
PRONUNCIATION VARIATIONS IN EMOTIONAL SPEECH

Thomas S. Polzin and Alexander Waibel

Interactive Systems Laboratories

Carnegie Mellon University

Pittsburgh, PA 15233, USA

ftpolzin,waibelg@cs.cmu.edu

ABSTRACT

In this paper we demonstrate how the emotional state
of the speaker in
uences his or her speech. We show
that recognition accuracy varies signi�cantly depend-
ing on the emotional state of the speaker. Our system
models the pronunciation variation of emotional speech
both at the acoustic and prosodic level. We show that
using emotion-speci�c acoustic and prosodic models al-
lows the system to discriminate among four emotions
(happy, sad, angry, and afraid) well above chance level.
Finally, we show that emotion-speci�c modeling im-
proves the word accuracy of the speech recognition sys-
tem when faced with emotional speech.

1. INTRODUCTION

Many factors have an impact on the pronunciation of
a given word, for example, the position of the word
within the utterance, dialect, age, and gender of the
speaker. An additional factor on the pronunciation
has recently become the focus of research: How does
the emotional state of the speaker in
uence his or her
speech? We will show that using the JANUS system
(Zeppenfeld et al. ([1997])), recognition accuracy
varies depending on the emotional state of the speaker.
The accuracy drops signi�cantly when compared to
the accuracy with which neutral speech is recognized.
To build robust human-computer interfaces we have
to account for this variation.

In order to address this issue it is crucial to be
able to detect the emotional state of the speaker with
a high degree of accuracy. Research in psycholin-
guistics indicates that prosodic information such as
pitch and speaking rate is important in human recog-
nition of underlying emotions in speech (Scherer et al.
[1984, 1991]). Our system uses both acoustic (seg-
mental) and prosodic (suprasegmental) information to
model the pronunciation variation in emotional speech.

We use a variation of hidden Markov models to inte-
grate prosodic information into the recgonition process.
We show that we can use emotion speci�c acoustic and
suprasegmental models to detect the underlying emo-
tional state of the speaker with an accuracy compa-
rable to the performance of humans on this task. We
then demonstrate that by using emotion-speci�c acous-
tic models we can improve the word accuracy of the
recognition system signi�cantly. We will conclude this
investigation with a summary and extensions to the
system we intend to incorporate in the near future.

2. SUPRASEGMENTAL HIDDEN

MARKOV MODELS

Suprasegmental hidden Markov models (SPHMM) per-
mit the summarization of several states within a hidden
Markov model into what we will call a suprasegmental
state. These suprasegmental states allow the consid-
eration of the observation sequence spanned by their
constituent states, i.e., these suprasegmental states can
look at the observation sequence through a larger win-
dow. In our application acoustic events are modeled us-
ing conventional hidden Markov states, while prosodic
events at the phone, syllable, word, and utterance level
are modeled using suprasegmental states. The basic
idea of an SPHMM is given in Fig. 1. Prosodic infor-
mation can not be observed at a rate which is used for
acoustic modeling. Prosodic information applies, for
example, to syllables, words, or phrases but can not
be observed within a time window of 10ms, the time
frame in which acoustic events are usually looked at.
To combine acoustic and suprasegmental information
we linearly combine acoustic and suprasegmental prob-
abilities. That is, each time we leave a suprasegmental
model, for example a phone or syllable, we add the log
probability that the suprasegmental observations given
in the speech signal were produced by this supraseg-
mental model to the log probability that the acoustic
observations given in the speech signal were produced
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Figure 1: Suprasegmental Hidden Markov Model. The hidden Markov states q1, q2, and q3 form a suprasegmental
state p1 (e.g. a phone). The states q4, q5, and q6 form a di�erent suprasegmental state p2. These two suprasegmental
states themselves constitute another suprasegmental state p3, e.g. a syllable. Transition probabilities between
hidden Markov states are represented by aij where i indicates the state we are leaving and j the state we are
going to. Transition probabilities between suprasegmental states are represented with bij where i denotes the
suprasegmental state we are leaving and j denotes the suprasegmental state we are going to.

by the respective acoustic model. The weight factor is
determined empirically. For more details on the theory
of SPHMMs see Polzin ([to appear]).

