '? 
B Answer-YP.s Yeah. 

tive freqmmcies. ;\ detailed description of thP. labeling 
system can be found in Jurafsky, Shribcrg, & Biasca 
(1997). 

~ot.e t.ha.t. our ta.g set incorpora.Les both Lrndi­
tiona.l sociolinguistic and disrnmse-theorP.t.ic, rhP.t,oric,a.l 
rela.t.ions/adjac,ency-pa.irs as well ri.s some rnore-form­
based labels. Furthermore, the tag set is structured 
::;o a.::; to allow la.beler8 t.o anno ta.Le a S w i khboa.r<l con­
versation in a.bout :10 minute::;, and wiLlwut having to 
list.en to ea.ch utt.eran<:e. 'vVit.hout these rnnsnaints the 
tag set might have included some finer distinctions, but 
we felt that this drawback was ba.la.ncccl by the ability 
Lo cover a. large amount. of <la.La. 

Labeling was carried out in a. three-month period 
by eight linguistics gradlla.te st.lldP.nt.s a.t CL Holllder. 
Inter-labeler agreement was 84%, resulting in a Kappa 
::;Latist.ic of 0.80. The Kappa sta.Listic measures agree­
ment. normalized for chance; values of 0.8 or higher are 
considered considered high reliahility (Ca.rl ett.a. 1!.HJ6). 

A total of 1155 Switchboard conversations were la­
bclccL comprising 205,000 utterances and 1.4 million 
wortb. T he daLa was parLiLioned inLo a. Lraining ::;et. 
of 1115 conversations ( 1.4M words, ID8 I( utteranc,es ), 
used for estima.t.ing the va.rious components of our 
model, and a test set of 19 conversations (29K words, 
,1K ut.Lernnce::;). Remaining con ver::;aLions were ::;et. 
aside as future Lest set.8. 

Hidden Markov Modeling of Dialog 
Our goa.l is to perform I),.\ cla.ssifirnt.ion using a. proha.­
bilistic framework, giving us a principled approach for 
combining mulLiple knowledge 8ources (u8ing Lhe la.w8 
of probabiliLy), as well a8 t.he ability Lo derive model 
parameters a.utoma.tirnlly from a. corpus, using statis­
tical inference techniques. 

Given all available evidence E about a conversation, 
Lhe goal is Lo find Lhe DA sequence U Lha L ha.::; the high­
est. posterior probability P(U Ir.!) gi ven t.ha.t eviden<:e. 
Applying HayP.s ' H.ule we gP.t. 

u· a.rgma.x P(Ulr.!) 
u 

uh, repair records that the various cars have -

that you like the forcig11 ca.rs bet.I.er l.11 '1.11 I.lie clomcsl.ic? 

ezh·emely pleased with our l1da2:das . 

P(U)P(EIU) 
a.rgrnax · . •. · 

u P(E) 

argmaxP(U)P(EIU) (1 ) 
l! 

Here P(U) represenLs the prior probabiliLy of a DA ::;e­
quen<:P. , a.nd P( r,'IU) is the likelihood of U given t.hP. ev­
idence. The likelihood is usually much more straight­
forward to model than the posterior itself. This has 
Lo do with the fact. that our models are genera.Live or 
ca.llsa.l in na.ture, i.e., they descrihe how the evidenc,e 
is produced by the underlying I);\ sequenc,e U. 

Estimating P(U) requires building a probabilistic 
discourse grammar, i.e. , a. s taListical m o del of DA ::;e-
4 uences. \Ve did ::;o using familiar Lechniq ues from la.n­
gllage modP.ling for speec,h recognition, alt.hough the 
sequenced objects in this case arc DA labels rather 
than words. 

Dialog act likelihoods 
The compuLation of likelihood::; P(EIU') depend::; on 
the types of evidP.nce llsed. In our expP.rirnent.s we 
used the following sources of evidence, either alone or 
in combination: 

Transcribed words: The likelihood8 used in Eq. 1 
are P(lVIU) , where iv refer8 Lo t.he Lrue (hand­
trn.nscrihed) words spoken in n. c,onversat.ion. 

