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Abstract 

We present single and multi-speaker recognition results for the 
voiced-stop consonants /b, d, g/ using Time Delay Neural Networks 
(TDNN) [I]. a new objective function for training these networks, 
and a simple arbitration scheme for improved classification accuracy. 
With these enhancements we achieve a median 24% reduction in 
the number of misclassifications made by TDNNs trained with the 
traditional backpropagation objective function. This reduction result.. 
in /b, d, g/ recognition rates that consistently exceed 98% for TDNNs 
trained with individual speakers; it yields a 98.1% recognition rate 
for a TDNN trained with three male speakers. 

1 Introduction 

TDNN architectures have been applied to the task of voiced- 
stop consonant phoneme recognition with excellent results 
[1,2]. In moving from speakerdependent phoneme recogni- 
tion to speaker-independent recognition, we consider a collec- 
tion of enhancements to the TDNN that yields improved single 
and multi-speaker recognition results for the /b, d, g/ phoneme 
recognition task. These enhancements entail the development 
of an alternative objective function for the n-dimensional gra- 
dient search of backpropagation learning. We term this new 
objective function the “classification figure-of-merit’’ (CFM) in 
reference to the emphasis it places on the classification result 
obtained from the network. This emphasis differs markedly 
from that of the traditional mean-squared-error (MSE) func- 
tion, which explicitly seeks to match the network’s output with 
some ideal target (the notion of “correct classification” is only 
implicit in this objective). Our preliminary results show equiv- 
alent quantitative performance for MSE and CFM classifiers, 
but markedly different qualitative performance. Specifically, 
the different objective functions produce equivalent recognition 
performance, yet they engender substantially different feature 
abstractions, resulting in largely disjoint misclassified tokens. 
Using a simple arbitration mechanism, one can exploit this 
qualitative difference to reduce by 24% the number of mis- 
classifications made by the MSE classifier alone’. We call 

‘all slatistia quoted in this paper a~ median values, owing to the small 
sample size (n4). 

this mechanism “conflict arbitration”. The arbitration process 
identifies or “flags” 70% of the post-arbitration misses, at the 
cost of flagging 8% of the post-arbitration hits (9% of the en- 
tire token set) as possible misses. These techniques result in 
single-speaker /b, d, g/ recognition rates that consistently ex- 
ceed 98%. Additionally, they achieve a 98.1% recognition rate 
for a TDNN trained with three male speakers. 

The experimental conditions under which these findings were 
made are detailed in [ 11 and [2]. Japanese speech data was 
obtained from six professional announcers (4 male, 2 female), 
sampled at 12 kHz, parsed for the /b, d, g/ phonemes, and ham- 
ming windowed, from this windowed data 256-point DTFTs 
were computed at 5 msec intervals. The DTFTs were used to 
generate 16 Melscale coefficient spectra [I] at 10 msec inter- 
vals. These spectra were normalized to produce suitable input 
levels for the TDNNs. Training tokens for individual speakers 
were shuffled randomly and interleaved to produce successive 
/b, d, g/ tokens. Training tokens for TDNNs trained with multi- 
ple speakers were prepared similarly with the additional step of 
interleaving the tokens for a given phoneme across all speak- 
ers. Figure 1 illustrates the TDNN architecture trained with 
this data. The input layer comprises 15 16-coeffiCient Melscale 
spectra. TDNN connections between lower and higher layers 
of the network are linked in the time domain to engender shift- 
invariant pattern recognition. Details of this shift-invariant con- 
nectionist architecture can be found in [l]. In Figure 1 black 
indicates positive node activation, gray indicates no activation, 
and white (input layer only) indicates negative activation. A 
node’s activation level is proportional to the size of the black 
or white rectangle depicting the node. 

