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Abstract

Several important factors, such as recognition accuracy,
user acceptance, and system usability, have to be consid-
ered in designing an interface of a handwriting recognition
system. Since both users and recognition algorithms make
mistakes, it is desirable for the user interface of a hand-
writing recognition system to have mechanisms recovering
from errors. In this paper we address the problem of error
repair in on-linehandwriting recognition. First, we perform
a user study on error occurrences and corresponding repair
patterns in human handwriting. Based on a data analysis,
we have identified typical types of errors and repair pat-
terns. We then propose methods to deal with error repair
in an on-line handwriting system. We have developed a
prototype system to demonstrate and evaluate the proposed
error handling mechanisms. The system extendsNPen++,
an on-line handwriting recognition system developed in our
lab, by providing error repair abilities to users in addition to
its high recognition rate. The experimental results indicate
that the error handling mechanisms can significantly im-
prove the system performance in case of the data containing
error repair.

1. Introduction

Automatic handwriting recognition provides an impor-
tant channel for human-computer communication. Al-
though intensive research has been directed to improvehand-
writing recognition technology, recognition results remain
inherently unreliable. User studies showed that even hu-
mans are not able to achieve a recognition accuracy of 100%
[1]. It is very unlikely that we will ever be able to develop
an error-free recognition engine. Furthermore, our studies
show that recognition errors result from not only the system
but also human mistakes, e.g., misspelled words. Therefore,
even with a “perfect” recognition engine we would still face

the problem of misinterpretation. Moreover, users demand
for a comfortable interface with high usability (in [2] a study
can be found which analyses the relationship between user
satisfaction and recognitionperformance of pen-based inter-
faces). Research in speech recognition [3] has demonstrated
that even with unreliable baseline spoken language interpre-
tation technology it is possible to significantly reduce the
time to interact with a system via spoken language by vari-
ous error repair strategies. Therefore we should not wait for
a “perfect” system before we use handwriting recognition
technologies in human-computer interaction but concentrate
on the design of useful and usable interfaces which have the
ability to perform repair and which are able to recover from
occurring errors.

In this paper, we investigate the problem of error repair
in an on-line handwriting recognition system. The objec-
tive is to develop concepts that could minimize the user’s
efforts to recover from errors in an on-line handwriting in-
terface. While most current pen-based systems only offer
repair possibilities by providing additional buttons (e.g., a
“clear”-button) or by recognizing a fixed set of gestures,
we aim at providing users with a handwriting interface that
can recover recognition errors in natural and flexible ways.
We present a user study to show possible errors and repair
patterns in pen-based handwritten input and introduce a gen-
eral framework for repair handling. In order to demonstrate
the feasibility of the proposed concepts, we developed a
prototype system, that consists of a user friendly interface,
repair handling mechanisms, and the NPen++recognition
engine, which is a system for high accuracy writer indepen-
dent on-line handwriting recognition of continuously writ-
ten single words (see [4, 5] for more information on the
NPen++recognition tool). Our prototype system can be
used for user study and investigating error repair strategies.
We conclude with an evaluation of the proposed methods
and discuss future research areas of error repair in our on-
line handwriting recognition system.



2. The Problem of Error Repair2.1. Errors in Human Handwriting
Before we discuss different methods to avoid errors or

recover from errors in an on-line handwriting recognition
system, we should investigate what kind of errors usually
leads to a wrong recognition result. Based on study from lit-
erature [1], errors in human handwriting of textual material
include:� discrete noise events,� badly formed shapes,� input that is legible by humans but not by the algorithm

(see next section),� badly spelled words,� words that are unsolicited in the data collection process,� canceled material,� device generated errors.

It is obvious that some of these errors could be avoided
and some of them could be recovered by adding repair han-
dling mechanisms to the user interface.2.2. Errors in On-line Handwriting Recog-nition

A handwritten input which is legible to humans may not
be recognized by a recognition engine. We discuss this
problem based on the NPen++recognition engine.

