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Abstract

We describe a connectionist model which learns to parse single sentences from sequential word input. A parse in 
the connectionist network contains information about role assignment, prepositional attachment, relative clause 
structure, and subordinate clause structure. The trained network displays several interesting types of behavior. 
These include predictive ability, tolerance to certain corruptions of input word sequences, and some generalization 
capability. We report on experiments in which a small number of sentence types have been successfully learned by 
a network. Work is in progress on a larger database. Application of this type of connectionist model to the area of 
spoken language processing is discussed

This research was funded by grants from ATR Interpreting Telephony Research Laboratories and the National 
Science Foundation under grant number EET-8716324. The views and conclusions contained in this document are 
the authors’ and should not be interpreted as representing the official policies, either expressed or implied, of ATR 
Interpreting Telephony Research Laboratories, the National Science Foundation, or the U.S. Government.
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Introduction
Traditional methods employed in parsing natural language have focused on developing powerful formalisms to 

represent syntactic and semantic structure along with rules for transforming language into these formalisms. The 
builders of such systems must accurately anticipate and model all of the language constructs that their systems will 
encounter. Spoken language, with its weak grammatical structure, complicates matters. We believe that 
connectionist networks which learn to transform input word sequences into meaningful target representations offer 
advantages in this area.

Much work has been done applying connectionist computational models to various aspects of language 
understanding. Some researchers have used connectionist networks to implement formal grammar systems for use 
in syntactic parsing [1,5, 10,6]. These networks do not learn their grammars. Other work has focused on 
semantics [8, 11,3,2] but either ignored parsing, or the networks did not learn to parse. The networks presented in 
this paper learn their own "grammar rules" for transforming an input sequence of words into a target representation, 
and learn to use semantic information to do role assignment

The remainder of this paper is organized as follows. First, there is a description of our network formalism. Next, 
we describe in detail a modest experiment in which a network was taught to parse a small class of sentences. We 
show how the network behaves with some novel sentences and with sentences that have been corrupted as in spoken 
language. Then, we show how we have generalized our architecture to model a much larger class of sentences and 
discuss the work as it currently stands. Lastly, we offer some concluding remarks about this work and suggest 
future directions.

Network Formalism
The most common type of deterministic connectionist network is a back propagation network [9]. Processing 

units are connected to each other, and each connection has an associated weight Connections are unidirectional. 
Units have an activity value and an output value which is usually a sigmoidal function of the activity. For a 
connection from unit A to unit B, we define the stimulation along the connection to be the output value of unit A 
multiplied by the weight associated with the connection. A unit’s activity is simply the sum of the stimulation along 
each of its input connections. A network learns input / output mappings by iteratively updating its weight values 
using a gradient descent technique.

Spoken language is an inherently sequential domain, and standard back propagation is not well suited to such a 
task. Recently, some recurrent extensions to back propagation where sequences of connections can form cycles 
have been proposed that can handle sequential input [4,7]. Our networks extend these notions by explicitly 
accounting for time in our processing units. Units have activities which decay during each discrete time step by a 
constant factor. Thus, the activation of a unit can be built up over time from repetitive weak stimulation. Activity 
values are also damped to prevent unstable behavior. By gently "integrating" activities, the network has time to 
adapt to new information smoothly.

The activity of a unit is passed through a sigmoid squashing function to produce an output value as in standard 
back propagation. In addition, a value called the velocity is calculated. It is the rate of change of the output of a 
unit. Each connection in the network has two weights associated with it -- one for the output value and one for the 
velocity value. The velocity values are important to represent dynamic behavior which depends on changes in 
activation more than on absolute activation.

In order to facilitate symbolic processing, we use special units, called gating units, which gate the connections 
between groups of units. Fig. 1 diagrams the behavior of gating units. Slot C represents a particular word. It can be
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Figure 1: Gating Units

assigned to either slot A or slot B. The connections from the units of Slot C to both Slots A and B are gated by the 
two units below the slots (the connections are not shown here). In this case, the gating unit for slot A becomes 
active (see the right hand side of the diagram), and the pattern of activation across slot C becomes active across sloe 
A. This type of assignment behavior can, in principle, be learned by a network without using gating units but is 
computationally wasteful.

