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Ahstract

We describe an integrated approach for statistical
modeling of discourse structure for natural conversa-
tional speech. Qur model is based on 42 ‘dialog acts’
(e.g., Statement, Question, Backchannel, Agreement,
Disagreement, Apology), which were hand-labeled in
1135 conversations rom the Switchboard corpus of
spontanecus human-to-human telephone speech. We
developed several models and algorithms to automati-
cally detect dialog acts from transcribed or antomati-
cally recognized words and from prosodic properties of
the specch signal, and by using a statistical discounrse
grammar. All of these components were probalilistic
in nature and estimated from data, employing a vari-
ety of techniques (hidden Markov models, N-gram lan-
guage models, maximum entropy estimation, decision
tree classifiers, and neural networks). In preliminary
studics, we achioved a dialog act labeling accuracy of
65% bascd on recognized words and prosody, and an
accuracy of 729% based on word transcripts. Since hu-
mans achieve 84% on this task (with chance perfor-
mance at 33%) we find these regults encouraging.

Introduction

‘I'he ability to model and automatically detect dis-
coursc structure is csscential as we address problems
such as wnderslanding sponlaneous dialog (a meeling
surnnarizer nesds (o konow who satd what o whom),
building human-computer dialog systems (a conversa-
tional agent needs to know whether it just got asked
a question or ordered to do something), and simple
transcriplion of conversational speech (ullerances witl
different discourse function also have very different
words). ‘I'his paper describes an effort to aufomate
the annotation of natural dialog at the level of dia-
log acts (DAs), a shallow [irst level ol analysis that is
essential Lo the tasks mentioned. Table 1 shows a sam-
ple of the kind of discourse structure we are maodeling
and detecting. Fach ntterance is categorized into one
of several ntterance types according to syntactic and
pragualic crileria.

Onr approach was to build statistical models for var-
ious aspects of dialog acts, such as their lexical re-
alizations, prosodic characteristics, and scquence dis-

tribution, and to integrate these into a probabilistic
DA detector. There are many cxcellent previous at-
tempts Lo bulld predictive, stochaslic models of dia-
log sbructure [(Kita el al.  1996; Masl el al  1996;
Nagata & Morimoto 1094 Reithinger ef al  1006:
Suhm & Waibel 1994; Taylor ¢t al. 1997; Woszczyna
& Waibel 1994; Yamaoka & Iida 1991), and our cffort
18 10 many ways mspired by this work. Qur project
extends this earlier work, particularly in itg scale; our
models were trained on an order of magnitude more
data than any previous system. In addition, whercas
previous work has largely deall wilh constrained, task-
orienled dialog, our focus 18 on unconstrained, sponta-
neous conversation. Finally, we believe our approach
to model integration, in particular our use of antemat-
ically recognized words, to be novel. A more complete
account, of this work can be found 1 Juralsky el ol
(1997).

The Dialog Act Labeling Task

The data consisted of a substantial portion of the wave-
[orms and correspondiug transeripls (rom the Switch-
hoard corpus of conversational telephone speech (God-
frey, Holliman, & McDaniel 1992) distributed hy the
Linguistic Data Consortium (LDC). The raw Switch-
board dala is nol segmented in a linguistically consis-
tent way; we therefore made use of a version hat had
been hand-segmented at the utterance level (Meteer &
others 1995). Automatic scgmentation of spontancous
specch 1s an open rescarch problem in its own right
(Masl el al. 1996; Stolcke & Shriberg 1996), bul we
decided not to confound the DA detection task with
the additional problems introduced by automatic seg-
mentation.

We chose to [ollow a recent standard [or shallow dis-
course structure aunotation, the Dialog Act Markup in
Several Layers (IDAMSL) tag set, which was recently
degigned by the natural-language processing comimn-
nity (Core & Allen 1997). We began with this markup
system and modilied 1t 1n several ways Lo make iU more
useful for our corpus. The tag set distinguishes 42
mutually exclusive utterance types; I'ahle 2 shows the
10 most frequent categories with cxamples and rela-



Table 1: A [ragment of a labeled switchboard conversation.