2 A review of‘ the MSE objective func- 
tion 

In presenting the CFM objective function, we first review the 
traditional MSE objective function used in backpropagation 
[3,4]. This function seeks to minimize the mean-squared-ermr 
between the network’s output nodes C),, . . . , 0” and an ideal 
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Figure 1: A Time-Delay Neural Network 

or desired set of outputs D1, . . . , P. 
n 

MSE = 1 / n C ( O i  - pi)’ (1) 
i=l 
n 

E = 1 / 2 1 ( O i  - Pi)’ (2) 
il 

where (2) is the form used in [3,4] and Cc = MSE . n/2. 
Clearly T&W) depends upon the conditional nature of 

the training token set. Indeed, one finds that the MSE objective 
function produces representations within the network that result 
from minimization of the global MSE (i.e., the MSE produced 
across all training tokens). We raise the question of whether 
the MSE objective function is optimal for training networks 
employed as classifiers. 

Generalization is a term with broad implications in connec- 
tionist learning. For the purpose of our presentation, we address 
one aspect of its meaning for networks employed as classifiers. 
In this restricted context, generalization is a description of a 
network’s ability to form abstract representations of a train- 
ing set’s salient features in order to maximize the number of 
correct classifications made on a disjoint test set. All the vari- 
ables of a connectionist stfllcture - the network architecture, 
its final connection strengths, the learning algorithm used to 
develop those connection strengths, and the statistical nature of 
the training set - play a role in determining the degree to which 
a network forms general representations. These variables also 
determine the specific nature of the resulting general represen- 

tations. Reference [SI illustrates the importance of training set 
selection in the development of generalized representations, fo- 
cusing on networks that deal with training pattern drawn from 
a finite, deterministic ensemble. We suggest that the backprop- 
agation objective function plays an equally important role in 
forming general representations - particularly in networks that 
analyze training sets drawn from an infinitely large, stochastic 
ensemble characterized by a high degree of variability. 

For the case of a classifier network with n outputs rep- 
resenting n possible classes, one can show for a single in- 
put pattern that one is assured a hit (correct classification) iff 
MSE < 1/2n. Likewise, one is assured a miss (incorrect clas- 
sification) iff MSE > (n - l)/n. These facts form the basis of 
the phenomenon commonly know as “over-leaming” or “rote 
memorization”, often displayed by backpropagation networks 
trained with the MSE objective function. In short, because the 
MSE objective function is minimized globally, one finds that 
when training tokens are selected from an infinitely large high- 
variance ensemble, MSE is minimized for the vast majority of 
the tokens, while it is made quite large for a small minority 
of tokens. Given the hit/miss boundaries above and the fact 
that these minority tokens are legitimate samples from the en- 
semble, one often finds that recognition performance on test 
data actually degrades as learning of the training set continues 
beyond some optimal stage. One typically attempts to prevent 
this sort of pathological behavior in one of two ways: 1) by ex- 
panding the training set, using its statistical variance to obscure 
features that are not representative of the ensemble; 2) by ex- 
plicitly selecting the training set, choosing tokens that are most 
representative of the ensemble and most effective in developing 
optimal classification boundaries [SI. The first solution is often 
impossible because one does not have access to a sufficiently 
large sample set. The second solution requires a-priori knowl- 
edge of those features that are representative of the ensemble; 
this presents a paradox, since one is attempting to train the 
network to find these features. Additionally, the selection task 
becomes extremely complex for training sets drawn from a very 
large high-variance ensemble. We suggest the alternative solu- 
tion of modifying the means by which the network measures its 
“knowledge” of a training set; given a fixed backpropagation 
network architecture, this means is expressed in the objective 
function. 

3 The CFM objective function 

The CFM otijective function has three essential features that 
distinguish it from the traditional MSE objective function: 

It has no notion of an ideal farget classification output 
pattern to which it should match its output. Instead, it is 
only concerned that the output node representing the cor- 
rect classification outcome have a higher activation state 
than any other output node. Its continuous mathematical 
form assesses a measure of the degree to which the correct 
classification has or hay not been made - a classification 
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figure-of-merit. 

In order to discourage the network from attempting to pro- 
duce ideal output patterns (thereby tending toward specific 
rather than general representations of the training set), the 
objective function yields decreasing marginal “rewards” 
for increasingly ideal output patterns. 

In order to discourage the network from attempting to learn 
tokens that are extreme statistical outliers for their given 
class, the objective function yields decreasing marginal 
“penalties” for increasingly bad misclassifications. 