Parsing Sentences
Our domain for this experiment consists of active and passive sentences consisting of up to 3 noun phrases and 2 

verb phrases each. There are three roles for nouns to fill for each verb -- agent, patient, and recipient. The network 
also models subordinate and relative clause structure as well as prepositional attachment The lexicon consists of 40 
words which are divided into 7 ''asses -- nouns, verbs, adjectives, adverbs, auxiliaries, prepositions, and 
determiners. Each word is defined at most once within a class, but some words belong to two classes.

Words are represented as patterns of activation across a set of feature units. There are seven sets of feature units, 
one for each class of words. The pattern for a word consists of two parts: a feature part and an identification part. 
The feature part contains a small set of binary features encoding semantic information about a word. The 
identification part serves to disambiguate words which have identical feature parts (like a serial number). This 
allows one to add words to the lexicon which have the same features as existing words without any re-training of the 
network (the modifiable connections of the network do not connect to any identification units). Our 40 word lexicon 
is in a virtual sense much larger than 40 words. Each word is associated with one unit in the network which has 
hard-wired connections to excite the appropriate pattern across the feature units. A sentence is presented to the 
network by stimulating the word units corresponding to the words in the sentence each for a short time in sequence.

The target representation for sentences in the network has two levels: the Phrase level and the Structure level. 
Refer to Fig. 2 for a picture of the network structure. The Phrase level consists of groups of units called blocks, 
each of which contain a noun or a verb and its modifiers. A noun block has slots for a noun, two adjectives, a 
preposition, and a determiner. A verb block has slots for a verb, an auxiliary, and an adverb. There are 3 noun 
blocks and 2 verb blocks. Each block captures a phrase. The blocks are filled in order, with the first noun phrase 
occupying the first noun block, the second NP occupying the second noun block, and so on. The exact ordering 
relationship between the verb phrases and the noun phrases is lost in this representation, but due to the simplicity of 
the sentences this is not a problem.

The units in the Structure level describe the relationships between the phrases in the Phrase level the clauses they 
make up. There are six relationships possible:

• Agent: Noun block (NB) is agent of Verb block (VB). Group of 3 by 2 units.
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Figure 2: Network Structure

• Patient: NB is patient of VB. Group of 3x2.

• Recipient: NB is recipient of VB. Group of 3x2.

• Prepositional Modification: NB modifies other NB. Group of 3x3.

• Relative Clause: VB modifies NB. Group of 2x3.

• Subordinate Clause: VB subordinate to other VB. Group of 2x2.
The sentence, "John gave a bone to the old dog." is shown in Fig. 2.

In Fig. 2, the units shown in thick lined boxes have modifiable input connections -  they learn their behavior. The 
gating units at the Phrase level share a group of hidden units. These hidden units have connections from the feature 
units, the noun and verb blocks, and the gating units themselves. The Phrase level forms a recurrent subnetwork. 
The representation units of the Structure level also share a set of hidden units. These hidden units "see" all that the 
other set of hidden units see plus the structure representation units. The Structure level also forms a recurrent 
subnetwork. None of the hidden units have connections to the identification bit portions of the slots in the network.

The network whose performance we will characterize below was trained in two phases. First, the gating units in 
the Phrase level which are responsible for the behavior of the slots of the noun and verb blocks were trained. Their 
behavior is quite complex. They must learn to turn on when a word appears across the feature units for their slot 
(and their slot is supposed to be filled), stay on until the word disappears (even after the word has been assigned to 
the slot), mm off sharply, and stay off even when another word appears across their feature units. They must also 
learn to overwrite or empty out incorrectly assigned slots. Words get assigned incorrectly when they have 
representations in more than one class and there is insufficient information to disambiguate the usage. The word 
"was" has representations both as a verb and as an auxiliary verb. The network must assign it to both the auxiliary 
and the verb slots of the current verb block, and disambiguate the assignment when the next word comes in by either 
overwriting the verb slot with the real verb or emptying out the auxiliary slot

The next phase involves adding the Structure level and training the structure representation units. The targets for
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the structure units are set at the beginning of a sentence and remain the same for the whole sentence. This forces the 
units to try to make decisions about sentence structure as early as possible; otherwise, they accumulate error signals. 
On the surface, it may seem that these units should have more or less monotonic behavior. However, the sentences 
in our domain do not necessarily contain sufficient information at word presentation time to make accurate decisions 
about the word’s function. This coupled with the network’s attempt to make decisions early causes the structure 
units to have surprisingly complicated activation patterns over time.

