
ISCA Archive
http://www.isca-speech.org/archive

First European Conference on
Speech Communication and Technology

EUROSPEECH '89
Paris, France, September 27-29, 1989

Fast Back-Propagation Learning Methods for Large Phonemic Neural Networks

P.Haffner*, A.Waibel**, H.Sawai and K.Shikano

ATR Interpreting Telephony Research Laboratories, Seika-cho, Soraku-gun, Kyoto, 610-02, Japan
*Centre National d'Etudes des Télécommunications, 22301 Lannion, France

#*Carnegie Mellon University, Computer Science Dept, Pittsburgh, PA 15206, USA

Several improvements in the Back-Propagation
procedure are proposed to increase training speed,
and we discuss their limitations with respect to
generalization performance. The error surface is
modeled to avoid local minima and flat areas. The
synaptic weights are updated as often as possible.
Both the step size and the momentum are dynamically

scaled to the largest possible values that do not result

in overshooting. Training for the speaker-dependent
recognition of the phonemes /b/, /d/ and /g/ has been
reduced from 2 days to 1 minute on an Alliant parallel

computer, delivering the same 98.6% recognition
performance. With a 55000-connection TDNN, the

same algorithm needs 1 hour and 5000 training tokens
to recognize the 18 Japanese consonants with 96.7%

correct.

1, Introduction

Recently, the advent of new learning procedures and the
availability of fast supercomputers have made it possible to use
connectionist architectures to recognize “real world" patterns. For
instance, very high performance has been obtained with Time
Delay Neural Networks (TDNN), which are trained using Back-

Propagation(1)(2). However, these high results were attained at
the expense of training speed, which could be an obstacle for
learning a large database. A scaling problem emerges and it is
useful to evaluate learning time as a function of the dimensions of
the task and the network. If we denote the number of connections
w, the number of training samples m and the average number of

times one has to present each training sample to have it learnt
properly p, then the learning time is t=p.w.m(in number of
connections which are processed). In our problem, m is given by
the size of the database available, the order of magnitude of w is

related to m (6) and p should be a function of m and w. The
main criticism which has been made against the Back-
Propagation procedure is the large size p may reach. If one uses
the original Back-Propagation algorithm, which uses a very small
gradient step size and only updates the weights after presentation
of the whole training set, p may be larger than 10,000. The
solution seems obvious: for instance increase the step size, but
one has to be careful about oscillations and overshooting.
Moreover, slow and smooth learning seems to yield better

generalization performance. In the present paper, several
improvements in the Back-Propagation learning procedure are
proposed to increase training speed. Based on empirical results,
we then discuss their limitations, particularly with respect to
generalization performance. Finally, we show that with this new
learning procedure, a TDNN is able to learn the Japanese
consonants within 1 hour.

EUROSPEECH ’89, Paris, France, September 1989

2. Phoneme recogntion using TDNN

We present here the network architecture ard the

database, which are exactly the same as in (1) and (2).

A TDNN is a Multi-Layer Perceptron (MLP) including a
time dimension: two physical units are connected through several
weights, each one corresponding to a different delay in time. It is
possible to transform this time dimension into a spatial
dimension. For instance, in figure 1, each physical unit of
Hidden Layer 1 is represented at each of the 13 instants in time

by one virtual unit, with its specific activation. All the virtual

units that stand for the same physical unit have the same

incoming weights. Therefore, a TDNN may be regarded as a
MLP with some connection weights constrained to be equal.

We used a large vocabulary database of 5240 Jaj “nese
words. These words are uttered in isolation by one Japanese

professional announcer. Melscale coefficients were computed
from the power spectrum at an overall 10msec frame rate. The
database was split into a training and a testing set, from wh.ch the
actual phonetic tokens were extracted. The training token ; were
randomized within each phoneme class. The training set w: s then

built by alternating each class to be learnt.
8 ° 6

__]
integration

3 u
ni
ts

Bu
ni
ts

16
 me

ls
ca
le
 fi

lt
er
ba
nk
 co

ef
fi
ci
en
ts

15 frames
10 msec frame rate

Figure 1: A 3-class TDNN for the BDG task.