Spkr Dialog Act Utterance
A Wh-Qucstion What kind do you have now?
B Statement Uh, we have a, o Mazda nine twenty nine and a Ford
Crown Victoria and a little two seater CLX,
A Acknowledge-Answer  Oh, okay.
B Opinion Uh, ats rather difficull Lo, to praject whal kind of, wh, -
A Statement wao'd, Took, always look inte, uh, consumer reports 1o see what kind
of, uh, report, or, uh, repair records that the various cars have —
B Turn-Exit So, uh, -
A Yes-No-Quest And did you find that you like the Torcign cars better than the domestic?
B Answer-Yos Uh, yeah,
B Statement We'ne been extremely pleased with our Mazdas.
A Backchannel-Quest, Oh, really?
B Answer-Yes Yeah.

tive frequencies. A detailed deseription of the laheling
system can be found in Jurafsky, Shriberg, & Biasca
(1997).

Note thal our lag sel incorporales boih tradi-
tional sociolinguistic and discourse-theoretic rhetorical
relationsfadjacency-pairs as well as some more-form-
hascd labels. Furthcrmore, the tag sot 1s structured
so as lo allow labelers Lo annolate a Swilchboard con-
versalion o aboul 30 minutes, and without having to
listen to each utterance. Without fhese constraints the
tag sct might have included some finer distinetions, but
we felt that this drawback was halaneccd by the ability
Lo cover a large amount of data.

[.abeling was carried out in a three-month perind
by eight linguistics graduate students at CU Boulder.
Inter-labeler agreement was 84%, resulting in a Kappa
stalistic of 0.80. The Kappa slatislic measures agree-
ment normalized [or chance; values of 0.8 or higher are
considered cansidered high reliahility (Carletfa 1996).

A total of 1155 Switchhoard conversations were la-
beled, comprising 205,000 utterances and 1.4 million
words. The data was parlitioned inlo a training set
of 1115 conversations (1.4M words, 198K utterances),
used for estimating the varions components of our
model, and a test set of 19 conversations (29K words,
AK utlerances). Remaining conversabions were sel
aside as [ulure Lest sets.

Hidden Markov Modeling of Dialog

Onr goal is to perform DA classification nsing a proha-
bilistic framework, giving us a principled approach for
combining multiple knowledge sources (using the laws
ol probability), as well as the abilily (o derive model
parameters automatically from a corpus, using stafis-
tical inferenece technignes.

Given all available evidenee E about a conversation,
thie goal 1s Lo fiud the DA sequence 7 thal has the high-
est posterior prabahility P({/|F) given that evidence.
Applying Bayes' Rule we get

U* = argmax P(U|F)
i

P(I)PLE|L)

= argmax
v P(E)

= argmax P(IOP(E|) (1)
&

Here P(I7) represents the prior probability of 4 DA se-
quence, and P{#|(7}) 15 the likelihood of I/ given the ev-
idence. The likelihood 1s usually much more straight-
forward to model than the posterior itself. This has
to do with the lacl thal our models are generalive or
causal in nature, i.e., they describe how the evidence
is produced hy the nnderlying DA sequence (/.

Estimating ({7} requires building a probabilistic
discourse gramiar, Le., a slatistical model of DA se-
quences. We did so using lamiliar techniques [rom lan-
guage modeling for speech recognition, although the
sequenced objects in this casc are DA labels rather
than words.

Dialog act likelihoods

The computation of likelihoods P{E|l7) depends on

the types of evidence used. In our experiments we

used the following sources of evidence, cither alone or
in combination:

Transcribed words: The likelihoods used in Lg. 1
are P(WI|I7), where W refers Lo the true (hand-
transeribed) words spoken in a conversation.

Recognizred words: The evidence consisls of recog-
nizer acoustics A, and we seek lo compule P{A|7).
Asg described later, this involves considering multiple
alternative recognized word sequences.

Prosodic features: Lvidence is given by the acoustic
features F' capturing various aspects of pitch, dura-
tion, energy, ete., of the speech signal; the associated
likelihoods are 7 F|L7).

