OPTIMIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR KEYWORD SEARCH

Ankur Gandhe, Florian Metze, Alex Waibel, Ian Lane

Carnegie Mellon University
Language Technology Institute
{ankurgan,fmetze,ahw,lane} @cs.cmu.edu

ABSTRACT

Recent works have shown Neural Network based Language
Models (NNLMs) to be an effective modeling technique for
Automatic Speech Recognition. Prior works have shown
that these models obtain lower perplexity and word error rate
(WER) compared to both standard n-gram language models
(LMs) and more advanced language models including maxi-
mum entropy and random forest LMs. While these results are
compelling, prior works were limited to evaluating NNLMs
on perplexity and word error rate. Our initial results showed
that while NNLMs improved speech recognition accuracy,
the improvement in keyword search was negligible. In this
paper we propose alternate optimizations of NNLMs for the
task of keyword search. We evaluate the performance of the
proposed methods for keyword search on the Vietnamese
dataset provided in phase one of the BABEL' project and
demonstrate that by penalizing low frequency words during
NNLM training, keyword search metrics such as actual term
weighted value (ATWYV) can be improved by up to 9.3%
compared to the standard training methods.

Index Terms— language modeling, neural networks,
keyword search

1. INTRODUCTION

Statistical Language modeling is an important component
of many natural language processing applications, including
spelling correction, machine translation, automatic speech
recognition and keyword search in speech. Modified Kneser-
Ney smoothed models [1] have been shown to achieve the
best performance[2] within n-gram models. In recent years,
however, a variety of novel techniques for language modeling
have been proposed, including maximum entropy language
models [3], random forest language models [4], and neural
network language models ([5],[6]). Of these, neural network
language models have been shown to perform the best in auto-
matic speech recognition tasks[7]. These were re-introduced
recently in [8] to tackle the curse of dimensionality suffered
by n-gram models and allow continuous representation of

IThis effort uses the IARPA Babel Program language collection release
IARPA-babel107-v0.7

words. The models were subsequently modified for applica-
tion to automatic speech recognition in [5],[10], and proved to
perform better than n-gram back-off models. More recently,
recurrent NNLMs were proposed in [6],[11], and shown to
obtain better perplexity and higher speech recognition accu-
racy than feed-forward NNLMs.

Another advantage of neural network language models is
that they are discriminatively trained and minimize an objec-
tive function. To our knowledge, no one has reported on us-
ing neural network language models for the task of keyword
search and possibly optimizing the ff-NNLMs for improving
ATWWV. In this paper, we perform an empirical study of per-
formance of feed-forward NNLMs, focusing on the problem
of keyword search. The remainder of the paper is organized
as follows. Section 2 describes the feed-forward architectures
in detail. Section 3, and 4 discuss the experimental setup and
results. Concluding remarks are provided in section 5.

2. FEED-FORWARD NEURAL NETWORK
LANGUAGE MODEL

In this paper, we compare the performance of feed-forward
NNLMs for low-resource languages on WER and ATWV.
The following sections describe in detail the architecture and
training procedures used within this paper.

2.1. Architecture

In this paper we adopt the techniques introduced in [5] to
train the feed-forward NNLMs (ff-NNLMs) and follow the
notation used in their paper. Figure 1 shows the architecture
of our model. The ff-NNLM, is an n-gram language model
where the posterior probability distribution of the following
word is computed for a given n — 1 history using a neural
network model. Each word in the model’s vocabulary is rep-
resented as a sparse vector S7 x, where only the j”‘ column
is 1 for the word w; (1-of-N). The probability of current word
is then modeled to depend on the n word history, ie :

p(wj|history) = p(wjlw;—1,wj—2, ..wj—nt1)

History is represented in the neural network by multiple
sparse vectors at the input layer. Each sparse word vector is

mapped linearly to a continuous word projection of size P
by a N x P weight matrix (F'). The resulting layer formed
by concatenating the continuous word vectors is called the
projection layer. The size of the layer increases linearly with
the n-gram history. The number of units in the projection
matrix determines the number of features used to represent
each word. The second layer is a the hidden layer that in-
troduces hidden units and a hyperbolic tangent function as a
non-linearity. The output layer has N units (equal to the vo-
cabulary size of the model). At this layer a softmax function
is applied to the activation of each unit to produce posterior
probabilities. The probability for each word p(wj;) for a spe-
cific history is then given by the activation value of the ;"
output unit.