A set of 9 sentences was used to train the gating units of the Phrase level. They were selected to be the smallest 
set of sentences which would cover a reasonably rich set of sentences for training the Structure units. The network 
generalized very well to include "compositions" of sentence types from the initial set of 9. It was tolerant of varying 
word speed and silences between words. This is an important property, useful for integration of speech systems 
with natural language processing.

From this network, the Structure units were added. Eighteen sentences which were correctly processed at the 
Phrase level were chosen to train the Structure level. A variety of sentences was included. There were more active 
constructions than passive, more single clause than two clause sentences. Many different role structures were 
present in the training set. The network learned the set successfully.

Network Performance
The trained network displays several interesting properties on both the sentences in the training set and other new 

input sentences. A novel sentence is one which is not isomorphic to a training sentence modulo the identification 
bits of the words in the sentences. Thus, "Peter gave Fido the bone" is not different from "John gave Fido the bone." 
However, "Peter gave Fido the snake" is different since "snake" is animate, but "bone" is not.

The sentence "A snake ate the girl." is an example of the simplest type from the training set. The behavior of the 
key structure units corresponding to the roles of verb block 1 are shown in Fig. 3. Each box contains the indicated
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Figure 3: A snake ate the girl.

relationship units. The horizontal axis corresponds to time. Each word is presented for ten time steps. The first row 
of each box corresponds to the first noun phrase, the second to the second noun phrase and so on. The initial 
representation shows low activities for all of the relationship units. During presentation of the First word, the agent 
unit representing the First noun becomes quite active. It has not yet quite decided on its final value however, as can 
be seen by the oscillations. The other units are all either weakly active or oscillating. When the verb "ate" is 
presented, the agent unit corresponding to noun 1 fires strongly since it is now clear that the sentence is not a passive 
construction. Similarly, the patient unit for noun 2 becomes more active since "ate" is transitive. The last part of the 
sentence further verifies the correct representation. If "near the house" is appended to the sentence (forming a
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sentence not in the training set), it gets attached to 'the girl".

In spoken language, determiners and other short function words tend to be poorly articulated. This is indeed a 

persistent problem for speech recognition systems, as it leads to word deletions. Despite such deletions, our network  

makes appropriate role assignments with such sentences as "Snake ate girl." The role assignment is agent / patient 

as in the uncorrupted sentence. N on-speech  interjections are also possible as in, "A snake (ahh) ate the girl." A  

speech recognition system could  easily  interpret the non-speech "ahh" as "a". Our network puts the non-speech a 

in the determiner slot o f  the second noun block, and then overwrites it with "the". The result is a good  parse o f  the 

il l-formed sentence. Similarly, s im ple stuttering does not adversely affect network performance in many cases. It is 

important to note that this behavior was not taught in any w ay to the network.
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Figure 4: The snake was given by the man to Fido.

A more complicated sentence is given by, "The snake was given by the man to Fido." as shown in Fig. 4. It was 
not in the training set. There was only one sentence with a similar structure in the training sec "The bone was given 
by the man to the dog." They differ significandy in that "snake" is animate and less significantly in their detailed 
noun phrase structure. Fig. 4 shows a similar display as before. For the duration of the first two words of this 
sentence, the units behave as they did in the previous one. However, the passive construction indicated by "was 
given" causes the agent unit for the first noun to decay and the agent unit for the third noun to grow. This is because 
several other passive sentences in the training set were structured where the third noun was the agent. The word 
"by" causes the agent units to move toward their final positions and indicate by the man is the agent block. The 
recipient and patient units make their final decisions with a little residual oscillation at this time as well. At the 
arrival of "to Fido" finally, the correct parse is locked up.