To make both the modeling and the scarch for the
best DA sequence [easible, we [urthier require thal our
likelihaod models are decomposable by utterance. ‘This
means that the likelihoad given a complete conversa-
tion can be factored into likelihoods given the individ-



Table 2: The 10 most [requenl (oul of 12) dialog act labels.

| Tag | Abbrev | Example [ % ]
Statement-non-opinion ad Me, 'm in the legal department, 36%
Acknowledge (Backchannel) b Uh-bude. 9%
Statement-opinion sy T think i’s great 3%
Agrcee/Accept ad That's exactly it 3%
Abandoncd or Turn-Exit % Se, -/ By
Appreciation ha 1 can imagine. 2%
Yes-No-Question qy Lo you have to have any special training¥ 2%
Non-verbal % < Faughtors> < Throat_cloaring> 2%
Yes answers ny Yos. %%
Conventional-closing fc Well, it's been nice talking to you. 1%

ual utterances. ¥e nse (; for the ith DA lahel in the
sequence (7, de, U = ({4, ..., U .., U,), where n s
the number of utterances in a conversation. In addi-
Lion, we use [7; [or thal portion of the evidence thal
corresponds o Lhe ith utlerance, e.g., the words or the
prosody of the ith utterance. Decomposability of the
likelihood means that

PR Y = P

‘\) ’Lrnlf'ra)

Applicd to the three types of evidence introduced
earlier, it 1 clear that this assumption is nol strictly
true. For example, speakers might tend ta reuse words
found earlier in the conversation, violating the inde-
pendenee of the (W3 |U; ilarly, speakers might
adjust their pitelt or volume over time, e.g., to the con-
versalion partoer, violating the independence of the
PLFLG). As in ather areas of statistical modeling, we
count on the faet that these violations are small com-
parcd to the properties actually modeled, namely, the
dependence of I; on T;.

Markov modeling

Returning to the prior of DA sequences P(I7), it is
convenlent Lo make certain ndependence assumptions
here, too. In particular, we assume that the prior dis-
tribution of I/ is Markovian, i.e., that each [7; depends
only on a fixed number £ of preceding DA labels:

FU o ool g V= PO s, <. -, B

(k is the order of the Markov process describing 7).
The N-gram based discourse grammars we used have
this property. As described later, & = 113 a very good
choice, 1.e., conditioning on the DA types more than
one removed from the eurrent one deocs not improve
the quality of the model by mucl.

The mportance of the Markoy assumptlion [or the
discourse grammar is that we can now view the whole
gystemn of discourse grammar and local utterance-
based likelihoods as a fth-order Aidden Markov model
(IMM) (Rabiner & Juang 1986). The IIMM slales
carrespond to DAs, abservations correspond to utter-
ances, transition probabilities are given by the dis-
course grammar, and observation prohabilitics are

given by the local likelihoods P(#5|L5). This allows
us to use efficient dynamic programming algorithms to
compute the relevant aspects of the model, such as

e the most probable DA sequence {the Viterbi algo-
rithimn)

e the posterior prohability of various DAs for a given
utterance, after considering all the evidence {the
forward-backward algorithm )

Dialog act decoding
The Viterbi algorithm for IMMs [inds the globally

most probable state sequence.  When applied to a
discourse model with locally decomposable likelihoods
and Markovian discourse grammar, it will thercfore
ind precisely the DA sequence with the highest poste-
rior probability:
I = argmax P(UV| )
¢

The combination ol likelihood and prior modeling,
OMMs, and Vilerbi decoding 1s [undamentally (he
same as the standard probahilistic approaches to
specch recognition (Bahl, Jelinck, & Mereer 1933) and
tagging (Church 1933). Tt maximizes the probability
of gelting the enlire DA sequence correct, bul it does
not necessarily find the DA sequence that has the most
DA labels correct (Stolcke, Konig, & Weintraub 1997).
To minimize the overall utterance labcling crror, we
need lo maximize the probabiliLy ol gelling each DA
lctbel correcl individually, , we need Lo rmaximize

(L5 F) for each 4 = 1,.... 0. We can compute the
pc*r—uttmancp posterior Di\ probabilities by summing:

Plu|E)= )" P(U|E)

Lr,=u

where the summation is over all sequences {7 whose Ll
element matches the lahel in question. 'I'he stmmation
ig cfficiently carricd ont by the forward-backward algo-
rithm for HMMs.

For Oth-order (unigram) discourse grammars,
Viterbi decoding and forward/hackward decoding al-
ways yield the same resnlts. However, for higher-order
discourse grammars we found that forward-backward



Table 3: Perplexilies of dialog acts with and withoul
turn information.

| Discourse grammar | P(I7) | P(T7,T) | P(UV|T) |

Noue 12 81 12
Unigram 18.5 9.0
Bigram 10.4 bl
Trigram 9.8 4.8

decoding consistently gives slightly (up to 1% absolute)
better accuracies, as expecled, Therelore, we used this
method throughout.

