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ABSTRACT 

We present a number of Time-Delay Neural Network (TONN) based 
architectures for multi-speaker phoneme recognition (/b,d,g/ task). We 
use speech of two females and four males to compare the performance 
of the various architectures against a baseline recognition rate of 95.9% 
for a single TONN on the six-speaker /b,d,g/ task. 1bis series of modu­
lar designs leads to a highly modular multi-network architecture capable 
of performing the six-speaker recognition task at the speaker dependent 
rate of 98.4%. In addition to its high recognition rate, the so-called 
"Meta-Pi" architecture learns - without direct supervision - to rec­
ognize the speech of one particular male speaker using internal models 
of other male speakers exclusively. 

1 INTRODUCTION 

References [1,2] have show the Tune-Delay Neural Network to be an effective classifier 
of acoustic phonetic speech from individual speakers. The objective of this research has 
been to extend the 'IDNN paradigm to the multi-speaker phoneme recognition task, with 
the eventual goal of producing connectionist structures capable of speaker independent 
phoneme recognition. In making the transition from single to multi-speaker tasks, we have 
focused on modular architectures that perform the over-all recognition task by integrating 
a number of smaller task-specific networks. 
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Table 1: A synopsis of multi-speaker /b,d,g/ recognition results for six TONN-based 
architectures. 

Architecture Type Features Size Recognition Rate 
(connections) 3-speakers 6-speakers 

TONN baseline 6,233 97.3% 95.9% 
single net 

FSTONN single net • Frequency shift (1-ply) 5,357 96.8% -
invariance (2-ply) 6,947 97.2% -

Multiple multi net •arbitrated 18,700 98.6% 97.1 % 
TONNs classification 
Modular multi net •2-stage training 18,650 97.3% -
TONN 37,400 - 96.3% 
SID multi net •2-stage training 144,000 - 98.3% 

•Multiple TONN 
modules 

Meta-Pi multi net •2-stage training 144,000 - 98.4% 
•Multiple TONN 

modules 
•Bayesian MAP learning 
•no explicit speaker 1D. 

1.1 DATA 

The experimental conditions for this research are detailed in [l]. Japanese speech data 
from six professional announcers (2 female, 4 male) was sampled for the /b, d, g/ 
phonemes {approximately 250 training and 250 testing tokens per phoneme, per speaker). 
Training for all of the modular architectures followed a general two-stage process: in 
the first stage, speaker-dependent modules were trained on speech tokens from specific 
individuals; in the second stage, the over-all modular structure was trained with speech 
tokens from all speakers. 

1.2 RESULTS 

Owing to the number of architectures investigated, we present only brief descriptions of 
each structure. Additional references are provided for readers interested in more detailed 
descriptions of particular architectures. Table 1 summarizes our recognition results for 
all of th.e network architectures described below. We list the type of architecture (single 
or multi network), the important features of the design, its over-all size (in terms of 
total connections), and its recognition perfonnance on the specified multi-speaker task. 
There are two principal multi-speaker tasks: a three male task, and a four male/two 
female task: the six speaker task is considerably more difficult than its three speaker 
counterpart, owing to the higher acoustic variance of combined male/female speech. 
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Figure 1: The Frequency Shifting TDNN (FSTDNN) architecture. 

2 ARCHITECTURE DESCRIPTIONS 

TDNN: The TDNN [1.2] serves as our baseline multi-speaker experiment. Its recogni­
tion performance on single speaker speech is typically 98.5% (1,3]. Toe high acoustic 
variance of speech drawn from six speakers - two of whom are female - reduces 
the TDNN's performance significantly (95.9%). This indicates that architectures capable 
of adjusting to markedly different speakers are necessary for robust multi-speaker and 
speaker-independent recognition. 

FSTDNN: In this design, a frequency shift invariant feature is added to the original 
TDNN paradigm. Toe resulting architecture maps input speech into a first hidden layer 
with three frequency ranges roughly corresponding to the three formants Fl - F3 (see 
figure 1). Two variations of the basic design have been tested [4]: the first is a "one-ply" 
architecture (depicted in the figure), while the second is a "two-ply" structure that uses 
two plies of input to first hidden layer connections. While the frequency shift invariance 
of this architecture has intuitive appeal, the resulting network. has a very small number 
of unique connections from the input to the first hidden layer(~ 30, 1-ply). This paucity 
of connections has two ramifications. First, it creates a crude replica of the input layer 
state in the first hidden layer, as a result, feature detectors that form in the connections 
between the input and first hidden layers of the standard TONN are now formed in the 
connections between the first and second hidden layers of the FSTDNN. Second, the 
crude input to first hidden layer replication results in some loss of information; thus, the 
feature detectors of the FSTDNN operate on what can be viewed as a degraded version of 
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Figure 2: The Multiple TDNN architecture: three identical networks trained with three 
different objective functions. 

the original input. The resulting over-all structure's recognition performance is typically 
worse ( ~ 97%) than the baseline TDNN for the multi-speaker /b,d,g/ task. 

Multiple TDNN: This design employs three TDNNs trained with the MSE, Cross Entropy 
[5], and CFM [3] objective functions (see figure 2). The different objective functions 
used to train the IDNNs form consistently di.fferent internal representations of the speech 
signal. We exploit these differing representations by using the (potentially) conflicting 
outputs of the three networks to form a global arbitrated classification decision. Taking 
the normalized sum of the three networks' outputs constitutes a simple arbitration scheme 
that typically reduces the single IDNN error rate by 30%. 