The resulting CFM objective function first compares the ac- 
tivation level of the output node that should be at high state 
with the activations of all other nodes which, in a classifier, 
should be at low state. It then applies a sigmoidal function to 
each of these differences. In this way, learning focuses most 
heavily on the reduction of misclassifications, rather than on 
attempts to mimic a target output exactly: 

where 

An = 0, - O,, 
0, E the “true” (i.e., correct 

classification) node 
On = thenon-truenode n 
N = total number of classes 
a sigmoid scaling parameter 
B = sigmoid discontinuity parameter 
i G sigmoid lateral shift parameter 

Thus, 

BCFM 
- =  -aS . 3;(1 - YN) 
BO,, 

(3) 

(4) 

i= I 

Y. 

where 
1 

1 + &BJ.+C) 
3.’ = n -  

Equations (3) through (5)  are variants of the well-known sig- 
moid function and its derivative [3,4]. Clearly there are many 
other functions which meet the CFM specifications itemized 
above; we present this particular form as an archetype from 
which further developments might be made. As mentioned 
earlier, equations (3) through (5) form a mathematically con- 
tinuous expression of the degree to which a classifier produces 
the desired output classification. Note again that this meawre 
of degree - this figure-of-merit - emphasizes the relative ac- 
tivations of all output nodes rather than their correspondence 

- 1 .(I -0.5 0.0 05 I .t 
A 

Figure 2 CFM plotted for representative parameter values 

with some “ideal” output state. Because one seeks to maximize 
the CFM objective function, the weight-deflection equation of 
[3,4j must be changed to perform gradient ascent (as opposed 
to gradient descent): 

Figure 2 illustrates the CFM function over the [-1,1] domain 
of An for some representative parameter values. The parameter 
B of (3) determines how discontinuous the sigmoid function is. 
As p becomes large, the CFM function approximates the Heav- 
iside step function, and it$ derivative approximates the Dirac 
delta function. The p parameter allows one to modify the CFM 
function in terms of the degree of increasing marginal credit it 
aysigns to an increasingly strong hit as well as the amount of 
increasing penalty it assigns to an increasingly strong miss. The 
( parameter sets the relative credit assigned to a classification 
that is on the borderline between a hit and miss (i.e., A,, x 0 
for some n) ’. Our initial results show that the CFM classifier 
is quite responsive to changes in the B parameter. In particular, 
large values of p (e 20) engender connection strengths that 
yield remarkably weak marginal hits with high MSE in both 
training and testing data, while smaller values of /3 (zz 4) yield 
strong hits that exhibit MSE comparable with that produced by 
the MSE clasifier. Additionally, it appears that large values 
of B engender a diminished ability to discern subtle features 
necessary for high accuracy classification (manifest in reduced 
phoneme recognition rates). This is because the objective func- 
tion is essentially flat for large values of A,,; as a result, it does 
not alter classification boundaries in response to more subtle 
features of the training set. Although the detailed effects of 

‘the <I parameter is a simple scaling ractor, typically equd to unity. 
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Network 
TDNN 

Speaker MSE CFM MSE/CFM 
MAU 98.3 98.9 98.8 
MHT 99.7 99.5 99.7 

Table 1: Comparison of /b, d, 9/ recognition rates for TDNN trained with MSE, CFM and arbitrated MSE/CFM objective functions 
(CFM paramters: IY = 1.0, ,8 = 4.0, c = 0.0). 

TDNN 

Figure 3: Scatter plot of MSE classifier outcomes. 0 indi- 
cates MSE miss correctly classified by CFM. 

1st 3 I 97.3 [ 97.5 I 98.1 
all 6 I 95.9 I 95.9 I 96.5 

altering ( are not well-known we include it in (3) - ( 5 )  in order 
to provide a mechanism for specifying the relative magnitude 
of the CFM function for borderline tokens. In our preliminary 
studies, we have found that the parameter choices /3 = 4.0, 
C = 0.0, and a = l.03 yield recognition rates for the /b, d, g/ 
recognition task that are equivalent to those for the MSE clas- 
sifier. For 4 5 B 5 20 we have found no evidence to suggest 
that the CFM function exibits the over-learning tendency of the 
MSE function - a definite advantage for the CFM function. 