Discourse Grammars

The statistical discourse gramumar models the prior
probabilities P(I7) of DA sequences. Tu the case of
canversations for which the identities of the speakers
arc known (as in Switchboard), the discourse grammar
should also model turn-taking behavior. A straightfor-
ward approach is Lo model sequences of paws (17, T;)
where {/; 15 the DA label and 7} represents the speaker.
We are not trying to model speaker idiosynerasies, so
conversants arc arbitrarily identificd as A or B, and the
model 1s made symmetric with respect to the choice of
sides {e.g., by replicaling the training sequences with
sides switched). Onr discourse grammars thus had a
vocabulary of 42 x 2 = 84 lahels, plus tags for the
beginning and end of conversations.

N-gram discourse models

A computationally convenient type of disconrse gram-
trar 18 an N-gram model based on DA lags, as it allows
efficient decoding in the HMM framework. We trained
standard backoff N-gram models (Katz 1987), using
the frequency smoothing approach of Witten & Bell
(1991). Models ol various orders were compared by
their perplexilies, 1.e., the average number of choices
the madel predicts for each fag, conditioned on the
preceding tags.

Table 3 shows perplexitics for three types of mod-
els: P(I7), the DAs alone; P(I7,T), the combined
DA fspeaker 11} sequence; and P(U|1, the DAs con-
ditioned on known speaker 1Ds (appropriate for the
Switchboard task). As cxpected, we sce an improve-
ment (decreasing perplexilies) [or increasing N-gram
order. IMowever, the ncremental gain of a trigram s
small, and higher-order madels did not prove useful.
Comparing P(I7) and P(I7|T), we sce that speaker
identity adds substantial information, cspecially for
higher-order models.

Other discourse models

We also wvestigated non-N-gram discourse rodels,
based on variaus langnage modeling techniques known
from speech recognition. One motivation for alterna-
tive models is that N-grams enforee a one-dimensional

represcntation on DA scquences, whercas we saw above
that the event space i1s really a multidimensional cvent,
(DA label and speaker labels). Another maotivation is
thalt N-grams [ail Lo model long-distance dependencies,
such as the fact that speakers may tend to repeat cer-
tain DNAs or patterns throughout the conversation.

The first alternative approach was a standard cache
meodel (Kuhn & de Mori 1990), which boosts the prob-
abilities of previously ohserved unigrams and higrams,
on the theory that tokens tend to repeat themselves
over longer distances. However, this does not scem to
be true for DA sequences 1 our corpus, as e cache
model showed no wprovement over the standard N-
gram.

Sccond, we built a discourse grammar that in-
corporated  constraints on DA scquences in a non-
Lierarchical way, using maxémurm entrepy (ME) esti-
mation (Rosenfeld 1996). The model was designed
so that the current DA lahel was constrained by fea-
tures such as unigram statistics, the previous DA and
the DA once removed, DAs oceurring within a win-
dow in the past, and whether the previous ullerance
was by the same speaker. We fonund, however, that an
ME model using N-gram constraints performed only
slightly better than a corresponding backoff N-gram,
and that adding the additional constrainls did nol im-
prove relative to the trigram model. We conclude that
DA sequences are mostly characterized by local inter-
actions, and thus modeled well by low-order N-gram
slatisbics.

Dialog Act Detection Using Words

DA classification using words is based on the ob-
servation that different DAs use distinetive word
strings. For cxample, 92.4% of the “uh_huh”-s oceur in
Backchannels, and §8.4% ol the trigrams “<start>
dao yon” occur in Yes-No-Questions.

Detection from true words

Agsurning that the true (hand-transcribed) words of
ullerances are given as evidence, we can compule
ward-hased likelihoods P{W|L/) in a straightforward
way, by computing a statistical language model for
cach of the 42 DAs. All DAs of a particular typc
[ound in the training corpus were pooled and a DA-
specific trigram model was built using standard tech-
niques [ Katz-backoff with Witten-Bell discounting).

