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ABSTRACT

In this paper, we present recent experiments on using Artifi-
cial Neural Networks (ANNs), a new “delayed” approach to
speech vs. non-speech segmentation, and extraction of large-
scale pooling feature (LSPF) for detecting “events” within
consumer videos, using the audio channel only. A “event”
is defined to be a sequence of observations in a video, that
can be directly observed or inferred. Ground truth is given by
a semantic description of the event, and by a number of ex-
ample videos. We describe and compare several algorithmic
approaches, and report results on the 2013 TRECVID Multi-
media Event Detection (MED) task, using arguably the largest
such research set currently available. The presented system
achieved the best results in most audio-only conditions.

While the overall finding is that MFCC features perform
best, we find that ANN as well as LSP features provide com-
plementary information at various levels of temporal reso-
lution. This paper provides analysis of both low-level and
high-level features, investigating their relative contributions
to overall system performance.

Index Terms— acoustic event detection, computational
acoustic scene analysis, multimedia retrieval

1. INTRODUCTION

Consumer-grade video material is becoming available in
abundance over the Internet. Video analysis has progressed
significantly since the early days of video retrieval, but signif-
icant progress is still needed before tasks such as TRECVID’s
Multimedia Event Detection (MED) and Recounting (MER)
can be considered solved.

MED [1] consists of indexing and searching large sets of
multimedia content, i.e. the HAVIC corpus [2], >5000 h, in
order to retrieve from the collection the most relevant videos
that contain instances of certain “events”. Examples of such
events include “Birthday Party” or “Repairing an Appliance”,
which are defined using textual descriptions (an “event kit”)
along with several example videos. Events have to be “ob-
servable” in either the visual or auditive domain, so it has been
shown that the audio channel (i.e. automatic speech recogni-
tion and acoustic scene analysis) can contribute significantly

to overall system performance, even though about a third of
the videos do not contain useful audio at all, and only about a
third of videos do contain useful English speech.

One of the most important trends in speech and lan-
guage processing has been the introduction of Deep Learning
(DL) [3], which has already lead to significant improvements
in vision and image processing. In this paper, we will intro-
duce DL to large-scale audio classification, and compare its
use with other established techniques. As almost no labeled
data is available for supervised training, we train sparse auto-
encoders to derive complementary feature representations.

In audio processing, and MED in particular, one class
of approaches makes use of a high-level semantic vocabu-
lary [4, 5, 6, 7, 8], a set of predefined atomic acoustic event
detectors learned in a supervised manner, on manually an-
notated data. Examples include sounds like “engine”, “wa-
ter”, or even speech/ silence detection. Even though this ap-
proach provides semantically interpretable information about
the event and instance, which is desirable in the context of
video summarization (e.g. MER), it does not scale well to
consumer videos, which are highly unstructured and uncon-
strained, and are generally expensive to annotate consistently.

Another approach is to learn completely unsupervised
acoustic units directly from the data itself. A popular tech-
nique to learn these units is using a clustering algorithm such
as k-Means. While these acoustic units may not have an at-
tached semantic label, their distribution can convey informa-
tion about the event, often referred to as the Bag-of-Audio-
Words (BoAW) model, which has been applied successfully
to many content-based audio retrieval tasks [9, 10, 11].

In a third, orthogonal line of research, Automatic Speech
Recognition (ASR) can be used to transcribe spoken content
in the audio track, assuming it contains enough speech to al-
low for text-based event detection [12]. Obviously, speech
vs. non-speech segmentation can be challenging, as noise lev-
els can be high, or speech can be overlaid with music or
even other competing speakers. Also, in practice, data-sets
can contain speech in many languages, potentially requiring
multi-lingual recognition, and machine translation.

Finally, audio-visual approaches have been tried [13], in
which joint learning of acoustic and visual models, either on
the symbolic or purely data-driven level has been tried.



2. TRECVID MULTIMEDIA EVENT DETECTION

In this paper, we report results of experiments on the
“MEDTEST” internal development dataset (ca. 837 h of
video), and on the official “MED13” evaluation dataset
(ca. 3,722 h) of the TRECVID 2013 Multimedia Event De-
tection (MED) task [1]. MED13 consists of the full set, and a
“progress” sub-set.