Recognized words: The evidence consist::; of recog­
nizer acou::;Lic8 A, and we seek Lo compute P(AjU). 
As desnibed hter , this involves considering rn11lripl e 
a.lt.ernative rec,ognized word seqllences. 

Prosodic feature s: Evidence is given by Lhe acoustic 
feat.mes F rnptming various aspects of pit.th, dura­
tion, energy, etr.., oft.h P. speech signa l: th e associated 
likelihoods arc I' ( F IU). 
To make both the modeling and the search for the 

best DA 8equence feasible, we furLher require LhaL our 
likelihood models a.re der:omposahle hy utteranr:e. This 
m ea.ns that. th e likP.lihood given a rnmplet.e conversa.­
tion can be factored into likelihoods given the individ-



Table 2: The 10 mosL freq uenL ( ouL of -'12) dialog acL label;; . 

I Tag I Abbrev I Example % -

Staten1ent-non-upinion sd 
Ac.know lP.dge ( Bac.kc.hannel) b 
St.a t.e1nent.-opinion sv 

Agree/ Accept aa. 
Abandoned or Turn-Exit ¼ 
Appreciation ba 
Yes-Nu-Question qy 
Non-verhal X 

Yes answers ny 
Conventional-closing fc 

ual utterances. We use U, for the ith I);\ label in the 
sequenr.e U, i.e., U = (U1 , ... ,U;, ... , U11 ), where n is 
the number of utterances in a conversation. In addi­
Lion, we use E; for LhaL porLion of Lhe evidence LhaL 
correspond;; Lo Lhe iLh uLLerance, e.g., Lhe word;; or Lhe 
prosody of th" ith utrnrance. l)ecomposa.bility of the 
likelihood means that 

P(r,'IU) = P(r),JU,) ..... P(r)r,IUn.) 

Applied to the three types of evidence introduced 
earlier, iL i;; dear Lha.L Lhis as::;umpLion is noL ::;LricLly 
true. For example, speakers might. tend to reuse words 
found earlier in the conversation, violating the inde­
pendence of the P(H', IU,). Similarly, speakers might 
a.djusL Lheir pik.h or volume over Lime, e.g . . Lo Lhe con­
vernaLion pa.rLner, violating Lhe independence of Lhe 
P(F;,JU,). ;\sin other areas of sta.tistirnl modeling, we 
count on the fact that these violations arc small com­
pared to the properties actually modeled, namely, the 
dependence of E; on U;. 

Markov modeling 
Returning to the prior of DA sequences P(U), it is 
convenient. Lo make cerLa.in independence as;;umpLion::; 
here, too. In particular, we assume t.ha.t. the prior dis­
tribution of U is Markovian, i.e., that each U, depends 
only on a fixed number /.; of preceding DA labels: 

P(u,1u, , ... ,u,_,) = P(U;IU,-k,-·-,u,_,) 

(k is the order of the }farkov process describing U). 
The K-gram b.:1.;,;ed discourse grammars we u::;ed have 
this property. As desr.ribed later, k = 1 is a. very good 
r.hoice, i.e., conditioning on the I);\ types more than 
one removed from the current one docs not improve 
Lhe qua.lily of Lhe model by much. 

The imporLance of Lhe Markov a.s;;umpLion for Lhe 
discourse grammar is that we can now view the whole 
system of discourse grammar and local utterance­
based likelihoods as a /.:th-order hidden Markov model 
(IIMM) (Habiner &-, .Tuang 198G). The IIl\.f\'I ;;laLe;; 
correspond to l)J\s, observations correspond to utter­
ances, transition probabilities a.re given by the dis­
course gra.mma.r, and observation probabilities a.re 

Mf, J'm in thf legal department. :36'7.: 
Uh-lmli. 19% 
l /.hink ii.',. grui/. 1:1% 
That's exoctly it. 0% 
So,-/ 0% 
J can imaginf. 2% 
l)o you hm:f to have any $pecia/ training~ 2% 
< Taugh!.er>, < ThrnoLr:lcrfftrig> 2% 
Ye,. 1% 
lVell, it's been nice tctlkinq to you. 1% 

given by the local likelihoods P(r), IU;). This allows 
us to use effi<:ient dyna.mir. programming algorithms to 
compute the relevant aspects of the model, such as 

