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Several improvements in the Back-Propagation 
procedure are proposed to increase training speed, 
and we discuss their limitations with respect to 
generalization performance. The error surface is 
modeled to avoid local minima and flat areas. The 
synaptic weights are updated as often as possible. 
Both the step size and the momentum are dynamically 

scaled to the largest possible values that do not result 

in overshooting. Training for the speaker-dependent 
recognition of the phonemes /b/, /d/ and /g/ has been 
reduced from 2 days to 1 minute on an Alliant parallel 

computer, delivering the same 98.6% recognition 
performance. With a 55000-connection TDNN, the 

same algorithm needs 1 hour and 5000 training tokens 
to recognize the 18 Japanese consonants with 96.7% 

correct. 

1, Introduction 

Recently, the advent of new learning procedures and the 
availability of fast supercomputers have made it possible to use 
connectionist architectures to recognize “real world" patterns. For 
instance, very high performance has been obtained with Time 
Delay Neural Networks (TDNN), which are trained using Back- 

Propagation(1)(2). However, these high results were attained at 
the expense of training speed, which could be an obstacle for 
learning a large database. A scaling problem emerges and it is 
useful to evaluate learning time as a function of the dimensions of 
the task and the network. If we denote the number of connections 
w, the number of training samples m and the average number of 

times one has to present each training sample to have it learnt 
properly p, then the learning time is t=p.w.m(in number of 
connections which are processed). In our problem, m is given by 
the size of the database available, the order of magnitude of w is 

related to m (6) and p should be a function of m and w. The 
main criticism which has been made against the Back- 
Propagation procedure is the large size p may reach. If one uses 
the original Back-Propagation algorithm, which uses a very small 
gradient step size and only updates the weights after presentation 
of the whole training set, p may be larger than 10,000. The 
solution seems obvious: for instance increase the step size, but 
one has to be careful about oscillations and overshooting. 
Moreover, slow and smooth learning seems to yield better 

generalization performance. In the present paper, several 
improvements in the Back-Propagation learning procedure are 
proposed to increase training speed. Based on empirical results, 
we then discuss their limitations, particularly with respect to 
generalization performance. Finally, we show that with this new 
learning procedure, a TDNN is able to learn the Japanese 
consonants within 1 hour. 
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2. Phoneme recogntion using TDNN 

We present here the network architecture ard the 

database, which are exactly the same as in (1) and (2). 

A TDNN is a Multi-Layer Perceptron (MLP) including a 
time dimension: two physical units are connected through several 
weights, each one corresponding to a different delay in time. It is 
possible to transform this time dimension into a spatial 
dimension. For instance, in figure 1, each physical unit of 
Hidden Layer 1 is represented at each of the 13 instants in time 

by one virtual unit, with its specific activation. All the virtual 

units that stand for the same physical unit have the same 

incoming weights. Therefore, a TDNN may be regarded as a 
MLP with some connection weights constrained to be equal. 

We used a large vocabulary database of 5240 Jaj “nese 
words. These words are uttered in isolation by one Japanese 

professional announcer. Melscale coefficients were computed 
from the power spectrum at an overall 10msec frame rate. The 
database was split into a training and a testing set, from wh.ch the 
actual phonetic tokens were extracted. The training token ; were 
randomized within each phoneme class. The training set w: s then 

built by alternating each class to be learnt. 
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Figure 1: A 3-class TDNN for the BDG task. 
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3. Methodology 

The trial (learning run) involves several epochs 

(presentations of the whole training set), and is traced with the 

output units Mean Square Error(MSE). An iteration is the 
presentation of only one sample. After training, the network is 
evaluated on the testing set. A pattern is recognized when the 
output unit with the maximum actual activation corresponds to the 
unit with the desired activation equal to 1. The recognition rate is 
defined as the percentage of samples correctly classified. The 
error rate is therefore the complement of the recognition rate with 
Tespect to 100. 

‘To make valid statistics, we generally perform several 
trials on the same task, with the same algorithm, but with 
different initial weights. We call a trial converging if it yields an 
error rate of less than 2% on training data. We rate our 

recognition performance with two numbers: the percentage of 
converging trials and the error rate on test data averaged over the 

converging trials. 
For our simulations, we have used an Alliant computer, 

with 8 vector processors, which computed 2 Million Connections 

Per Second (MCPS). 
The task we have been using as a benchmark is the 

recognition of the 3 consonants /b/, /d/ and /g/. The dimensions 
of the BDG task appear in table 2, we have been able to reduce 

learning time from 2 days (epoch updating, small fixed step size, 
0.9 momentum) to 1 minute. We have also tried our methods on 

the XOR and encoder problems and were able to reduce learning 
time to a few dozen iterations. 

Figure 2: The Sigmoid Function f(x) = 1/(1 + eX) 
and its derivative f". 