Detection from recognized words

For [ully automatic DA detection, the above approach
is only a partial solution, since we are not yet ahle
to recoghize words in spontancous speech with perfect
aceuracy. We modity the likelihood approach to work
wilth the acoustic information A (wavelorms) available
to a speech recognizer. We compute P{A|l7) by de-
composing it inta an accustic likelihood P(A|W) and
a. word-bascd likelihood P(W|U7), and summing over



Table 4: DA detection accuracies (in %) from tran-
scribed and recognized words (chance = 35%).
| Discourse Grammar | True | Recognized ]

None 54.3 42.8
Unigram 68.1 61.9
Bigram 70.6 64.6
Trigram 71.9 64.9

all word sequences:

P(AIU) = Y PAIW,U)P(W|U)
= Y PAW)P(W|U)

The second line is justified under the assumption
that the recognizer acoustics (typically, cepstral coef-
ficients) are invariant to DA type once the words are
fixed.!

The acoustic likelihoods P(A|WW) correspond to the
acoustic scores the recognizer outputs for every hy-
pothesized word sequence W. The summation over
all W must be approximated; we did so by summing
over the 2500 best hypotheses.

Results

Table 4 shows DA detection accuracies obtained by
combining the word- and recognizer-based likelihoods
with the N-gram discourse grammars described earlier.
The best accuracy obtained from transcribed words,
72%, is encouraging given a comparable human per-
formance of 84%. We observe about a 7% absolute
reduction when using recognizer words; this is remark-
able considering that the speech recognizer used had a
word error rate of 41% on the test set.

Dialog Act Detection Using Prosody

We also investigated prosodic information, i.e., infor-
mation independent of the words as well as the stan-
dard recognizer acoustics. Prosody is important for
DA recognition for two reasons. One the one hand,
as we saw earlier, word-based detection suffers from
recognition errors. Second, some utterances are in-
herently ambiguous based on words alone. For ex-
ample, some Yes-No-Questions have identical word
sequences as Statements, but can often be distin-
guished by their final FO rise.

Prosodic features

Prosodic DA classification was based on a large set
of features computed automatically from the wave-
form, without reference to word or phone information.

!This is another approximation in our modeling. For
example, a word pronunciation may change as a result of
different emphasis placed on a word.

cont_speech_frames_n <23.403 \_cont_speech_frames_n >= 23.403

Decision tree for the classification of
Backchannels (B) and Agreements (A). Each node is
labeled with the majority class for that node, as well
as the posterior probabilities of the two classes.

Figure 1:

The features can be broadly grouped as referring to
duration (e.g., utterance duration, with and without
pauses), pauses (e.g., total and mean of non-speech re-
gions exceeding 100 ms), pitch (e.g., mean and range
of FO over utterance, slope of FO regression line), en-
ergy (e.g., mean and range of RMS energy, same for
signal-to-noise ratio), speaking rate (based on the “en-
rate” measure of Morgan, Fosler, & Mirghafori (1997)),
and gender (of both speaker and listener). Where ap-
propriate, we included both raw features and values
normalized by utterance and/or conversation. We also
included features that are output by the prosodic event
detector of Taylor et al. (1997) (e.g., the number of
pitch accents in the utterance). A complete discussion
of the features used can be found in Shriberg et al.

(1997).

Prosodic decision trees

For our prosodic classifiers, we used CART-style deci-
sion trees (Breiman et al. 1983). Decision trees allow
combination of discrete and continuous features, and
can be inspected to gain an understanding of the role
of different features and feature combinations.

To illustrate one area in which prosody could aid
our classification task, we applied trees to distinctions
known to be ambiguous from words alone. One fre-
quent example in our corpus was the distinction be-
tween Backchannels and Agreements (see Table 2),
which share terms such as “Right” and “Yeah.” As
shown in Figure 1, a prosodic tree trained on this
distinction revealed that agreements have consistently
longer durations and greater energy (as reflected by
the SNR measure) than do backchannels.

The HMM framework requires that we compute
prosodic likelihoods of the form P(F;|U;) for each ut-
terance U; and associated prosodic feature values F;.
We have the apparent difficulty that decision trees give



Table 5: DA detection using prosody (chance = 35%).

| Discourse Grammar  Accuracy (%) |

None 38.9
Unigram 18.3
Bigram 50.2

estimates [or the posterior probabilities, P{TV;|I7). The

prablem can he overcome by applying Bayes® Rule lo-

cally:

PG| Fy)
P

P |Fﬁ)
Pl

P{Fi|U:) = P(F:) ¢
A quantity proportional to the required likelihood can
therefore he abtained hy either dividing the posterior
tree probability by the prior P(T7;), or by training the
trec on a uniform prior distribution of DA types. We
chose thie second approach, downsampling our Lraining
data lo equale DA proportions.