• the most probable DA sequence (the Viterbi algo-
riLhm) -

• the posterior probability of various 1)1\s for a. given 
utterance, after considering all the evidence (the 
forward-backward algorithm) 

Dialog act decoding 
The ViLerbi algorithm for III\.L\'Is find::; Lhe globally 
most probable state sequenr.e. \Vhen applied t.o a 
discourse model with lornlly decomposable likelihoods 
and l\.Iarkovian discourse grammar, it will therefore 
find precisely Lhe DA sequence w iLh Lhe highesL posle­
rior probabiliLy: 

Tr= argmaxP(UJE) 
l! 

The combination of likelihood and prior modeling, 
ILMl\.fa, and ViLerbi decoding i;; fundamentally Lhe 
same as the standard probabilistic. approaches to 
speech recognition (Bahl, Jelinek, & :l,,krcer 1983) and 
tagging (Church 1988). It maximizes the probability 
of get.Ling Lhe t'lllffe DA sequence correcL , buL iL does 
not ne<:essa.rily find th e 1)1\ sequenr.e t.ha.t. has the most. 
I):\ labels correct. (Stokke, l<onig , & Weintra.u b HHJ7) . 
To minimize the overall utterance labeling error, we 
need Lo maximize Lhe probabiliLy of geLLing each DA 
label correc.L imli v idua.lly, i.e. , we need Lo maximize 
P(U, Jr)) for ea.ch i = 1, ... , n. We rnn compute th~ 
per-utterance posterior DA probabilities by summing: 

P(ulE) = L P(UIE) 
U ,=·u 

where Lhe ;;ummaLion is over a ll sequences U whose iLh 
element matches the label in quest.ion. The summation 
is efficiently carried out by the forward-backward algo­
rithm for HM}Is. 

For OLh-order ( unigram) discourne grammars. 
Viterbi decoding and forward /backward decoding al­
ways yield the same resu lt.s. However, for higher-order 
discourse granunarn we found that forward-backward 



Table :1: Perplexities of <lia.log a.cl;; wiLh and wiLlwuL 
turn information. 

I Discourse grammar I P(U) I P(U, T) I P(UJT) I 

~one ,12 8'1 -'12 
Unigram 11.0 18.fi 9.0 
Hip;ra.m 7.D 10.4 5.1 
Trigram 7.5 9.8 4.8 

decoding consistently gives slightly (up to 1 % absolute) 
beLLer accuracies, as expected. Therefore, we u;;ed Lhis 
meLlw<l LhroughouL. 

Discourse Granunars 
The ;;La.Li;;Lical <liscour;;e grammar models Lhe prior 
probabilities P(U) of DA sequence;;. In Lhe case of 
rnnwrsations for which the identities of the speakers 
arc kno,vn ( as in Switchboard), the discourse grammar 
should a.lso model turn-taking behavior. A straightfor­
ward approach i;; Lo model sequences of pairs (U; , T;) 
where U, is the I):\ label and '/; represents the speaker. 
\Ve are not tryinp; to model speaker idiosyncrasies, so 
convcrsants arc arbitrarily identified as A or B, and the 
mo<lel is made symmetric wiLh respect Lo Lhe choice of 
si<les (e.g., by replicaLiug Lhe Lraiuing ;;equences wiLh 
sides switr.hed). Our discourse grnmnrnrs thus had a 
vocabulary of 42 x 2 = 84 labels, plus tags for the 
beginning and end of conversations. 

N-gram discourse models 
A computationally convenient type of discourse gram­
mar is an ~-gram model based on DA Lags, as it. allows 
efficient decoding in the HMM framework. We trained 
standard backoff \J-gram models (l<atz 1DS7), using 
the frequency smoothing approach of \Vittcn & Bell 
( 1991). :\fodels of various orders were compa.re<l by 
Lheir perplexiLies, i.e., Lhe average number of choices 
the model predicts for each tag, rnnditioned on the 
preceding tags. 