The dataset comprises 38 events that have appeared in
MED10 (P001-P003), MED11 (E001-E015), MED12 (E021-
E030), and MED13 (E031-E040) evaluations. Events E031-
E040 are known as the “ad-hoc” events, because they were not
released to participants before the evaluation, and had to be
processed roughly within a month of their disclosure, while
the remaining events were known during development, and
are therefore call “pre-specified” events. If the performance
of a feature is significantly lower on “ad-hoc” events than
on “pre-specified” events, this may therefore indicate over-
specialization or some other mismatch.

We report results for three different conditions, EK 0,
EK 10, and EK 100, which differ by the number of positive
example videos for each class that are available for model
training. E.g. in the EK 100 condition, 100 videos are avail-
able to estimate a model for each event (ca. 290 h in total), in
addition to a semantic “event kit” description, while in EK 0
only the text of the event kit can be used, as no videos are
available. The remaining videos are unrelated to the target
events and provided as “background” videos.

For evaluation, we use the mAP (mean Average Precision)
metric, which was used as a standard metric in the 2013 eval-
uation. It describes the mean precision achieved across all
classes defined on the databases. For more details, please re-
fer to the MED13 evaluation plan [14].

3. APPROACHES

One of the most successful strategies for building well-
performing systems in video retrieval has been to fuse the
output of several complementary features or classification ap-
proaches. In this section, we describe a number of such fea-
tures, which were then combined using late fusion.

While a number of additional features and techniques
were also tried during the preparation of our evaluation sub-
mission, none contributed significantly, so that we do not de-
scribe them in this paper.

Care has been taken to extract audio data consistently us-
ing FFmpeg [15] from all the data, which has been provided
in MP4 containers.

3.1. ASR – Automatic Speech Recognition

Because of the noisy nature of the HAVIC video data, we
developed a new “delayed” approach to automatic segmenta-
tion for audio data. It is optimized for retrieval performance,

rather than Word Error Rate (WER), which is the commonly
used metric during ASR development, and avoids discard-
ing useful information during retrieval due to hard segmen-
tation decisions. This approach effectively performs a soft as-
signment of speech segments to speech and non-speech cat-
egories, thereby ensuring that ASR output can be used for
retrieval even in segments that were not reliably classified
as speech. The ASR itself was trained on 100 h of English
Broadcast News (BN) and about the same amount of Meeting
(RT-04) data, and was implemented using the Janus toolkit
with the Ibis decoder [16]. The Word Error Rate is about 60 %
in an internal test set (different from the test sets used here).
The ASR uses Gaussian Mixture Models (GMMs) trained us-
ing Maximum Likelihood, and a 4-gram language model.

The following steps are performed:

• Run a rough ergodic GMM-HMM-based first-pass seg-
mentation on MFCC (Mel-Frequency Cepstral Coeffi-
cients) features using silence, noise, music, and speech
categories, geared towards high recall.

• Perform ASR on all non-silence segments, using per-
segment Cepstral Mean Subtraction/ Cepstral Variance
Normalization for noise robustness; the ASR’s acoustic
model contains dedicated models for noise and music
to account for false positives in this step.

• Collect vocabulary and estimate the Idf (Inverse docu-
ment frequency) value for each term in the vocabulary
from the resulting transcriptions on the training data,
after applying stop-word removal and stemming. To
increase variability, transcriptions were generated us-
ing both Maximum Likelihood (Viterbi) and Minimum
Bayes Risk (MBR) decoding. Calculate Tf-Idf (Term
Frequency/ Inverse Document Frequency, [17]) values
using the learned dictionary.

• Perform soft segmentation using the semantic audio
features trained on the union of 42 [4], 28 [6], and 20
[7] concepts, using classifiers trained on the LSPF fea-
tures described below, at a 0.1 s frame rate. Treating the
three semantic concept vocabularies as one vocabulary
of 90 words, compute corresponding Tf-Idf values. Se-
mantic audio features are trained on LSPF features us-
ing a random forest classifier, on about 1,000 features
after they have been ranked using Information Gain.