Table 1 shows the results of training a TDNN with tokens 
from 6 individual speakers, as well as two combinations of 
speakers using the MSE and CFM objective functions (see 
columns “MSE and “CFM”). Recognition rates for MSE- 
trained TDNNs are based on training sessions monitored for the 
inception of over-learning. CFM recognition rates are based on 
unmonitored training sessions. Under these conditions, we find 
the recognition rates for the two classifiers equivalent. 

’these parameter choices effectively reduce the CFM to a one-parameter 
function. 

- .  I 

Figure 4: Scatter plot of CFM classifier outcomes. 0 indi- 
cates CFM miss correctly classified by MSE. 

4 Conflict arbitration 

The results of the previous section indicate the quantitatively 
equivalent recognition rates of the MSE classifier and the CFM 
classifier (p  = 4.0, < = 0.0, a = 1 .O) given a TDNN architec- 
ture. In this section we describe in general terms the qualita- 
tive differences between the two classifiers and the means by 
which these differences can be exploited for improved recog- 
nition rates. 

In developing the CFM claysifier, our principle goal was to 
produce a more appropriate objective function for connectionist 
clxsifiers; a by-product of this goal has been the development 
of an objective function that forms internal abstract represen- 
tations of training tokens markedly different from those of the 
MSE classifier. A number of peripheral observations substanti- 
ate this assertion. First, we take a number of weight vectors for 
fully trained MSE TDNNs and use these input weight vec- 
tors for CFM training sessions. The CFM clawifier consistently 
evaluates these initial weight vectors as sub-optimal, yielding 
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final CFM weight vectors that are substantially different from 
their MSE starting-points. Additionally, we consistently find 
that the set of MSE misses and the set of CFM misses are 
largely disjoint. The scatter plots of Figures 3 and 4 illustrate 
this phenomenon for all phonemes (b, d, and g) of the TDNN 
trained with 3 speakers, listed in Table 1. The results for this 
network are representative of those for the other networks in 
Table 1. Each plot shows the level of activation for the most 
active non-true output node (i.e. the most active node that does 
not represent the correct classification) versus the level of ac- 
tivation for the true output node (representing the correct clas- 
sification). Thus, hits fall below and to the right of the dashed 
tine and misses fall above and to its left. In both plots hits and 
misses common to both classifiers are shown as o. Figure 3 
shows results for the MSE classifier and identifies those MSE 
misses that are CFM hits (0). Likewise, Figure 4 identifies 
CFM misses that are MSE hits (0). It is clear from both figures 
that the two classifiers have few common misses. In fact, if one 
considers the union of all missed tokens for the two classifiers, 
one typically finds that only 30% of these are common to both 
classifiers, while the remaining 70% are disjoint. 

Using the results of Figures 3 and 4, and those of the other 
experiments listed in Table 1 one can develop a simple set 
of criteria to arbitrate a classification decision when the CFM 
and MSE classifiers disagree. In this way, on can reduce the 
number of misclassifications. The arbitration criteria used to 
choose between conflicting outcomes of the two classifiers can 
be stated qualitatively quite simply: 

if the CFM classifier is confident in its classification, 
choose the CFM outcome; do not flag the token as a pos- 
sible miss unless the MSE classifier is also confident. 

otherwise, if the total output activation of both classifiers 
is weak, choose the MSE outcome and flag the token as a 
possible miss. 

otherwise. choose the more confident of the two outcomes; 
do not flag the token as a possible miss if the chosen 
classifier is far more confident than its competitor. 

Note that the arbitration scheme flags tokens for which arbi- 
tration gives no clear choice. Beyond the arbitration process, 
flagging is also performed on tokens for which both classifiers 
agree but have substantially different activation levels. This 
provides a mechanism by which post-arbitration misses are of- 
ten identified as suspect classifications. The confidence mea- 
sure cited in the criteria above is computed using the CFM 
function applied to the outcome of each classifier under the as- 
sumption that the outcome is correct. Figure 5 illustrates the 
median 23.7% reduction in MSE misclassifications achieved 
through conflict arbitration. Comparing Figure 5 with Figures 
3 and 4, one can see that the arbitration scheme is particularly 
effective in eliminating those misses that fall along the hit-miss 