2.1. Suprasegmental Observations

We use suprasegmental states to capture the prosodic
properties of phones, syllables, words, and utterances
because they allow us to make observations at a time
scale suitable for prosodic phenomena. Supraseg-
mental observations comprise information about the
duration of the respective segment, information about
fundamental frequency (pitch), and intensity. While
it is possible to determine intensity and fundamental
frequency for any given time point in the speech
signal, this information becomes far more mean-
ingful if we can observe intensity and fundamental
frequency over the duration of, say, a syllable or
word. This observation then allows the derivation of
additional observations, such as mean and variance,
the correlation between intensity and fundamental
frequency, and whether intensity or fundamental
frequency is steady, falling, or rising over the segment
in question. Note that within a conventional HMM,
observations have to be at a constant rate and, thus,
it is not possible to look at the dynamic behavior of
intensity and fundamental frequency over the course
of a syllable or word if, at the same time, we want
to observe acoustic events at a much smaller time scale.

The choice of suprasegmental observations has to
re
ect two issues:

1. In principle, these observations have to be com-
puted for every possible segmentation within the
Viterbi. In order to get an acceptable run time
behavior, computing these observations should
not be unreasonably computationally expensive.

2. These observations have to be robust with respect
to noise and idiosyncrasies of speakers.

3. EXPERIMENTS

3.1. The Corpus

We hand generated 50 sentences for the corpus. These
sentences were comprised of questions, statements,
and orders. The sentence length varied from 2 to 12
words; the mean sentence length was 5.8 words. The
corpus was comprised of 291 word tokens (87 types).

We asked 5 drama students to pronounce the
sentences according to the emotional label given in
square brackets at the beginning of the sentence
on a computer screen. The students were asked to
portray each of these sentences in each emotional
mood (happy, sad, angry, and afraid). In addition, we
asked for a neutral pronunciation for all 50 sentences.
Thus we have a maximum of 250 sentences for a given



student.

SennHeiser HMD 410 or SennHeiser HMD 414
microphones were used for all recordings. The record-
ing system used was the Gradient Desklab Model 14,
with a sampling rate of 16 khz. All recordings were
transcribed by hand.

3.2. Human Performance

We conducted a small informal experiment to deter-
mine the human performance on detecting the under-
lying emotional state of the speaker. The subjects had
to listen to the utterances of one speaker played back
in random order. The task of the subject was to choose
one emotion out of four (happy, sad, angry, or afraid).
Human performance was at about 70% accuracy. Note
that the baseline is 25% (random guessing).

3.3. Baseline

For the following experiments we used the Janus speech
recognition system (Zeppenfeld et al. ([1997])) which
was trained independently on a di�erent corpus of
spontaneous speech (English Spontaneous Scheduling
Task, ESST). The word accuracy (WA) on this corpus
was about 80%. We used this recognition system to de-
termine the in
uence of emotional speech on word ac-
curacy. The resulting word accuracy is given in Table 1.
The word accuracy dropped about 25% for all emotions
except for \angry" when compared with the neutral
pronunciation. The big discrepancies in word accuracy

Table 1: Word accuracy in percent depending on the
emotional state of the speaker
Emotion Happy Afraid Angry Sad Neutral

WA 51.6 46.0 64.2 45.6 71.9

depending on the underlying emotion { ranging from
46% to 71% { demonstrates the necessity of modeling
the pronunciation variation in emotional speech.

3.4. Training

Training of the SPHMMs is very similar to training
of conventional HMMs. The only addition is that it
is necessary to train suprasegmental models on top of
acoustic models.

For this investigation, we derived emotion-speci�c
models, i.e., emotion-speci�c acoustic and supraseg-
mental models. For example, for a word, we had four
di�erent suprasegmental word models: \happy" , \sad"

, \angry", and \afraid". We used about 70% of the cor-
pus for training acoustic and suprasegmental models.
The rest of the corpus was used for testing.

3.5. Testing

The underlying emotional state was determined the fol-
lowing way:

1. The utterance was recognized using an emotion-
independent recognition system as described in
Sect. 3.3.

2. Using an emotion-speci�c recognition system, i.e.
a system based on emotion-speci�c acoustic or
suprasegmental models, we looked for the high-
est probability that the sentence as recognized
in step 1 was produced by the emotion-speci�c
models (forced alignment), i.e.,

P (speech signal j sentence;modelsi); (1)

where h; s; af; and an stand for happy, sad,
afraid, and angry, respectively. We tested for all
four emotions and, thus, obtained four probabil-
ities, one for each emotion.