2553

3. Methodology

The trial (learning run) involves several epochs

(presentations of the whole training set), and is traced with the

output units Mean Square Error(MSE). An iteration is the
presentation of only one sample. After training, the network is
evaluated on the testing set. A pattern is recognized when the
output unit with the maximum actual activation corresponds to the
unit with the desired activation equal to 1. The recognition rate is
defined as the percentage of samples correctly classified. The
error rate is therefore the complement of the recognition rate with
Tespect to 100.

‘To make valid statistics, we generally perform several
trials on the same task, with the same algorithm, but with
different initial weights. We call a trial converging if it yields an
error rate of less than 2% on training data. We rate our

recognition performance with two numbers: the percentage of
converging trials and the error rate on test data averaged over the

converging trials.
For our simulations, we have used an Alliant computer,

with 8 vector processors, which computed 2 Million Connections

Per Second (MCPS).
The task we have been using as a benchmark is the

recognition of the 3 consonants /b/, /d/ and /g/. The dimensions
of the BDG task appear in table 2, we have been able to reduce

learning time from 2 days (epoch updating, small fixed step size,
0.9 momentum) to 1 minute. We have also tried our methods on

the XOR and encoder problems and were able to reduce learning
time to a few dozen iterations.

Figure 2: The Sigmoid Function f(x) = 1/(1 + eX)
and its derivative f".

Epochs 10 20 30 40 50

Standard Sigmoid | 2.5/50 | 1.9/70 | 1.7/100 | 1.7100 | 1.6100
Sigmoid 1 2.4/50 | 21/90 | 21/90 | 21/100 | 18/100

Sigmoid 2 1=0.01 | 2.490 | 1.9/100 | 1.9/100 | 1.9/100 | 1.9/100
2,1/100 | 2.0 /100 | 1.8/100 | 2.0100 | 2.0200
2.4/90 | 2.4/100 | 2.1/100 | 2.1100 | 2.1100

Sigmoid 3 1=0.01
New Error

Table 1: BDG task, Error Rate / % converging trials
(10 trials, Error averaged over converging trials).

EUROSPEECH ’89, Paris, France, September 1989

4, Modeling the error surface

We examine first the effects of modifying the sigmoid
function or the output error in order to get a steeper error surface.

The presentation of a pattern modifies the weight
connecting units i to j through f(x,)F(x)dE/y,. The Back-
Propagation learning rate is then proportional to the values of the
sigmoid function and its derivative f. But these functions flatten

out at infinity, as seen in figure 2. There are several ways to
make these functions non zero at infinity.

1 - Use a symmetric sigmoid whose value is never zero at
infinity, by substracting 0.5 from the sigmoid. This gercrally
gives a slightly better learning speed, as shown in (3). However,
at the beginning of the learning phase, when the weights are
small and the activations close to zero, learning may be slow to
initiate.

2- Add a linear function to the sigmoid: f(x)=f(x) + Lx.
‘The derivative becomes F\(.x)=f(x) + J, and therefore cannot be
zero (Lis generally between 0.01 and 0.1).

3 - Only add a small constant | to the sigmoid derivative,
without changing the sigmoid function. Therefore, during the
backward phase, we multiply 3E/ay by a factor that is no longer
the real sigmoid derivative.

These three methods, especially those dealing with a change in
the sigmoid derivative, generally lead to an increase in speed and

guarantee convergence to a zero error global minimum The
results we found are consistent with (4). However, this forced
convergence is most often undesired, for it leads to network
configurations which have overlearnt the training set, yielding
slightly worse performance on test data, We see in table 1 that for
the BDG task, models 2 and 3 allow for fast convergence in all
10 trials, but the final average error rate on test data is higher than
the standard sigmoid,

Because of the multiplication by the sigmoid deris ative,
output units whose activations are close to 0 or 1 have delta

values which are close to 0, regardless of the size of the actual

output error for these units. To cope with this problem, instead of
the standard Mean Square Error, a new error has been proposed
by McClelland:

E=-Esamples%; In(1 - (y;- 4)
0; is the actual output and 4, iy the desired output)

The derivative of this new error is maximum when y, - d,= 1.