Let c;, represent the projections for the history, d; be the
activations of the hidden units and o; be the outputs. Then,
the p(w;,|h;) is given by:

dj = tanh(Zmﬂcl + blj) (1)
l

0; = Z Uijdj =+ bgi (2)
J

N
pi=e%/ Y e 3)
k=1

where my; , by, correspond to matrix M and bias B; be-
tween projection and hidden layer, and v;; , ba; correspond to
the matrix V and bias By between hidden and output layer.
The complexity to calculate a single probability with this
ff-NNLM depends on the number of units in the different
layers:

O=n-1)xPxH+H+HxN+N (4

2.2. Optimizing towards WER

It was shown in [12] that word error rate is roughly a linear
function of perplexity. Hence, a good choice for the error
function to be minimized by the ff-NNLM is the cross entropy
of the data, given by:

N
E:Ztil09pi+ﬁ(zm?l+zv?j))
i=1 Jl ij

where ¢; is the expected activation and p; is the probability
assigned to word i and 3 is the L2 regularization constant. All
the weight matrices in ff-NNLMs are trained using standard
back-propagation algorithm with an adaptive learning rate. It
can be shown that the outputs of a neural network trained in
this manner converge to the posterior probabilities. During
training, the expected activation of output layer (Z;) is set to
1 for the next word in the training data and O for all others.
Hence, the neural network directly minimizes the perplexity.

Wjnt1 P =

1
Ip(w; = 1|h;)

M[PXH]H VHXN] [| pi=
NXP) B1 - Ip(w; = ilhy)

Wi—nia | 1

wi-1 | L

J

Sparse Word
Representation

Hidden Layer Output Layer

Continuous Word
Projection Layer

Fig. 1. Graphical Model of feed-forward neural network.

2.3. Optimizing towards ATWV

Actual Term Weighted Value(ATWYV) is the primary eval-
uation metric for key word search in speech as defined in
[13]. ATWYV combines missed detections(P,,;ss) and false
alarms(Pp 4) as follows:

ATWV = 1 (1 — Pagiss(term) — BPpa(term))
terms
Noons(torm) (©)
— correct term
Pugiss(term) =1 Ny (o) ©)
N, ous
Prpa(term) = SpUTious (term) ®

Tspeech — Nirue(term)

Even though all search terms are weighted equally in ATWV
calculation, missing a rare term is more expensive than miss-
ing a frequent term because of the dependence of pjs;ss On
number of true terms. However, the language model met-
ric, perplexity, is agnostic to the frequency of the words and
gives equal weight to posterior probabilities of all words. As
a result, improving perplexity can reduce pjs;ss but often in-
creases the pr 4 for frequent key words leading to a low final
ATWYV. An intuitive modification to ff-NNLM training error
is weighted cross entropy:

N
Ew = Zwi tilogp; + ﬁ(zm?z + Z”?j) ©)
i=1 gl ij

where w; is the weight for the term ¢;. When weights are
higher for keywords than non-keywords, the estimated prob-
abilities for keywords are better. But often the keywords are
not known during model training. In such situations, we can
use the knowledge that most keywords have a medium to rare

frequency in the training data and give weight according to
word frequencies in the data. We use the following strategy
to weight the words in the error function:

for every training example do
if freg:; < threshold then
‘ w; = penalty ;
else
‘ w; =1}
end
end

By weighing the errors in this manner, we boost the prob-
ability distributions of the words that fall below a threshold,
while still minimizing a variation of perplexity. The meta-
parameters penalty and threshold need to be tuned to the
task. We report on the empirical values in the experiments
section.

3. EXPERIMENTAL SETUP

3.1. Language models

Both standard n-gram and ff-NNLMs estimate the probabil-
ity of next word based on a recent history of n — 1 words
and tri-gram models (history of two) is sufficient for speech
recognition[2]. For our baseline experiments, we trained
modified Kneser-Ney smoothed tri-gram language models
(mKNLM) using the SRILM toolkit [14]. ff-NNLMs were
trained using a projection layer of 100 and a hidden layer
of 150 units. Speech recognition was performed using the
Janus recognition toolkit [15] which can apply n-gram lan-
guage models, NNLMs and combined mKNLM+NNLM
models during both speech recognition decoding and lattice
re-scoring. Key word search is performed on confusion net-
works, as described in [18]. The value of 5 was hand chosen
and set to 999.9.

3.2. Language model training data

We evaluate the performance of the proposed methods on
Vietnamese using the FullLP resources made available to
participants within phase one the IARPA BABEL project®.
The FullLP resource comprises of transcripts of 100 hours of
training data, as shown in table 1. The average length of each
utterance is 3 sec.