Epochs 10 20 30 40 50 

Standard Sigmoid | 2.5/50 | 1.9/70 | 1.7/100 | 1.7100 | 1.6100 
Sigmoid 1 2.4/50 | 21/90 | 21/90 | 21/100 | 18/100 

Sigmoid 2 1=0.01 | 2.490 | 1.9/100 | 1.9/100 | 1.9/100 | 1.9/100 
2,1/100 | 2.0 /100 | 1.8/100 | 2.0100 | 2.0200 
2.4/90 | 2.4/100 | 2.1/100 | 2.1100 | 2.1100 

Sigmoid 3 1=0.01 
New Error 

Table 1: BDG task, Error Rate / % converging trials 
(10 trials, Error averaged over converging trials). 
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4, Modeling the error surface 

We examine first the effects of modifying the sigmoid 
function or the output error in order to get a steeper error surface. 

The presentation of a pattern modifies the weight 
connecting units i to j through f(x,)F(x)dE/y,. The Back- 
Propagation learning rate is then proportional to the values of the 
sigmoid function and its derivative f. But these functions flatten 

out at infinity, as seen in figure 2. There are several ways to 
make these functions non zero at infinity. 

1 - Use a symmetric sigmoid whose value is never zero at 
infinity, by substracting 0.5 from the sigmoid. This gercrally 
gives a slightly better learning speed, as shown in (3). However, 
at the beginning of the learning phase, when the weights are 
small and the activations close to zero, learning may be slow to 
initiate. 

2- Add a linear function to the sigmoid: f(x)=f(x) + Lx. 
‘The derivative becomes F\(.x)=f(x) + J, and therefore cannot be 
zero (Lis generally between 0.01 and 0.1). 

3 - Only add a small constant | to the sigmoid derivative, 
without changing the sigmoid function. Therefore, during the 
backward phase, we multiply 3E/ay by a factor that is no longer 
the real sigmoid derivative. 

These three methods, especially those dealing with a change in 
the sigmoid derivative, generally lead to an increase in speed and 

guarantee convergence to a zero error global minimum The 
results we found are consistent with (4). However, this forced 
convergence is most often undesired, for it leads to network 
configurations which have overlearnt the training set, yielding 
slightly worse performance on test data, We see in table 1 that for 
the BDG task, models 2 and 3 allow for fast convergence in all 
10 trials, but the final average error rate on test data is higher than 
the standard sigmoid, 

Because of the multiplication by the sigmoid deris ative, 
output units whose activations are close to 0 or 1 have delta 

values which are close to 0, regardless of the size of the actual 

output error for these units. To cope with this problem, instead of 
the standard Mean Square Error, a new error has been proposed 
by McClelland: 

E=-Esamples%; In(1 - (y;- 4) 
0; is the actual output and 4, iy the desired output) 

The derivative of this new error is maximum when y, - d,= 1. 

‘This new error ensures that the system will always learn and has 
roughly the same effect as adding a small constant to the sigmoid 
derivative, as we see in table 1. Despite a slightly worse 
generalization performance, we have found this new error to be 
particularly useful with large tasks involving many classes, such 
as learning the 18 consonants.Here, over 18 consecutive 
iterations, the desired activation of any output unit is equal to 1.0 
during 1 iteration and 0.0 during the 17 others. A uniform 0.0 

output activation for the 18 samples is an easy local minina for 
the network to learn. The sample which should output 1.0 is not 
correctly learnt, but no correction occurs, as the sigmoid 
derivative is equal to 0.0. The new error prevents this problem 
and increases learning speed by several orders of magnitude. 
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§. Learning strategy 

Learning strategy describes the parts of our learning 

algorithm that deal with the way the training samples are 
presented to the network. For instance, how often should we 

update weights and when can we skip samples? When compared 
to learning algorithms that update the weights at each epoch, 
those which update the weights after a small number of iterations 
are much faster (in the BDG task, by a factor of 10) and yield 

better generalization. However, to update the weights after each 
iteration does not seem useful and is costly to compute, especially 
at the end of the learning phase, when one has to sum over many 
iterations to get a significant delta value. For our 3-class BDG 
task, we have used the following procedure: update the weights 
every 3 iterations during the first epoch and then increment the 
updating period by 3 at each new epoch. 

It is also very useful to skip samples that are correctly 
learnt. We set a minimum error EQ: the sample m should be 

skipped during a number of epochs which is proportional to E9- 
Em. 

6. Dynamic scaling of the learning parameters 

Finding an optimal value for the step size € is a key 
problem with the Back-Propagation learning rule. Most methods 
which have been proposed to solve this problem generally deal 
with line search or Newton algorithms(4)(5). For our tasks, they 

bring two kind of problems. First, they generally assume that the 
weights are always updated after presentation of the same set of 
samples (epoch updating). Second, they allow large moves in the 
weight space, they do not try to find the solution with the 
smallest possible weights as it happens with very slow learning. 
Therefore, they may yield a poorer generalization 
performance(6). 

We have however introduced a control that allows the 
algorithm to use a reasonably large constant step size with no 
danger of overshooting or sudden changes in the weights. This 
control is local to each unit i, whose activation is calculated 

through its incoming weights: 
xi = f(2j Wij xj) 

We resize the step size for unit i: 

ae 
1+ Ej @E/OWij)2 

It ensures that: 

ej Vj GE/Wij)2 <o 

@=1 prevents most overshooting. With this method, we avoid 
brutal changes in the weights without having to use a very small 
step size. 