‘This new error ensures that the system will always learn and has
roughly the same effect as adding a small constant to the sigmoid
derivative, as we see in table 1. Despite a slightly worse
generalization performance, we have found this new error to be
particularly useful with large tasks involving many classes, such
as learning the 18 consonants.Here, over 18 consecutive
iterations, the desired activation of any output unit is equal to 1.0
during 1 iteration and 0.0 during the 17 others. A uniform 0.0

output activation for the 18 samples is an easy local minina for
the network to learn. The sample which should output 1.0 is not
correctly learnt, but no correction occurs, as the sigmoid
derivative is equal to 0.0. The new error prevents this problem
and increases learning speed by several orders of magnitude.

2554

§. Learning strategy

Learning strategy describes the parts of our learning

algorithm that deal with the way the training samples are
presented to the network. For instance, how often should we

update weights and when can we skip samples? When compared
to learning algorithms that update the weights at each epoch,
those which update the weights after a small number of iterations
are much faster (in the BDG task, by a factor of 10) and yield

better generalization. However, to update the weights after each
iteration does not seem useful and is costly to compute, especially
at the end of the learning phase, when one has to sum over many
iterations to get a significant delta value. For our 3-class BDG
task, we have used the following procedure: update the weights
every 3 iterations during the first epoch and then increment the
updating period by 3 at each new epoch.

It is also very useful to skip samples that are correctly
learnt. We set a minimum error EQ: the sample m should be

skipped during a number of epochs which is proportional to E9-
Em.

6. Dynamic scaling of the learning parameters

Finding an optimal value for the step size € is a key
problem with the Back-Propagation learning rule. Most methods
which have been proposed to solve this problem generally deal
with line search or Newton algorithms(4)(5). For our tasks, they

bring two kind of problems. First, they generally assume that the
weights are always updated after presentation of the same set of
samples (epoch updating). Second, they allow large moves in the
weight space, they do not try to find the solution with the
smallest possible weights as it happens with very slow learning.
Therefore, they may yield a poorer generalization
performance(6).

We have however introduced a control that allows the
algorithm to use a reasonably large constant step size with no
danger of overshooting or sudden changes in the weights. This
control is local to each unit i, whose activation is calculated

through its incoming weights:
xi = f(2j Wij xj)

We resize the step size for unit i:

ae
1+ Ej @E/OWij)2

It ensures that:

ej Vj GE/Wij)2 <o

@=1 prevents most overshooting. With this method, we avoid
brutal changes in the weights without having to use a very small
step size.

We have also developed similar methods to reduce the

momentum from its maximum value of 0.99 when the weights or

the weight variations grow too large.

7. Experiments on consonant recognition

Our first experiments with all-consonant recognition used
an architecture derived from the 3-class architecture described in

EUROSPEECH ’89, Paris, France, September 1989

figure 1, but with 18 classes, as shown in Fi
selected from above the improvements in the learning procedure
which were robust, fast and kept good generalization
performance on test data. The standard sigmoid and McClelland's
new error are used. The weights are updated with a period which
is incremented with time, from 9 iterations to 72, with an
increment of 3. The step size has a maximum value of 0.001 and

the momentum is dynamically scaled between 0.5 and 0.99. The

dimensions of the task are given in table 2. We have tried 6

different networks, corresponding to different numbers of units
in the first hidden layer. Our recognition results after 30 epochs
are shown in table 3. The networks with 36 to 72 hidden units

are able to learn the training set nearly perfectly. Generalization
performance does not seem to decrease as the size and the

complexity of the network increase. Fig.4 shows that the average
size of the weights is smaller in large networks.

We have found, a posteriori, our results to be consistent
with the relation proposed by Haussler(6). It gives a theoretical
upper bound on the size of the training set for MLPs with a
continuous sigmoid function: to be practically certain to get a
given generalization performance, one has to feed the network a
number of training samples which is proportional to
W(Log(Wmax)+b), where W is the number of weights and Wmax
the maximum weight. We have indeed found that the quantity
N(Log(V<w?>)+b) is constant for networks that yield
approximately the same generalization performance. N is the
number of units in hidden layer 1, which ranges here from 27 to

72 (the number of weights W= 1500N). V<w2> is the root mean
square of the weights, and not the maximum value. This relation
was however the best one we could get from the data given by
Fig.4. The fact that the bound proposed by Haussler seems to

generalize for TDNNs is very encouraging, and it sould be
possible to control numerically the generalization capacity of a
network,

Output Layer — Tirame
<— ecieses

Hidden Layer 2
9 frames

36 hidden nite

Hidden Lay
13 frames” ,

Input Layer

15 frames
10msec frame rate

Figure 3: A non modular consonant TDNN
with 36 units in Hidden Layer 1

2555

2 1s
Weights RMS.