Table 3 shows perplexities for three types of mod­
eb: P(U), Lhe DAs a.loue: P(U, T), Lhe combiued 
1),\/speaker II) sequence; and 1-'(UJ'f'), the l),\s con­
ditioned on known speaker I l)s (appropriate for the 
Switchboard task) . As expected, we sec an improvc­
meuL ( decreasing perplexities) for increasiug ~-gram 
order. However, Lhe incremental gain of a Lrigram is 
small, and higher-order models did not prove usefo l. 
Comparing I'(U) and I'(UJT), we sec that speaker 
identity acids substantial information, especially for 
higher-order models. 

Other discourse models 
\Ve abo invesLigaLed uon-~ -gram <liscourne mo<leb, 
based on various language modeling techniques known 
from speer.h recognition. On e moti vation for alterna­
tive models is that !\-grams enforce a one-dimensional 

representation on DA sequences, whereas we saw above 
that the event spa.cc is really a multidimensional event 
(DA label a.ud ;;pea.ker labels). Another moLiva.Lion is 
LhaL !\-grams fail Lo model long-disLance depemlencies, 
sur.h as the fact that speakers may tend to repeat r.er­
tain DAs or patterns throughout the conversation. 

The first alternative approach was a standard cache 
nwdel (Kuhn ,v de Mori 1990) , which boo::;Ls Lhe prob­
abilities of previously observed uni grams and bi grams, 
on the theory that tokens tend to repeat themselves 
over longer distances. However, this docs not seem to 
be Lrue for DA sequeuces in our corpus, as Lhe cache 
model showed no improvement. over Lhe ::;Landa.rd !\­
gram. 

Second, we built a discourse grammar that in­
corporated constraints on DA sequences in a non­
hierarchical way, using ma;cirrnun enirop:g (:VIE) esLi­
mation (K.osenfold HJ%). The model was designed 
so that thr. current l)i\ labr.l was constrainr.d hy fea­
tures such as unigram statistics, the previous DA and 
Lhe DA once removed, DA::; occurring wiLhin a win­
dow in Lhe pasL, and wheLher Lhe previous uLLerance 
was by the same spr.alrnr. \Vr. found, howr.vr.r, that an 
ME model using !\-gram constraints performed only 
slightly better than a corresponding backoff N-gram, 
and Lha.L adding Lhe addiLiona.l consLrainL::; did noL im­
prove relative to the trigram model. We condude that 
I):\ sequences are mostly characteri7,ed by !or.al inter­
actions, and thus modeled well by low-order !\-gram 
sLa.Li;;Lics. 

Dialog Act Detection Using Words 
I):\ cl:i.ssitication using words is basr.d on the ob­
servation that different DAs use distinctive word 
strings. For example, 92.4%, of the "uh.J:mh" -s occur in 
Dack.channel~, and 88.'1% of Lhe Lrigrams "<sLarL> 
do you'' or.r.ur in Yf!s-No-qrn,stions . 

Detection from true words 

A8suming Lha.L Lhe Lrue (hand- Lra.nscribed) wor<ls of 
uLLera.uc.es a.re given a8 evidence, we can compuLe 
word-based likelihoods 1-'( W JU ) in a straight.forward 
way, by computing a statistical language model for 
each of the 42 DAs. All DAs of a particular type 
found in Lhe Lraining corpus were pooled and a DA­
sper.ific trigram model was built using standard tech­
niques ( l(atz-backoff with Witten- Hell discounting) . 