Results

As a preliminary cxperiment to test the integration
of prosody with other knowledge sources, we trained
a single tree to discriminate among the flive most [re-
quent dialeg acts (Statement, Backchannel, Opinion,
Agreement, and Abandaned, totaling 78% of the data)
and an “Other” eategory. The probability in the “Oth-
er” calegory was split uniformly among all the Lypes i
that category. Resulls [or this “Top-57 tree are shown
in ‘l'able 5. As shown, the tree performs significantly
better than chance, but not as well as the word-based
methads (sce Table 4).

Neural network classifiers

Although we chose to nse decision trees as prosodic
classifiers for their relative ease of inspection, we might
have used any suitable probabilistic classificr, 1.c., any
model that estimales the poslerior probabililies of DAs
given the prosodic lealures. We conducted preliminary
experiments to assess how neural networks compare 1o
decision trecs for the type of data studicd here. Neural
networks arc worth investigating since they offer po-
tential advanlages over decision trees. They can learn
decisian surfaces that lie at an angle to the axes of the
input feature space, unlike standard CARL trees which
always split continuous features on one dimension at a
time. The respouse [unclion of neural networks 1s con-
tinuous (smooth) al the decision boundaries, allowing
them to avoid hard decisions and the complete frag-
mentation of data associated with decision tree ques-
tions. Most important, neural networks with hidden
unils cau learn new [ealures that commbine multiple in-
put features. Results from preliminary experiments
on the Top-3 classification task showed that a softmax
network (Bridle 1990) without hidden units resulted in

a slight improvement over a decision troc on the same
task. The fact that hidden units did not afford an ad-
vanlage here indicales thal complex combinations of
lealures (as [ar as the network could learn them) do
not better predict DAs for the task than linear com-
binations of our input featurcs., This further justifics
our choice of decision trees for this task, although we
should not discount other approachies in future studies,

Using Multiple Knowledge Sources

As mentioned carlicr, we expeet improved performance
[romm combining word and prosodic information. Corn-
bining these knowledge sources requires eslbirnaling a
combined likelihaod P{A;, #F5|U;) for each utterance.
The simplest approach is to assume that the two
types of acoustic obscrvations (recognizer acoustics
and prosodic fealures) are approximately conditionally
independent once U is given:

P(Ai, Fi|Ua) = PLAU) PR A L)
P{A|UHP(ENTD

Since the recognizer acoustics are modeled by way of
their dependence on words, it is particnlarly important
to avold using prosodic features that arc directly cor-
related with word-identitics, or featurcs that arc also
modeled by the discourse grammars, such as ullerance
position relative to turn changes.

Results

For the one experiment we conducted using this ap-
proach, we combined the acoustic N-best likelihoods
fram our experiment with recognized words with the
Top-3 tree classifier mentioned carlier.  Results arc
suminarized in Table 6.

Table f: Combined ulterance detection accuracies

(chance = 35%).

[Yscourse Accuracy (%)

Grammar | Prosody  Recognizer  Combined
None 38.9 42.8 56.5
Unigram 18.3 6G1.9 626
Bigram h0.2 64.6 G5.0

As shown, the combined classifier presents a slight
improvement over the recognizer-based classificr. The
experirnent without discourse grammar indicates that
the combined evideuce is considerably stronger than
either knowledge source alone, yet this improvement
seems to be made largely redundant by the use of priors
and the discourse grammar. For example, the ambign-
ity between Yes-No-Questions and slatemenls where
prosody is expected to help can also he removed hy
examining the context of the ntterance (e.g., noticing
that the following utterance is a yes/no answer).



Table 70 Accuracy (in %) lor individual and combined
models [or three sublasks, using uniform priors (chance

- 50%)

Knowledge I'rue | Recog.
Source words | words

Questions/Starements
prosody only | 75.97

words only | 85.85
words+prosody | 87.58
Agreements/Backchaunels
prosody only | 7288 | T2.88

words only | 80.99 | 7822
words+prosody | 84.74 | 81.70

=] =] =l
Pl iy §
)
3=

o

Focussed classifications

To gain a better understanding of the potential for
prosodic DA deleclion independent of the ellecls of
discourse grammar and the skewed DA distribution in
Switechboard, we also examined several hinary DA clas-
sification tasks. The cholce of tasks was motivated by
an analysis of confusions committed by a purcly word-
based DA detector, which tends to mistake Questions
for Statements, and Backchannels for Agreements (and
vice versa). We tested a prosodic classifier, and word-
based classificr (with both transcribed and recognized
words), and a combined classilier ou these three Lasks,
dowusampling the DA distribution to equate the class
sizes in each case. Chance performance in all three ex-
periments is therefore 30%. Results are summarized in
Table 7.