Tokens
918k

Sentences
78.6k

Vocabulary
6.2k

FullLP

Table 1. Training data

Zhttp://www.nist.gov/itl/iad/mig/upload/OpenK WS 13-evalplan-v4.pdf

4. EXPERIMENT RESULTS

To evaluate the performance of the different language model
techniques described earlier in the paper, we report results
using following metrics on a 10 hour test set:

1. Perplexity: given by the 222 P(#),
2. Word error rate
3. ATWV

We performed a set of experiments to assess the efficacy of
language models as a function of meta-parameters and on the
order of ff-NNLM models

4.1. Effect of error penalty

Our modified error function depends on two parameters, the
threshold for penalizing errors and the penalty itself. We
first experiment with several values of the penalty to find
the best parameters. Table 2 shows the effect of varying
the penalty value at a particular value of threshold. We ob-
serve that while no penalty (= 1) gives the best perplexity
and WER, a penalty of 5 is best for ATWYV. Even at higher
penalty, when the perplexity is considerable lower than the
best model, there is a 1% absolute improvement in ATWV.
These set of results establish that language models should
not be optimized towards perplexity for the task of keyword
search.

PPL | WER | ATWV
mKN-3g 1254 | 50.2 | 0.273
ff-NN+mKN (penalty=1) | 109 49.6 0.269
ff-NN+mKN (penalty=2) | 109.3 | 49.8 | 0.270
ff-NN+mKN (penalty=5) | 112 499 | 0.291
ff-NN+mKN (penalty=8) | 115.9 | 50.0 | 0.282

Table 2. Performance with different penalty values for ff-
NNLM error at threshold frequency= 50

4.2. Effect of threshold

Thresholding the words based on frequency is an important
part of the optimization algorithm. If the keywords are very
rare, the threshold value should be low. However, if the key-
words are more distributed along the word-frequency curve,
then we might need a high frequency. We vary the threshold
value of frequency to find the optimal value. Table 3 shows
the effect of threshold on the performance of language model.
We observe that a penalizing words with frequency upto 25
yields the best ATWV. Intuitively, this penalizes the low and
medium-low words in the training data.

However, the threshold also depends heavily on the training
data. For some languages,especially the ones with morphol-
ogy, the words may not follow zipf’s law and we can not fix

PPL | WER | ATWV
mKN-3g 1254 | 502 | 0.273
fE-NN+mKN (thresh =5) | 109.1 | 49.7 | 0.271
fE-NN+mKN (thresh =10) | 109.7 | 49.7 | 0.279
fE-NN+mKN (thresh =25) | 110.7 | 49.8 | 0.292
f-NN+mKN (thresh=50) | 112 | 49.9 | 0.291

Table 3. Performance with different word frequency based
thresholds for penalizing ff-NNLM error at penalty = 5

the frequency. Hence, a better way is thresholding based on
number of training samples being penalized. For example,
when we penalize ~ 1% of samples, the frequency is thresh-
olded at 8. Table 4 shows the result of varying the threshold
based on number of training examples. Indeed, searching the
threshold this way gives us a better final ATWV of 0.295.

PPL | WER | ATWV
mKN-3¢g 125.4 | 50.2 0.273
ff-NN+mKN (1%,thresh =8) 110 49.7 0.280
ff-NN+mKN (2%,thresh =18) | 110.4 | 49.7 0.288
ff-NN+mKN (3%,thresh =30) | 111.1 | 49.8 0.295
ff-NN+mKN (4%,thresh=50) 112 49.9 0.291

Table 4. Performance with different thresholds based on
amount if samples penalized ff-NNLM error at penalty = 5

4.3. Lower Order ff-NNLM

The complexity of forward calculation of ff-NNLM depends
on the number of words used in the history. Many applica-
tions require faster computations and in such a case, having
a lower order ff-NNLM is desirable. Additionally, a bigram
ff-NNLM with a low vocabulary size can be converted into
ARPA format and used by most ASR systems. We perform
experiments using bigram language models and see the ef-
fect of ATWYV optimization. Table 5 shows the performance
of ff-NNLM on various metrics. Even though higher order
mKN-LM has better perplexity, the ATWYV at penalty = 5 is
better 1% than the baseline system.

PPL | WER | ATWV
mKN-2g 1323 | 50.8 | 0.214
ff-NN-2g+mKN-2g (penalty=1) | 127.1 | 50.6 | 0.268
ff-NN-2g+mKN-2g (penalty=5) | 130.1 | 50.6 0.281
mKN-3g 1254 | 50.2 | 0.273

Table 5. Performance with bigram ff-NNLM at penalty = 5
and thresholded at frequency = 30

4.4. Analysis

To analyze the cause of improved ATWYV, we compare the
baseline system, ff-NNLM system with best perplexity and

the two ff-NNLM models with best ATWV on several met-
rics. Table 6 lists the performance of the 3 systems on them.