We have also developed similar methods to reduce the 

momentum from its maximum value of 0.99 when the weights or 

the weight variations grow too large. 

7. Experiments on consonant recognition 

Our first experiments with all-consonant recognition used 
an architecture derived from the 3-class architecture described in 
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figure 1, but with 18 classes, as shown in Fi 
selected from above the improvements in the learning procedure 
which were robust, fast and kept good generalization 
performance on test data. The standard sigmoid and McClelland's 
new error are used. The weights are updated with a period which 
is incremented with time, from 9 iterations to 72, with an 
increment of 3. The step size has a maximum value of 0.001 and 

the momentum is dynamically scaled between 0.5 and 0.99. The 

dimensions of the task are given in table 2. We have tried 6 

different networks, corresponding to different numbers of units 
in the first hidden layer. Our recognition results after 30 epochs 
are shown in table 3. The networks with 36 to 72 hidden units 

are able to learn the training set nearly perfectly. Generalization 
performance does not seem to decrease as the size and the 

complexity of the network increase. Fig.4 shows that the average 
size of the weights is smaller in large networks. 

We have found, a posteriori, our results to be consistent 
with the relation proposed by Haussler(6). It gives a theoretical 
upper bound on the size of the training set for MLPs with a 
continuous sigmoid function: to be practically certain to get a 
given generalization performance, one has to feed the network a 
number of training samples which is proportional to 
W(Log(Wmax)+b), where W is the number of weights and Wmax 
the maximum weight. We have indeed found that the quantity 
N(Log(V<w?>)+b) is constant for networks that yield 
approximately the same generalization performance. N is the 
number of units in hidden layer 1, which ranges here from 27 to 

72 (the number of weights W= 1500N). V<w2> is the root mean 
square of the weights, and not the maximum value. This relation 
was however the best one we could get from the data given by 
Fig.4. The fact that the bound proposed by Haussler seems to 

generalize for TDNNs is very encouraging, and it sould be 
possible to control numerically the generalization capacity of a 
network, 

Output Layer — Tirame 
<— ecieses 

Hidden Layer 2 
9 frames 

36 hidden nite 

Hidden Lay 
13 frames” , 

Input Layer 

15 frames 
10msec frame rate 

Figure 3: A non modular consonant TDNN 
with 36 units in Hidden Layer 1 
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for Consonant TDNNs with 18 to 72 Hidden Units. 

The previous architecture does not include any knowledge 
about phonetics. It is possible to sort the 18 consonants into 6 

classes: the modular TDNN(2) is built with 7 different groups of 

hidden units, 6 to discriminate within each class, and the Jast one 
for inter-class discrimination. As shown in table 2, our algorithm 
only needs 1 hour and 5063 samples to achieve a 96.7% 
recognition rate on test data. Modular architecture seems to 

perform slightly better than the non-modular architecture whose 
best performance is 96.3%. To check the influence of the training 

set size, the network has also been trained on a smaller set of 
3114 samples. Recognition is only 95.3%. 

Task BDG —_| Consonants | Modular Consonants 

Phoneme classes 3bdg 18 18:bdg/ptk/mnN 
consonants | s shhz/chts/rwy 

Units in Ist hidden Layer | 8 N 68 

Number of Connections | 6233. | 1500N $5757 

Number of Free Parameters] $21 120N 4730 

Learning Time I minute | 1 hour Lhour 1 hour 

‘Training Set Size 780 5063 3114 5063 

Recognition on Training Sei] 99.4% | Seebelow | 99.4%  |99.2 % 

‘Testing Set Size 760 3061 3061 3061 

Recognition on Test Set__| 98.6 %__| See below | 95.3% _ |96.7.% 
Table 2: Dimensions of the different tasks. 

Number of units [18 27 36 45 54 n 

‘Training set 98.7 99.5 |99.7 }998 }99.7 | 99.9 

Testing set 94.4 194.9 196.3 [954 96.2 | 95.6 

Table 3: % Recognition on the training and testing sets 
as a function of the number of units in Hidden Layer 1. 
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Conclusion 

We have shown in this paper that learning speed for the 
Back-Propagation procedure could be reduced by several orders 
of magnitude, thanks to improvements in the modeling of the 
error surface, the learning strategy and the scaling of the learning 
parameters. In our experiments, training patterns only require 10 
to 20 presentations. Learning reasonably large phonemic 
databases is in the reach of computers currently available, Further 
improvements in learning speed can be achieved by modular 
learning: training separately different parts of the network 
separately. 

The networks leams using examples which are randomly 
drawn from some unknown distribution, it is therefore important 
to guarantee good generalization performance on open data. This 
can be achieved by controlling the size of the weights. Learning 
appears therefore as: do use small initial weights and increase 
progressively the weights until the solution with the smallest 
possible weights is found; don't jump as quickly as possible at 
the first good solution. 
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