In on-line recognition the input contains not only spatial
information (i.e., coordinates) but also time information. In
the NPen++system there exists some information about thex and y coordinates of the handwritten signal and about
pen-down and pen-up events. Therefore we have an input
signalS which is a time ordered sequence of coordinates:S = ((x0, y0, p0), (x1, y1, p1), (x2, y2, p2), : : : , (xn, yn,pn)), wherepi is “000 when a pen-up event occurred and
“100 else. Based on this signal a preprocessing step is done
which does a normalization of the signalS to remove unde-
sired and disturbing variability and calculates some feature
vectors. This results in a time ordered sequence of feature
vectors each representing some information useful in the
recognition process. The recognition is based on a fixed set
of words, i.e., the dictionary. Each word is composed of its
letters. Each letter in turn is composed of three states. In
the first step a Time-Delay Neural Network (TDNN) cal-
culates hypotheses of each state for every letter from the
alphabet. Based on the word models from the dictionary

the Viterbi search is performed on the output of the Neural
Network to find the best word hypothesis. An illustration
of the whole recognition process is shown in Figure 1. A
detailed description of the NPen++system can be found in
[4, 5].
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Figure 1. The recognition process of theNPen++ system.

The mapping from the TDNN output units to the word
models from the dictionary assumes that all the coordinates
belonging to one letter are written within a connected time
interval. This, however, is not always true in human hand-
writing. Typical examples are delayed t-strokes and i- or
j-dots. Hence a recognition result can be wrong, because
the algorithm is not able to match the time sequence of input
features correctly to the word models. This is sometimes
called the “delayed-stroke problem”.
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Figure 2. Example for a “Completion”.

Several approaches exist to deal with this problem.
For example, strokes can be reordered according to their
x-coordinate values in the preprocessing step [6]. The
NPen++System handles delayed strokes at the preprocess-
ing layer by introducing a so called “hat-feature”. With a
heuristic the system detects delayed strokes and dots and
removes them from the sequence of coordinates. The hat-
feature of a remaining feature vector will be set to “1” if its
corresponding x-value lies in the same area as the removed
coordinates otherwise it will be set to “0”. An example of
this can be found in Figure 1 where the i-dot from the word
“Darwin” does not appear in the normalized sequence of
coordinates after the first preprocessing step. The normal-
ization removes the delayed i-dot. In the feature extraction
step the hat-feature of the remaining feature vectors from
the letter “i” are set to “1”.

In this paper, we propose a unified framework to handle
repair and delayed strokes together. In fact, in an on-line
handwriting recognition system such as NPen++, delayed
t-strokes and i- or j-dots can be considered as a repair. We
illustrate this by the following example. Figure 2 shows a
handwritten word that contains a repair. After writing the
word “benzene” the user corrected the error “badly formed
shape” by adding some coordinates to the second “e” (we
will refer to this type of repair as a “completion”). The cor-
rection is difficult to notice by only looking at the bitmap.
It is easier to detect the delayed repair stroke from (x; y; t)
space shown in the bottom of Figure 2, which indicates the
time of downwriting. A sample that contains a delayed
t-stroke is shown in Figure 3. By looking at the trajec-
tory in (x; y; t) space, the connection between repair and
the delayed-stroke problem in on-line handwriting recog-
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Figure 3. Example for a delayed t-stroke.

nition can be easily observed. In both examples, the de-
layed strokes may cause recognition errors. Therefore the
delayed-stroke problem can be seen as a special kind of
repair and should be handled under the same global frame-
work.2.3. Repair in On-line Handwriting Recog-nition

In order to learn more about repair types and patterns
occurring in on-line handwriting recognition we performed
an empirical study on human handwriting. The database
we used consists of 3466 single words and 3410 text se-
quences each containing about eight words. The data was
collected with a digitizing tablet and without any feedback
from a recognizer. The users were asked to write the words
that appeared on a computer screen. The data might have
some bias because the users were not asked to do any cor-
rections during the data collecting process. Users might act
in different ways if they were allowed to repair errors. But
this database is useful to analyze typical repair patterns and
features in human handwriting.

Based on the list of typical errors in human handwriting
introduced in Section 2.1, we analyzed the database. We
found that about 13% of the words and 23% of the word
sequences contained errors. We further investigated these
wrong words and checked if any of them contained a repair.
We discovered that users tried to do corrections sometimes
even they were not asked to do any correction. This confirms
our proclaim that users demand for repair and error handling
features.