, Modular TDNN: In this design, we use the connection strengths of TDNNs fully trained 
on individual speakers to form the initial connections of a larger multi-speaker network. 
This resulting network's higher layer connections are retrained [6] to produce the final 
multi-speaker network. This technique allows us to integrate speaker-dependent networks 
into a larger structure, limiting the over-all training time and network complexity of the 
final multi-speaker architecture. The 3-speaker modular TDNN (shown in figures 3 and 
4) shows selective response to different tokens of speech. In figure 3, the network: re­
sponds to a /d/ phone with only one sub-network (associated with speaker "MNM"). In 
fact, this /d/ is spoken by "MNM". In figure 4, the same network responds to a /b/ phone 
spoken by "MHT' with all sub-networks. This selective response to utterances indicates 
that the network is sensitive to utterances that are prototypical for all speakers as well 
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Figure 3: 3-speaker Modular TDNN re­
sponding to input with one module. 

Figure 4: 3-speaker Modular TDNN re­
sponding to input with three modules. 

as those that are unique to an individual. The recognition rate for the 3-speaker modular 
TDNN is comparable to the baseline IDNN rate (97.3% ); however, the 6-speaker modu­
lar TDNN (not shown) yields a substantially lower recognition rate (96.3%). We attribute 
this degraded performance to the manner in which this modular structure integrates its 
sub-networks. In particular, the sub-networks are integrated by the connections from the 
second bidden to output layers. This scheme uses a very small number of connections to 
perform the integrating function. As the number of speakers increases and the acoustic 
variance of their speech becomes significant, the connection topology becomes inadequate 
for the increasingly complex integration function. Interconnecting the sub-networks be­
tween the first and second hidden layers would probably improve performance, but the 
improvement would be at the expense of modularity. We tried using a "Connecti.onist 
Glue" enhancement to the 6-speaker network [4], but found that it did not result in a 
significant recognition improvement. 

Stimulus Identification (SID) network: This network architecture is conceptually very 
similar to the Integrated Neural Network (INN) [7]. Figure 5 illustrates the network 
in block diagram form. Stimulus specific networks (in this case, multiple TDNNs) are 
trained to recognize the speech of an individual. Each of these multiple TDNNs forms 
a module in the over-all network. The modules are integrated by a superstructure (itself 
a multiple TDNN) trained to recognize the identity of the input stimulus (speaker). The 
output activations of the integrating superstructure constitute multiplicative connections 
that gate the outputs of the modules in order to fonn a global classification decision. 
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Figure 5: A block diagram of the Stimulus identification (SID) network, which is very 
similar to the Integrated Neural Network (INN) [7]. 

Reference [8] details the SID network's perfonnance. The major advantages of this 
architecture are its high degree of modularity (all modules and the integrating super­
structure can be trained independently) and it's high recognition rate (98.3%). It's major 
disadvantage is that it has no explicit mechanism for handling new speakers (see [8]). 

The Meta-Pi Network: This network architecture is very similar to the SID network:. 
Figure 6 illustrates the network in action. Stimulus specific networks (in this case, multi­
ple TDNNs) are trained to recognize the speech of an individual. Each of these multiple 
lDNNs forms a module in the over-all network. The modules are integrated by a su­
perstructure (itself a multiple TDNN) trained in Bayesian MAP fashion to maximize the 
phoneme recognition rate of the over-all structure: the equations governing the error back­
propagation through the Meta-Pi superstructure link the global objective function with 
the output states of the network's speaker-dependent modules [8]. As with the the SID 
network, the output activations of the integrating superstructure constitute multiplicative 
connections that gate the outputs of the modules in order to form a global classification 
decision. However, as mentioned above, the integrating superstructure is not trained in­
dependently from the modules it integrates. While this Bayesian MAP training procedure 
is not as modulari:zed as the SID network's training procedure, the resulting recognition 
rate is comparable. Additionally, the Meta-Pi network: forms very broad representations 
of speaker types in order to perform its integration task. Reference [8] shows that the 
Meta-Pi superstructure learns - without direct supervision - to perform its integra-
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Figure 6: The Meta-Pi network responding to the speech of one male (MIIT) using 
models of other males' speech exclusively. 

tion function based on gross formant features of the speakers being processed; explicit 
speaker identity is irrelevant. A by-product of this learning procedure and the general 
representations that it fonns is that the Meta-Pi network learns to recognize the speech 
of one male using modules trained for other males exclusively (see figure 6 and [8]). 

3 CONCLUSION 

We have presented a number of IDNN-based connectionist architectures for multi-speaker 
phoneme recognition. The Meta-Pi network combines the best features of a number of 
these designs with a Bayesian MAP learning rule to form a connectionist classifier that 
performs multi-speaker phoneme recognition at speaker-dependent rates. We believe that 
the Meta-Pi network's ability to recognize the speech of one male using only models 
of other male speakers is significant. It suggests speech recognition systems that can 
maintain their own database of speaker models, adapting to new speakers when possible, 
spawning new speaker-dependent learning processes when necessary, and eliminating 
redundant or obsolete speaker-dependent modules when appropriate. The one major 
disadvantage of the Meta-Pi network is its siz.e. We are presently attempting to reduce the 
network's size by 67% (target size: 48,000 connections) without a statistically significant 
loss in recognition performance. 
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