3. The four probabilities as returned in step 2 were
compared. We took the highest probability to
be indicative of the actual emotional state of the
speaker, i.e. we maximized (1):

emotional State = arg max
i2fh;s;af;ang

(2)

P (signal j sentence;modelsi):

To classify the detection accuracy we use preci-
sion/recall and the corresponding f1 value. For an emo-
tion i we de�ne:

precissioni = Ci=Ti (3)

recalli = Ci=Ii (4)

f1i =
2 � precissioni � recalli
precissioni + recalli

(5)

where Ci denotes the number of sentences in the test
corpus judged correctly by the system to have the un-
derlying emotional state i. Similar, Ti denotes the total
number of sentences classi�ed as i by the system and
Ii refers to the actual number of sentences in the test
corpus whose speaker was portraying emotional state i.
Note that our system is not speaker independent. We
tested and trained on the same speaker (multi speaker
system).



Table 2: Emotion detection performance in percent us-
ing emotion dependent acoustic models

Emotion Happy Afraid Angry Sad
precession 0.80 0.56 0.90 0.56
recall 0.76 0.63 0.80 0.59
f1 0.78 0.59 0.85 0.57

3.5.1. Experiment 1 (Acoustic Models).

In the �rst experiment we developed emotion-speci�c
acoustic models to obtain four emotion-speci�c speech
recognition systems. Based on these models, we deter-
mined the emotional state of the speaker following the
procedure as outlined in the section above, where:

emotional State = arg max
i2fh;s;af;ang

(6)

P (signal j sentence; a-modelsi):

The emotion detection performance is given in Table
2.

The overall f1 score is 0.69. Using acoustic mod-
els enabled the system to detect the correct emotional
state well above chance level. The high accuracy with
which the underlying emotion of utterances spoken in
an angry state were recognized seems to correlate with
the high word accuracy for these utterances as given in
Table 1.

3.5.2. Experiment 2 (Suprasegmental Models).

Starting with emotion-speci�c acoustic models we in-
cluded emotion-speci�c suprasegmental models to see
whether prosodic information would add discrimina-
tive power to our system. The in
uence of supraseg-
mental information on the overall probability compu-
tation was regulated by a weight factor, �, mentioned
in Sect. 2. We determined � empirically on an indepen-
dent development set. Using emotion-specifc acoustic
and suprasegmental models we detected the emotional
state following the procedure as described in Sect. 3.5,
where:

emotional State = arg max
i2fh;s;af;ang

(7)

P (signal j sentence; a-modelsi , spm-modelsi):

The resulting emotion detection performance is given
in Table 3.

The overall f1 is 0.73, compared to an f1 of 0.69
in the previous experiment where we used only acous-
tic models. In particular, using prosodic information
appears to help the detection of \happy" and \afraid'.

Table 3: Emotion detection performance using emotion
dependent acoustic and suprasegmental models

Emotion Happy Afraid Angry Sad
precision 0.77 0.57 0.95 0.72
recall 0.88 0.76 0.80 0.49
f1 0.82 0.65 0.87 0.58

3.5.3. Experiment 3 (Recognizing Emotional
Speech)

In our last experiment we investigated whether
emotion-speci�c acoustic model are able to improve on
the word accuracy. For this experiment we assumed
that we knew the emotional state of the speaker and
used acoustic models corresponding to this emotional
state. The resulting word accuracy is given in Table
4. When we compare these word accuracies with the

Table 4: Word accuracy in percent depending on the
emotional state of the speaker using emotion dependent
acoustic models
Emotion Happy Afraid Angry Sad Neutral

WA 66.9 67.90 63.8 70.1 77.6

accuracies gained in the baseline experiment in section
3.3 we, �rst, see a general signi�cant improvement in
the overall performance and, second, the discrepancies
in the recognition accuracy among the di�erent emo-
tions are reduced.

We then tried to rescore the word lattices produced
by the previous recognition process with emotion de-
pendent suprasegmental models but could not achieve
an improvement.

4. CONCLUSIONS

Our investigation shows that the pronunciation vari-
ance in emotional speech allows the detection of the
underlying emotional state of the speaker. We demon-
strate that both acoustic and prosodic information
carries important information about the encoded
emotion. Our system was able to detect the emotional
state well above chance level. Finally, we showed
that by using emotion dependent acoustic models we
improved the word accuracy of the recognition system.

We were not able to demonstrate that the improve-
ment in emotion detection given by adding supraseg-
mental information to acoustic information led directly
to a signi�cant improvement in word recognition accu-



racy. However, we expect that as further development
and re�nement of the suprasegmental models lead to
even greater increases in emotion detection accuracy,
the corresponding jump in word recognition accuracy
will become more evident.
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