Detection from recognized words 

For fully auLomaLic DA deLecLion, Lhe above approach 
is only a partial solmion, sincr. we are not yr.t able 
to recognize words in spontaneous speech with perfect 
accuracy. \-Ve modify the likelihood approach to ,vork 
wiLh Lhe a.cousLic informa.Lion A. (waveforms) available 
to a speed1 recogni7,er. We compme 1-'(AJU) by de­
composing it into an acoustic. likelihood 1-'( A J \;V) and 
a word-based likelihood I'(vVJU), and summing over 



B / A 
  0.5 0.5

B 
 0.693 0.307

cont_speech_frames_n < 23.403

A 
 0.353 0.647

cont_speech_frames_n >= 23.403

B 
 0.754 0.246

ling_dur < 0.485

A 
 0.497 0.503

ling_dur >= 0.485

B 
 0.635 0.365

ling_dur_minus_min10pause < 0.565

A 
 0.340 0.660

ling_dur_minus_min10pause >= 0.565

A 
 0.426 0.574

ling_dur < 0.415

A 
 0.279 0.721

ling_dur >= 0.415

B 
 0.535 0.465

snr_mean_utt < 0.4774

A 
 0.397 0.603

snr_mean_utt >= 0.4774

B 
 0.625 0.375

snr_mean_utt < 0.3717

A 
 0.453 0.547

snr_mean_utt >= 0.3717



Table 5: DA detection using prosody (chance = 35%). 

Discourse Grammar 

Kone 
Cnigram 
Digram 

Accuracy (%) I 
38.9 
,1s.:1 
fi0.2 

esLimaLes for Lhe po8Lerior probabiliLie:;, P([:; IF;). The 
probh~m can he overrnme by applying Ha.yes' H11le lo­
cally: 

P'UIF-) P(U·IF) 
P(VIU)=f-'(F) ~ 1 ':x ·' i 

' - ' · '· P(U;) P(U;) 

A quanLiLy proporLional Lo Lhe required likelihood can 
therefore he obtn.ined hy either dividing the posterior 
tree probability by the prior I'( U;), or by training the 
tree on a uniform prior distribution of DA types. \Ve 
cho:;e Lhe second approach, dowrnampling our Lraining 
daLa Lo equate DA proportion:;. 

Results 
As a preliminary experiment to test the integration 
of prosody with other knowledge sources, we trained 
a :;ingle Lree Lo discriminal.e among Lhe five most. fre­
q11ent. dialog acrs (Statement , Hackcharnwl, Opinion, 
Agreement, and Abandoned, totaling 78% oft.he data) 
and an "Other'' category. The probability in the "Oth­
er" cal.egory was spliL uniformly arnollg all the types in 
LhaL ca.Legory. HesulL:; for t.hi:; "Top-fi" t.ree are 8hown 
in 'fable 5. ;\s shown, the tree performs significantly 
better than chance, but not as wdl as the word-based 
methods (sec Table 4). 

Neural network classifiers 
Alt.hough we chose to use decision trees as prosodic 
classifiers for their relative ease of inspection, we might. 
have used any suitable probabilistic classifier, i.e., any 
model LhaL estimates the po:;Lerior probabiliLies of DA8 
gi veil t.he prosodic feaLures. \Ve comlucled preliminary 
experiments to :i.ssess how neural networks compare to 
decision trees for the type of data studied here. Neural 
net.works arc worth investigating since they offer po­
LenLial advantage;; over decision Lrees. They can learn 
dec,ision surfac,es that lie at. an angle to the axes of the 
input foat.me space, unlike standard CA HT trees whic,h 
always split continuous features on one dimension at a 
Lime. The response funcLion of neural net.works is con­
Linuous (smooLh) al Lhe decision boundaries, allowillg 
them to avoid hard decisions and the r.omplete frag­
mentation of data associated with decision tree ques­
tions. Most important., neural net.works with hidden 
unit.;; can learn new feal.ure8 LhaL combine muH.iple in­
put. fearnres . Hes11lrs from preliminary experiments 
on the 'Top-,) dassific,n.tion task showed that a softmax 
network (Bridle 1990) without hidden units resulted in 

a slight improvement over a decision tree on the same 
task. The fa.ct that hidden units did not afford an ad­
vallLage here illdicaLe;; LhaL complex combinal.ion:; of 
feaLures (as far a8 Lhe net.work could learn Lhem) do 
not better predict l)As for the task than linear rnm­
binations of our input features. This further justifies 
our choice of decision trees for this task, although we 
should nol di8counl olher approaches in future sludie8. 