By analyzing the different repair styles in the database we



defined the following types of repair for on-line handwriting
recognition:� Deletions (see examples in Figure 4)� Overwriting (see examples in Figure 5)� Completions and Insertions

(see examples in Figure 6)
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Figure 4. Examples for repair type “Deletion”.
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Figure 5. Examples for repair type “Overwrit-
ing”.

"Gillette"
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Figure 6. Examples for repair type “Comple-
tion” (top) and “Insertion” (bottom).

In this paper we only consider insertions within a word,
e.g., entering an letter between two others. We exclude

insertions which are written over or under the word and
combined with gestures used to indicate the position of an
insertion. In fact, these excluded insertions represent a very
small percentage in our database.

3. Repair Handling

In order to handle error repair at the preprocessing level,
we can use the same framework to handle error repair and
delayed strokes, like already discussed in section 2.2. The
input trajectoryS = ((x0, y0, p0), (x1, y1, p1), (x2, y2, p2),: : : , (xn, yn, pn)) containing a repair will be transformed
into a “clean” trajectoryS� = ((x�0, y�0, p�0), (x�1, y�1,p�1), (x�2, y�2, p�2), : : : , (x�m, y�m, p�m)) which can
be handled by a general recognition engine. InS� all the
coordinates belonging to one letter are connected with each
other in an ordered sequence, deleted or overwritten parts of
the handwriting will be removed from the input trajectory.

However, identifying the repair mode of performing the
required repair is much more difficult than that of handling
the delayed-strokes. We cannot use simple heuristics like
those used for the delayed strokes. For example, it is im-
possible to determine if a delayed stroke is a t-stroke or a
repair gesture that crosses out the letter “l” without the use
of context information and feedback from the recognition
engine. Since there is a great variation in repair patterns,
it is very difficult for a recognition engine to handle all the
repair patterns. In other words, a general recognition engine
cannot take care of all these variations without reorganiz-
ing the complete structure of the system and recognition
algorithms.

In order to solve this problem, we propose to handle error
repair at the preprocessing level. In fact, by interacting with
the user, the system can handle repair at the preprocessing
level without any feedback from the recognizer. In this way
wecan makeminimal modification to thecurrent recognition
engine and benefit from interacting with users. The system
can use some simple heuristics to detect, classify, and handle
error repairs although there is no guarantee that such an effort
will always be successful. The heuristics will allow a fast
implementation and therefore fast indication of the resultof
the repair handling algorithms. Therefore we can offer an
interactive way to a user to recover from errors.

Our goal is to give users more freedom to use different
repair strategies other than to force them to use certain spe-
cial gestures. Consider the following scenario: a user has
crossed out the letter “l” in a word by making a horizontal
stroke that is interpreted from the system as a t-stroke. If the
user sees that no deletion happens, he/she will continue to
delete the letter until it disappears. We could take advantage
of this repair pattern in an on-line handwriting interface.
The basic idea is to detect this “repeated delete” pattern.
For example, a horizontal stroke which is made three times



is more likely to be a deletion than a single stroke. The
heuristics we propose for repair classification are designed
in a way that they are able to detect this kind of “repeated”
repair. By interacting with the user, thesystem can minimize
the efforts to recover from errors.

To transform the trajectoryS containing a correction to
the “repaired” trajectoryS�, the system has to decide which
coordinates should be removed from the trajectoryS and
which should be reinserted to another position. In case of
a deletion both, the repair signal and the repaired parts of
the word, have to be removed from the original input. If
an overwriting happened only the overwritten part of the
word has to be removed from the sequence of coordinates.
The strokes performing the repair should be inserted at the
correct position. In case of a “pure” insertion or completion,
no part of the word has to be deleted. Only an insertion of
the repair signal has to be done. We do these operations
on the basis of “up-down strokes”, i.e., whole groups of
coordinates in an interval between a local maximum and the
following local minimum (or vice versa). An example for
the up-down strokes of a given handwriting can be found
in Figure 7. Our experience has showed that this method
works very robustly.

Figure 7. Example for the up-down strokes of
the word “alibi”.