As shown, the combined classilier was consistently
moare accurate than the classifier nsing words alone.
Although the gain in accuracy was not statistically sig-
nificant for the small recognizer test set becanse of a
lack of power, replication [or a larger test sel showed
thie gain to be highly signiflicant [or both subtasks by a
Sign test. p < 001 and p < .0001. respectively. Across
these as well as additional subtasks, the relative ad-
vantage adding prosody was larger for recognized than
[or true words, suggesting thal prosody is parlicularly
helpful when word information is not perfect.

Feature Usage

Feature analyses, conducted by systematically leaving
out feature types and rebuilding trees, revealed that
although canonical features (such as F0 for question
deteclion) were lmportaut, other less obvious leatures
(e.g., duration and speaking rale for the same task)
were also heavily used. Gender features were not used,
suggesting that feature normalizations (especially FQ)
were appropriate, and that gender-independent model-
ing is feasible [or these tasks. Overall, there was a high
degree of correlation among features such that if cer-
tain features were remaved, others could compensate
to retain aceuracy. Nevertheless, the features allowing

best classification wore dependent on the subtask, sug-
gesting that a prosodic classificr should use as many
dilferent leature lypes as possible [or oplimal coverage
across Lasks,

Conclusions

We have developed an integraled probabilistic ap-
proach to dialog act classification on a large sponta-
neous speceh corpus. The approach eombines models
for lexical and prosodic realizations of DAs, as well as
a stalistical discourse grammar. All components of the
model are automatically trained, and are thus applica-
ble to other damains far which laheled data is available.
Detection aceuracies achieved so far are highly eneonur-
aging, relative Lo the wherent dillicully of the task as
measured by human labeler performance. We Investi-
gated several madeling alternatives for the components
of the model (backoft N-grams and maximum cntropy
models for discourse grammars, decision trees and neu-
ral nelworks lor prosodic classification). We [ound per-
formance largely independent. of these choices, indicat-
ing on the one hand that our current system does about
as well as possible given current modeling tochnigues
and the inherent difliculty of the task and our limited
representation of ib. On the other hand, lo mprove
performance we will have to revisit onr independence
assumptions, as well as examine additional knowledge
BOUTECS.

Future Work

For discourse and dialog modeling, we plan to try alter-
native approaches to encode the temporal sequencing
of ullerances. Tor example, we are currently notl mod-
eling the fact that ntterances by the two speakers may
actnally overlap (c.g., backchanncls interrupt an on-
going utterance). In addition, we should model more
of the nou-local aspects of discourse structure, despite
our negative resnlts so far. For example, a context-free
discourse grammar could potentially account for the
nested structures proposcd in Grosz & Sidner (1986).

Word-based DA discrimination has obvious parallels
Lo lopic spoliing and message classification, and we
should explore techniques developed in thar paradigm,
such as keyword-based detcctors (Rose, Chang, &
Lippmann 1991). For prosodic DA detection, we arc
studying the use of multiple trees, both to cascade
classifiers trained an subtasks, and to comhbine parallel
classifiers using a digjoint subset of features, which we
belicve will increase robnstness.

The integralion of knowledge sources is especially
prowmising, since we are currenlly raking fairly se-
vere independence assumptions here. Therefore our
cventual goal would he a DA classifier that dircetly
integrates discourse grammar, word information, and
prosody. Tor example, Il should be [easible 1o (rain a
prosodic decision tree that takes the discourse context
as one of its inputs. Such a model would subsnime the
discourse grammar, and is potentially able to capture



interactions between the context and prosody of the
currcnt, utterance, which arc currcntly assumed inde-
pendent (given the current DA). A [urther idea along
these lines is to make word knowledge directly avail-
able ta a posterior prabahility estimator, allowing it to
model corrclations of words and prosody.
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