In the previous example, the network seized the preposition "by" to make its role assignments. The network is 
also able to use semantic cues from words in the absence of meaningful function words. Fig. 5 show the network s 
behavior on the sentence, "A snake was given an apple by John." Here, the network must rely on the semantic 
features of "snake" and "apple" to make the proper role assignment. Since "snake" is animate, and apple is not, their
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Figure 5: A snake was given an apple by John.

roles are assigned as recipient and patient, respectively. This occurs when "an apple" is processed. The opposite 
role assignment is made in, "A bone was given the dog by John." The heuristic learned by the network is that 
inanimate objects are preferred as patients over animate objects.

Single clause sentences dominated the training set, but a few two clause sentences were presented to explore the 
network’s ability to learn the interactions among clauses. Since the network architecture allowed for only three 
noun phrases with two verb phrases, these sentences were quite simple. The network learned to recognize 
subordinate clauses as in, "John slept after he ate an apple." It also learned to recognize sentence terminal relative 
clauses as in, "John kissed the girl who slept" Generalization capability in the two clause sentences was not tested 
extensively due to the paucity of sentences constructible within the constraints of the task. Minor variations in the 
noun phrase structure from the training sentences were properly treated.

In summary, we have observed four key features in the network’s performance. It is able to combine syntactic, 
semantic, and word order information effectively to perform its task. The network tries to be predictive, making 
decisions about the structure of the sentence as soon as sufficient information becomes available. When the network 
is uncertain, the units oscillate among sets of possible future states in a way that is detectable by the network via the 
velocity weights. The network responds reasonably to sentences which have been modified from those in its 
training set

Extending the Architecture
The architecture described above is still limited in its present form. To extend and scale it to more complex 

sentences and to allow for a more flexible representation, we have designed a more general architecture. The new 
architecture is modular, hierarchical, and recurrent. It has four levels: Phrase, Clause Structure, Clause Roles, and 
Interclause. The Phrase level is analogous to that of the network described earlier, but differs in three important 
ways. The words in the lexicon all share the same feature units instead of being separated into classes. The phrases 
are not separated into verb and noun blocks; the input sentence is parsed into blocks of contiguous words which
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form phrases. The sentence "The old dog who was sleeping was given a bone by John" would be split up into "(The 
old dog)'(who) (was sleeping) (was given) (a bone) (by John)". The Clause Structure level uses the evolving Phrase 
level representation to split the sentence into its constituent clauses: "(The old dog) (was given) (a bone) (by John) 
and "(who) (was sleeping)". The Clause Roles level does the role assignment and noun phrase attachment for each 
of the clauses as they are mapped. For example, "(The old dog)" would be called the recipient, "(a bone)' the 
patient etc. The final level, Interclause, encodes the fact that the embedded clause is relative to "(The old dog)".

Interclause Level

Clause Structure Level

The old dog who was sleeping was given a bone by John

Phrase Level

"The old dog who was sleeping was given a bone by Jonn."

Figure 6: New Representation 

Fig. 6 shows the representation of this sentence.

At the Phrase level and the Clause Roles level, the network consists of horizontally replicated modules which are 
trained on all of the phrases and clauses from a set of sentences. This artificially creates the effect of a very large 
training set on a very large network without the cost associated with building such networks. The Cause Structure 
and Interclause levels cannot be treated in this manner since they deal with whole sentence structure.

We are currently exploring such a network on a set of over 200 sentences. These include sentences with passive 
constructions, center embedded clauses, and some lexical ambiguity. Preliminary results on the individual modules 
comprising the network have been encouraging, and we hope to begin testing on the fully integrated network 

shortly.

Conclusion
We have presented a connectionist architecture which learns to incrementally parse sentences. Our networks 

exhibit behavior that could potentially be extremely useful for the integration of speech and language processing. 
Tolerance to corruptions of input including ungrammaticality, word deletions and insertions, and varying word 
speed are all desirable for speech applications. Connectionist networks appear to be less rigid than more formal 
systems thereby allowing them to handle a wider variety of sentences given only a limited initial set of examples. 
Their ability to learn complex dynamical behaviors from diverse knowledge sources makes them well suited for 

speech processing applications.
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