A common pattern of repair in our database was that the
writers violated the rule of writing from left to right. We
use this characteristics to separate all the up-down strokes
from the sequenceS into repair and none-repair strokes.
For each up-down stroke we calculate some features and
compare them with the features of the previous ones. If
the features of the new up-down stroke do not fit into the
sequence of features of the preceding up-down strokes, it
will be classified as a repair. For example, the i-th up-down
stroke is seen as a repair, ifxmini < Φ �minfxmini�1 ; : : : ; xmini�5 g
where xmini is the smallestx-value of the i-th up-down
stroke inS andΦ is a fixed threshold. As a result of this
calculation we get a set of up-down strokes classified as a
repair and a set of “repaired” up-down strokes. These are
the parts of the word which have been overwritten by the
repair signal.

The procedure of classification and repair handling such
as Deletion, Overwriting,and Completion/Insertion, is il-
lustrated by the diagram shown in Figure 8.

Check

I
n
s
e
r
t
 
u
p
-
d
o
w
n
 
s
t
r
o
k
e
s

Deletion

Handle 
Compl./Ins.

Check

Check

Overwriting

Deletion

?

?

Handle Overwriting

Delete up-down strokes

Up-down strokes covered by repair strokes

Up-down strokes classified as repair

Figure 8. The overall repair handling sched-
ule.

First the system detects deletions. It uses some heuristics
to compare the up-down strokes that have been classified
as repair strokes with the rest of the strokes. If there exist
big differences between the attributes of these two sets, a
deletion is classified. The heuristics compare the two sets
of coordinates based on their size and extension in x- and
y-directions. An example for one of these heuristics can be
found in Figure 9. Here the following heuristic discovers a
repair:

maxj>1
jxrj � xrj�1j > Ψ � maxi>1

jxni � xni�1j
whereΨ is a fixed threshold,xni is the i-th element of the
sequence of the x-values from the coordinates that indicate
a change in the writing direction from left to right (and vice
versa) in the part of the handwriting classified as none-repair,
andxrj is the j-th element of the corresponding sequence of
repair coordinates.

This heuristic will ignore a relatively small repair stroke.
Due to the interactive indication of the repair handling, the
user will realize this misclassification and try to repair again.
With this heuristic, we can add another heuristic: if a stroke
which has been classified as a repair contains much more
coordinates than a normal number of coordinates for such a
stroke, the stroke is classified as a deletion, i.e., ifR is the
set of coordinates classified as a repair andR̄ is the set of
coordinates that lie in about the same area as the ones inR,
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Figure 9. Example for one heuristic used to
classify the repair type “Deletion”.

thenR is a deletion, ifnumber of coords in R > Ω � number of coords in R̄
whereΩ is a fixed threshold. This heuristic is most likely to
apply if a user repeats his/her repair because of a misclassi-
fication in the first place.

With the heuristics we introduced in oursystems for dele-
tion handling we cover the two main types of a deletion
found in the database we introduced in section 2.3:� a few, but compared to the “normal” handwriting rel-

ative long strokes (like, for example, in the bottom of
Figure 4),� many (sometimes very short) strokes placed in an un-
predictable order in a specific area (like, for example,
in the top of Figure 4).

If no deletion is classified, i.e., if none of the heuristics
detects a high dissimilarity between the repair strokes and
the rest of the handwriting according to some writer depen-
dent attributes of the handwriting style, the repair strokes
will be considered as overwriting strokes. We have also
specified some heuristics to detect and remove overwritten
parts of a word from the input trajectory. The heuristics
compare the bounding boxes of the repair strokes and the
bounding box of each up-down stroke from the remaining
input trajectory. If a high overlap between these two areas
occurs an overwrite is classified.

After classifying the parts of the written word that have
to be removed due to overwriting, the repair strokes, i.e., the
coordinates performing the overwrite, have to be inserted
into the remaining trajectory. This situation is similar tothe
case of completion or “pure” insertion. Therefore these two

are considered together in the last step of our repair handling
schedule (Figure 8). To find the best position to insert the
repair strokes into a sequence of coordinates, we defined a
distance measure that calculates a score for every possible
position. We restricted these positions to the local maxima
and minima, i.e., to the borders of the up-down strokes. The
repair trajectory is inserted at the position with the lowest
distance measure.

After the use of these heuristics, the parts of the trajectory
which were classified as a deletion or as the overwritten part
of the word have to be removed from the input trajectory.
The ones classified as overwriting, completion, and insertion
must be inserted at a position based on the previous heuristic.
At the end of the repair, the repaired trajectory has to be
smoothed to fill the gap originated in cause of a deletion.