Using Multiple Knowledge Sources 
As mentioned earlier, we expect improved performance 
from combining word and prosodic illformat.ion . Com­
billing Lhese kllow ledge 8ources req uire8 esLimaling a 
combined likelihood f-'( A,, r; IU,) for each 11tt.eran<:e. 
The simplest approach is to assume that the two 
types of acoustic observations (recognizer acoustics 
and prosodic feaLures) are approxirnaLely comlit.ionally 
independent. once U; is g1 veil: 

P(A,, l'ilU,) P(A,IU,)f-'(l'; IA,, U,) 
~ I'(J1; jU;)I' (F;jU;) 

Since Lhe recogni:&er acou8Lics are modeled by way of 
their dependence on words, it is pa.rt.i c,ularly important. 
to avoid using prosodic fratures that arc directly cor­
related with ,vord-identitics, or features that arc also 
modeled by t.he discourse grammar;;, such as uLLerance 
position relative to t.mn changes. 

Results 

For Lhe olle experimenl we conducLed using Lhi:; ap­
proach, we combined the acoustic, .\J-best. likelihoods 
from our experiment with rec,ogni:i:ed words with the 
'L:ip-5 tree classifier mentioned earlier. Results arc 
summariz,ed in Table G. 

Table f:i: Combined utterance det ect.ion acc11 ra.ci es 
(c,ha.nc,e = ::15%). 

Discourse 
Grammar 

Kone 
Cnigram 
Higram 

Prosody 

38.9 
,18.:1 
50.'2 

;\ crnracy (%) 
Recognizer Combined 

42 .8 56.5 
tlUJ tl2.G 
64.(:i 65.0 

As shown, the rnmbined c,lassifier presents a. slight 
improvement over the recognizer-based classifier. The 
experiment. w iLhout. discourse grammar indicales LhaL 
l.he combined evidence is considerably sLrollger Lhan 
eit.lwr knowledge source alone, yet this improvement 
seems to be ma.de largely redundant. by the use of priors 
and the discourse grammar. For example, the ambigu­
ity beLween Ye8-No-QuesLions and s talements where 
prosody is expected to help can also he removed by 
examining the c,ontext of the ut.tera.nc,e (e.g., not.i c,inp; 
that the following utterance is a yes/no answer). 



Table 7: Accuracy (in W,) for individual and combined 
models for Lhree subLasks, using uniform priors ( chance 
= ,)0%). 

l(nowledge 'l'rne Recog. 
Source words words 

Questions/Statements 
prosody only 75.97 75.97 

words only 8G.8G 7f>.,1:1 
words+ prosody 87.58 7D.76 

AgreemenLs/I3ackchannels 
prosody only 7'2.88 7'2.88 

words only 80.DU 78.'2'2 
words+ prosody 84.74 81.70 

Focussed classifications 

To gain a better understanding of the potential for 
prosodic DA det.ecLion imlependenL of Lhe eITecLs of 
discourse grammar and Lhe skewed DA disLribuLion in 
Switr.hboa.rd, we also examined several binary l)i\ c:la.s­
sification tasks. The choice of tasks was motivated by 
an analysis of confusions committed by a purely word­
based DA deLecLor, which Lends Lo misLake Quest.ions 
for Statements, and Har,kchannels for Agreements (and 
vice versa). We tested a prosodic classifier, and ,vord­
bascd classifier ( with both transcribed and recognized 
wortb), and a combined cla.ssifier on Lhese Lhree Lasks, 
downsampling Lhe DA distribution Lo equaLe Lhe class 
sizes in ea.r.h r.ase. Chance perfom1ance in all three ex­
periments is therefore 50%. Results arc summarized in 
Table 7. 

As shown, Lhe combined cla.-;sifier was cousisLenLly 
more ar,r.urate than th e classifier using words alone. 
;\ lthough the gain in accuracy wa.s not statistically sig­
nificant for the small recognizer test set because of a 
lack of power, replicaLion for a larger LesL seL showed 
Lhe gain Lo be highly significant. for boLh subLasks by a 
Sign test , p < .001 and p < .0001, respectively. !\cross 
these as well as additional subtasks, the relative ad­
vantage adding prosody was larger for recognized than 
for Lrue words, suggesLing LhaL prosody is parLicularly 
helpful when word information is not perfect. 