27

1s 36
“s rz
n

rT

o.8

° 1 L 1 L
° 5 10 is 20 25 30

Learning Epochs
Figure 4:Root Mean Square Weight Vs. Learning Epochs

for Consonant TDNNs with 18 to 72 Hidden Units.

The previous architecture does not include any knowledge
about phonetics. It is possible to sort the 18 consonants into 6

classes: the modular TDNN(2) is built with 7 different groups of

hidden units, 6 to discriminate within each class, and the Jast one
for inter-class discrimination. As shown in table 2, our algorithm
only needs 1 hour and 5063 samples to achieve a 96.7%
recognition rate on test data. Modular architecture seems to

perform slightly better than the non-modular architecture whose
best performance is 96.3%. To check the influence of the training

set size, the network has also been trained on a smaller set of
3114 samples. Recognition is only 95.3%.

Task BDG —_| Consonants | Modular Consonants

Phoneme classes 3bdg 18 18:bdg/ptk/mnN
consonants | s shhz/chts/rwy

Units in Ist hidden Layer | 8 N 68

Number of Connections | 6233. | 1500N $5757

Number of Free Parameters] $21 120N 4730

Learning Time I minute | 1 hour Lhour 1 hour

‘Training Set Size 780 5063 3114 5063

Recognition on Training Sei] 99.4% | Seebelow | 99.4% |99.2 %

‘Testing Set Size 760 3061 3061 3061

Recognition on Test Set__| 98.6 %__| See below | 95.3% _ |96.7.%
Table 2: Dimensions of the different tasks.

Number of units [18 27 36 45 54 n

‘Training set 98.7 99.5 |99.7 }998 }99.7 | 99.9

Testing set 94.4 194.9 196.3 [954 96.2 | 95.6

Table 3: % Recognition on the training and testing sets
as a function of the number of units in Hidden Layer 1.

EUROSPEECH ’89, Paris, France, September 1989

Conclusion

We have shown in this paper that learning speed for the
Back-Propagation procedure could be reduced by several orders
of magnitude, thanks to improvements in the modeling of the
error surface, the learning strategy and the scaling of the learning
parameters. In our experiments, training patterns only require 10
to 20 presentations. Learning reasonably large phonemic
databases is in the reach of computers currently available, Further
improvements in learning speed can be achieved by modular
learning: training separately different parts of the network
separately.

The networks leams using examples which are randomly
drawn from some unknown distribution, it is therefore important
to guarantee good generalization performance on open data. This
can be achieved by controlling the size of the weights. Learning
appears therefore as: do use small initial weights and increase
progressively the weights until the solution with the smallest
possible weights is found; don't jump as quickly as possible at
the first good solution.

(1) A.Waibel, T.Hanazawa, G.Hinton, K.Shikano and K.Lang:
"Phoneme Recognition Using Time Delay Neural Networks".
IEEE Trans. On Acoustics, Speech and Signal Processing, Vol
37 n° 3, March 1989.

(2) A.Waibel, H.Sawai and K.Shikano: "Modularity and Scaling
in Large Phonemic Neural Networks". Proceedings of the IEEE
ICASSP, may 1989.

(3) W.S.Stometta and B.A.Huberman: “An improved Three
Layer Back-Propagation Algorithm". In Proceedings of the IEEE
International Conference on Neural Networks, pages 619-627.
San Diego, CA, 1987.

(4) S.E.Fahlman: "An Empirical Study of Learning Speed in
Back-Propagation Networks", Technical report CMU-CS-88-
162, Carnegie Mellon University, June 1988.

(5) R.L.Watrous: “Learning Algorithms for Connectionist
Networks: Applied Gradient Methods for Non-Linear
Optimization". In Proceedings of the IEEE International
Conference on Neural Networks, pages 619-627. San Diego,
CA, 1987.

(6) D.Haussler: "Generalizing the PAC Model: Sample Size
Bounds From Metric Dimension-based Uniform Convergence
Results". COLT ‘89, April 1989.

2556