ATWV PMissl PFA
mKN-3g 0.273 0.682 | 0.0217
ff-NN+mKN (ppl) 0.269 0.67 0.0231
ff-NN+mKN (atwvl) | 0.292 0.64 0.0235
ff-NN+mKN (atwv2) | 0.295 0.65 0.0232

Table 6. Performance of baseline model and best model on
different metrics

On analyzing the improvements based on keyword fre-
quency, we observed that indeed the most improvement was
obtained in rare and medium-frequent (4-15) words. This
confirms our hypothesis and motivation for choosing the op-
timization algorithm. The false alarm probability for both
ff-NNLM systems is higher than the baseline system. How-
ever, while the ATW V-optimized ff-NNLM system reduces
the Py;ss1 sufficiently enough to improve the final ATWYV,
the same does not happen in the standard ff-NNLM. It might
be possible to combine the reduction of Ppy;ss1 by the first
ATW V-optimized ff-NNLMs with the low Pr 4 of the second
ff-NNLM, but this is left as a future work.

5. CONCLUSION AND FUTURE WORK

We showed that by training the neural network language mod-
els towards a function other than perplexity, we can optimize
towards the keyword search metric, ATWYV and get improve-
ments as high as 9.3%. The improvement in ATWV is at a
small cost of degradation in WER, but it is still better than the
baseline system. In future, we plan to combine the different
language models for producing lattices and re-scoring lattices
to improve ATWYV further. Additionally, we observed most
improvement in medium frequent and rare words. Most key-
words are typically bi-grams and tri-grams and we can also
create similar optimization algorithms based on bi-gram and
tri-gram frequencies in the training data. We will also verify
the performance on other languages to validate our findings.

6. ACKNOWLEDGEMENTS

This work was supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Defense
U.S. Army Research Laboratory (DoD/ARL) contract num-
ber WI11NF-12-C-0015. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of ITARPA, DoD/ARL, or the U.S.
Government.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

7. REFERENCES

R. Kneser and H. Ney, “Improved backing-off for m-
gram language modeling”, Proc. ICASSP vol 1. pp. 181-
184, 1995.

S. F. Chen and J. T. Goodman, “An empirical study of
smoothing techniques for language modeling”, Proc.
Computer Speech and Language, pp. 359-394, 1999.

R. Rosenfeld, “A maximum entropy approach to adap-
tive statistical language modeling”, Proc. Computer
Speech and Language, pp. 187228, 1996.

Peng Xu and F. Jelinek, ‘“Random forest in language
modeling”, Proc. EMNLP, pp. 325332, 2004.

H. Schwenk and J. L. Gauvain, “Neural Network Lan-
guage Models for Conversational Speech Recognition”,
Proc. ICSLP, pp. 1215-1218, 2004.

T. Mikolov, M. Karafidt, J. Cernocky, and S. Khudan-
pur, “Recurrent neural network based language model,
Proc.Interspeech, pp. 1045-1048, 2010.

T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J.
Cernocky, “Empirical Evaluation and Combination of
Advanced Language Modeling Techniques” , Proc. In-
terspeech, pp. 605-608, 2011.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
Neural Probabilistic Language Model”, Proc. J. Ma-
chine Learning Research, vol 3, pp. 1137-1155, 2003.

R. Miikkulainen, and M. G. Dyer, “Natural Lan-
guage Processing with Modular PDP Networks and Dis-
tributed Lexicon”, Proc. Cognitive Science, vol. 15, No.
3, pp 343-399, 1991.

H. Schwenk, “Continuous space language models”,
Proc. Computer Speech and Language, pp. 492-518,
2007.

T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and
S. Khudanpur, “Extensions of recurrent neural network
language model”, Proc. ICASSP, pp. 5528-5531, 2011.

S.F. Chen, D. Beeferman and R. Rosenfeld, “Evaluation
Metrics For Language Models” Proc. DARPA Broadcast
News Transcription and Understanding Workshop, pp.
275-280,1998

NIST Spoken Term Detection (STD) 2006 Evaluation
Plan, http://www.nist.gov/speech/tests/std/docs/-std06-
evalplan-v10.pdf

A. Stolcke, “SRILM - an extensible language modeling
toolkit”, Proc. ICSLP, vol 2, pp. 901-904, 2002.

[15]

[16]

[17]

(18]

H. Soltau, F. Metze, C. Fgen, and A. Waibel, “A one-
pass decoder based on polymorphic linguistic context
assignment”, Proc. ASRU, pp. 214-217, 2001.

T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J.
Cernocky, “ RNNLM - Recurrent Neural Network Lan-
guage Modeling Toolkit” , Proc. ASRU Demo session,
2011.

J. Gehring, Y. Miao, F. Metze and A. Waibel, “Ex-
tracting deep bottleneck features using stacked auto-
encoders”, Proc. ICASSP pp. 3377 - 3381, 2013.

J. Mamou, B. Ramabhadran, and O. Siohan, ‘“Vocabu-
lary Independent Spoken Term Detection”, Proc. SIGIR,
pp- 615-622, 2007