Feature Usage 

~'ea.ture analyses, conducted by systematically leaving 
out foatme types and rebuilding trees, revealed that 
although canonical features (such as FO for question 
deLecLion) were imporLanL, oLher less obvious feaLures 
(e .g., duraLion and speaking raLe for Lhe same Lask) 
were also heavily used. Gender features were not used, 
suggesting that feature normalizations ( especially FO) 
were appropriate, and that gender-independent model­
ing is feasible for Lhese La.sks. Overall, Lhere was a high 
degree of correlation among features sur,h that if r.er­
tain features were removed, oth ers r,ould r,ompensa te 
t o retain accuracy. Kcverthekss, the features allowing 

best classification were dependent on the subtask, sug­
gesting that a prosodic classifier should use as many 
diITerenL feaLure Lypes as possible for opLimal coverage 
across tasks. 

Conclusions 
We have developed an inLegraLed probabilistic ap­
proach to dialog ar.t r,lassifir.ation on a large sponta­
neous speech corpus. The approa.ch combines models 
for lexical and prosodic realizations of DAs, as well as 
a sLaList.ical discourne grammar. All componenLs of Lhe 
model a.re automatirnlly trained, and are thus applir.a­
ble to other domains for whith labeled data is available. 
Detection accuracies achieved so far arc highly encour­
aging, relaLi ve Lo Lhe inherent. difficulLy of Lhe La.-;k as 
mea.sured by human labeler performance. \Ve investi­
gated several modeling alternatives for the mmponents 
of the model (ba.ckoff N-grams and maximum entropy 
models for discourse grammars, decision trees and neu­
ral neLworks for prosodic cla.-;sificaLion) . \Ve found per­
formanr,e largely independent of these choir,es, indicat­
ing on the one hand that om current system does about 
as well as possible given current modeling techniques 
and Lhe inherent. difficulLy of Lhe Lask and our limiLed 
represenLaLion of iL. On Lhe oLher hand, Lo improve 
performanc:e we will have to revisit om independence 
assumptions, as ,vell as examine additional knowledge 
sources. 

Future Work 
For discourse and dialog modeling, we plan to try altcr­
naLi ve approaches Lo encode Lhe Lemporal sequencing 
of ut.Lerances. For example, we are currenLly noL mod­
eling the fact that utt.eranr,es by the two speakers may 
a.ctually overlap (e.g., backchannels interrupt an on­
going utterance). In addition, we should model more 
of Lhe non-local aspects of discourse sLrucLure, despiLe 
our neg;i.tive results so far. F'or exampl e, a r.ontext-free 
discourse grammar could potentially account for the 
nested structures proposed in Grosz & Sidncr (1986). 

\Vord-based DA discriminaLion has obvious parallels 
Lo Lopic spoLLing and message dassificaLion, and we 
should explore techniques developed in that paradigm, 
such as keyword-based detectors (Rose, Chang, & 
Lippmann 1991). For prosodic DA detection, we arc 
;;Ludy ing Lhe use of mulLiple Lrees, both Lo cascade 
classifiers trained on su ht.asks, and to com hine parallel 
classifiers using a disjoint subset of feat.mes, whir,h we 
believe will increase robustness. 

The inLegraLion of knowledge sources is especially 
promising, since we are currenLly making fairly se­
vere independence assumptions here. Therefore our 
eventual goal would be a DA classifier that directly 
integrates discourse grammar, word information, and 
prosody. For exa mple, iL should be fea8ible Lo Lrain a 
prosodir, decision tree that takes the discourse r,ontext 
as one of its inputs. Such a m odel would subsume the 
discourse gramma.r, and is potentially able to capture 



interactions between the context and prosody of the 
current utterance, which arc currently assumed inde­
pemlenL (given the current DA). A furl.her idea along 
Lhese lines is to make word know ledge direclly avail­
able to a posterior probability estimator, allowing it to 
model correlations of words and prosody. 
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