With this repair handling scheme a misclassification of
a “regular” handwriting as a repair, i.e., a misclassification
at the very first check, will cause no harm, because the
strokes which were wrongly classified as a repair are just
“reinserted” at the correct position.

4. System Evaluation

We performed several experiments to evaluate the fea-
sibility of the proposed methods. Since the database we
used for user study was collected without requesting users
to do any repair, the database is not suitable for us to eval-
uate repair handling algorithms. It is not an easy task to
collect data to evaluate repair handling systems because any
hint to a user can influence his/her behavior. In our case
the evaluation is even more difficult because our heuristics
are designed in a way that they handle repair directly by
interacting with the users.

We defined a set of 200 words consisting of equally
sized groups which contained the following errors: addi-
tional letters, wrong letters, permuted letters, and missing
letters. The resulting word pairs of correct and wrong words
were chosen from the dictionary in a way that both of them
make sense, or they look similar. For example, “hair” and
“chair” are a word pair with one (wrong) additional letter,
and “yosemite” and “yosenite” look similar. To get statis-
tically reliable results we chose these word pairs randomly
from the dictionary. For example, by randomly selecting the
word “hair” and searching for another word that only differs
by one additional letter we found the “hair”-“chair” word
pair.

With these 200 word pairs we did a data collection with
four users. Each of them was asked to write a word, for
example, to write “chair”. After finishing the input the user
was asked to do repair, for example, to repair “chair” to
“hair”. We collected data twice. First, we did not show any
feedback from the recognizer or the repair handling tool to
the user so that we could observe how users reacted when



without error handling 9%
with error handling 42%

with interactive error handling 73%

Table 1. The normalized evaluation results

they were asked to do some repair. We discovered that the
repairs that the users have made are very similar to those
in the database we analyzed in the previous section. Then
we showed the wrong written words to the users again and
asked them to repair these words second time. We used our
repair tool to directly indicate the resulting repair action. In
this way we got some new data that can be used for testing
the proposed approach.

We evaluated the data containing repair with the
NPen++recognition engine (see Figure 1). The dictionary
used for evaluation is a subset of the Wall Street Journal
Dictionary, containing about 50,000 words. The recognition
accuracy of the system for "clean" data is 88%. With this
baseline system, we have studied three cases: (1) without
any repair handling; (2) with repair handling but without
repair indication to the user; and (3) with repair handling
and with repair indication to the user. The experimental
results showed that 8% of the words were recognized cor-
rectly without any repair handling. This poor performance
is expected because the NPen++system does not contain
any repair handling features. By using our heuristics but
without repair indication to the user, the recognition accu-
racy was 37%. By using our heuristics and interacting with
the user, the recognition accuracy increased to 65%. We can
normalize these results with the baseline system (88%). The
normalized results are shown in Table 1. These results in-
dicate and confirm our proclaim that repair handling can be
done even withoutany feedback from the recognition engine
by integrating the user into the repair handling process.

5. Conclusion and Future Work

In this paper we have studied the problem of error repair
for on-line handwriting recognition. By investigating user
repair patterns and recognition errors caused by repair in
current systems, we have proposed repair methods to allow
a user to recover from errors in a natural and easy way. The
basic idea is to interactively handle the error repair at the
preprocessing level. In our approach, the normal recognition
and error repair are handled under the same framework. For
example, delayed strokes are considered as a special kind of
repair. We have introduced heuristics to detect which mode
the user is in and give immediately feedback to the user
during the repair process. We have developed a prototype
system to demonstrate the proposed methods. The initial

experiments have shown some promising results.
The system also provides a powerful tool for studying the

problem of error repair in on-line handwriting. This is one
of our current research focuses. An interesting problem is
how the user behavior changes if feedback exists from not
only the preprocessing level but also the recognition engine.
In addition, we are working on improving usability of the
system by extending our prototype to cover a greater variety
of repair patterns. Moreover, we will try to combine the
current methods with some well known gestures to cover
more error repair patterns. We already implemented some
methods that allow to repair not only the handwritten trajec-
tory but also the recognition result. This problem is easier
than repair within a handwritten signal, because repair and
repaired signal are well separated, i.e., no detection of the
repair mode has to be done. We will further evaluate these
methods with extensive user studies.
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