‘it is not unusual to find the MSE and CFM weight vectors computed 
in thii manner nearly orthogonal. 
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Figure 5: Scatter plot of arbitrated MSE/CFM classifier out- 
comes. 0 indicates post arbitration miss correctly classified by 
MSE. 0 indicates post arbitration miss correctly classified by 
CFM. 

borderline. Table 1 lists the improved recognition results for 
conflict-arbitrated MSE/CFM classification (“MSE/CFM” col- 
umn). TDNNs trained with single-speaker data consistently 
yield recognition rates in excess of 98%. Similarly, the 3- 
speaker network achieves a 98.1% recognition rate. While the 
six speaker TDNN does realize a performance improvement, its 
recognition rate remains relatively low at 96.5%. We betieve 
that this is due to the high variability of speech data taken from 
a mixture of male and female speakers. 

In addition to the median 23.7% reduction in the number 
of MSE generated misses using conflict arbitration, we find 
that the combined classification technique flags 67.7% of the 
post-arbitration misses as suspect classifications. The cost of 
flagging these misses is a 7.6% flagging of post-arbitration hits. 
Figure 6 illustrates these statistics in box-plot form [8] for all 
the experiments of Table 1. In brief, the box of each plot 
has vertical extrema that match the first and third quartiles of 
the sample data; the horizontal line dividing the box delineates 
the median of the sample data; the inner and (if shown) outer 
“T”-shaped “fences” of each plot define the outer limits of so- 
called “adjacent” and “outer” extreme value. [SI, respectively. 
Extreme samples falling beyond the outer fence(@ are plotted 
as dots. The plots show reasonable variance in the sample 
data, supporting the conclusion that their median values are 
representative of the conflict-arbitrated MSE/CFM classifier’s 
underlying characteristics. 

5 Conclusions 
The 98.1 % recognition rate for three male speakers represented 
in a single TDNN is significant because we made no explicit 
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Figure 6: conflict-arbitrated MSEJCFM classification statistics (n=8) 

effort to choose three speakers with similar vocal characteris- 
tics (beyond choosing 3 males, as opposed to a mix of males 
and females). %This suggests that individual TDNNs might em- 
ploy conflict arbitration to achieve high recognition rates for 
specific classes of speakers, and that these class-specific net- 
works might then be linked in modular fashion [6,7] to form 
a speaker-independent network. Clearly there is a limit to the 
variance of vocal characteristics possible within a given class of 
speakers. The TDNN trained with six speakers, two of whom 
were women, displayed recognition performance considerably 
below that of its 3-speaker counterpart. Figure 6 yields tangen- 
tial proof of the high variance in the six-speaker data: the box 
plot depicting the percentage of hits flagged as possible misses 
has an extreme statistical outlier of 14.4%. This outlier wa. 
produced by the six-speaker experiment; it suggests that - in- 
dependent of classifier type used - the network has a limit to 
its ability to form generalizations of data with high variance. 
Indeed, it suggests that there is some trade-off between gener- 
alization and key feature extraction - that a balance of both 
is necessary for robust classification of data characterized by 
high variance. 

We believe that the CFM objective function represents a sub- 
stantive improvement in connectionist classifier performance. 
The function is considerably less prone to over-learning than its 
MSE counterpart. Our initial results also suggest that the CFM 
classifier is a somewhat faster learner than the MSE classifier 
(given our choice of parameters). The relative ease with which 
we have obtained numerically equivalent classification perfor- 
mance with the MSE classifier leads us to believe that there 
is room for further improvement of the CFM function. We 
are currently investigating non-sigmoidal mathematical forms 
in this vein. 

Finally, arbitrated classification techniques - that is, classi- 
fication procedures that evaluate independently-developed, con- 

flicting outcomes, arbitrate a decision, and in the process eval- 
uate their own performance by flagging suspect classifications 
- represent an effective approach to the complex real-time 
pattern classification task of speech recognition. These kinds 
of techniques could form an integral part of large connectionist 
systems capable of resolving pattern classification ambiguities 
at many levels of a distributed representation of the speech 
signal. 
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