• Filter the ASR output in Tf-Idf representation by con-
catenating the BOW (Bag of Words) representations
of ASR and semantic audio features. These seman-
tic audio concepts act as a filter, providing a strong
signal for labels such as laughter, childrens speech,
vocal music, etc. [4] in areas where the ASR would
normally produce no useful result because of high
WER. By concatenating these complementary repre-
sentations, greater robustness is achieved in the ASR
system.



In additional experiments, we improved the transcription
step of ASR system by including hybrid acoustic models us-
ing the state-of-the-art Deep Bottle-Neck Feature (DBNF) ap-
proach, as described in [18]. Although the WER was reduced
by about 5 % absolute, this did not result in reduction of mAP,
because the number of tokens provided by this ASR was sig-
nificantly lower than the number of tokens generated by the
conventional GMM based ASR.

3.2. MFCC – Mel-Frequency Cepstral Coefficients based
Bag of Words Features

The baseline MFCC system is a fusion of three straightfor-
ward MFCC BoAW representations. Features were computed
with a 10 ms step size, using 20 ms windows. Cepstral mean
subtraction and variance normalization was performed on a
per-video level, using a power-based detection of target au-
dio, as is customary in speech recognition.

Stack-5: stacking 5 neighboring frames of 13-dimensional
MFCC features and training 16 k cluster centers with k-
Means. Various temporal contexts were explored, with
5 frames performing best on the development data.

Compressed-16k: A hierarchically clustered version of the
16k k-Means cluster centers to reduce the dimensional-
ity to 4096. No temporal context was used to increase
diversity between features.

k-Means-4k: training 4096 cluster centers on MFCC fea-
tures without any temporal context or hierarchical clus-
tering.

The computation and extraction of MFCC features fol-
lows the approach described in [9]. In computational audio
analysis, plain MFCC features were proven to be a very hard
baseline to beat, with this work not being an exception. Slight
gains in mAP could be achieved by fusing together several
classifiers trained on multiple, slight variants of MFCC fea-
tures, which cover a temporal context of about 100 ms, but
no further gains in mAP could be achieved in this setup by
learning for example self-organized audio units with similar
temporal extent from the data [19].

3.3. lMEL – log-MEL-based Sparse Coding Features

The initial integration of Deep Learning into ASR [20]
has been achieved by transforming traditional features like
MFCCs or lMELs (log-based Mel Spectral Coefficients, [21])
into a Bottle-Neck representation, on which GMMs were then
trained. Unsupervised pre-training using Restricted Boltz-
mann Machines or Sparse Denoising Autoencoders has been
shown to be effective at conditioning the parameters in deep
networks to achieve better performance during supervised
fine-tuning [22]. lMEL features are often preferred over

MFCCs as inputs, because ANNs can learn further data trans-
formations by themselves, and are not hindered by correla-
tions in the dimensions as are GMMs.

In our implementation, these features are learned by train-
ing a single-layer sparse coder in an unsupervised manner
over lMEL features. The features are trained over 7 frame
stacked lMEL features (210 dimensions) as the input layer
and a 60 dimensional output layer (30 lMEL features of the
center frame plus deltas) with a sparsity factor of 0.02. Once
the features are learned, encoding and classification is per-
formed using the BoAW approach similar to the one used in
case of MFCC. Model training has been performed on GPUs
using straightforward adaptations of the Theano toolkit [23].

3.4. LSPF – Large-Scale Pooling Features

A weakness of the previously presented MFCC and lMEL
features is that they capture very little temporal context and
no local coherence of the signal, even though temporal stack-
ing has been applied. We therefore attempt to extract fea-
tures from a wider acoustic context, and characterize classes
by looking at properties of the audio signal over frame sizes
greater than the 10 ms order of magnitude.

We first extract a number of low-level descriptors, such as
MFCC, PLP, LPC, Pitch, Loudness, Chroma, Formants, LSP,
Signal Energy, Spectral Flux, etc. as well as certain function-
als, such as Means, Extremes, Moments, Peaks, Percentiles,
Onsets, Zero-Crossing, etc., and use these functionals, ex-
tracted on the above descriptors, as features [24].

In our implementation, a set of 6,373 features is being
extracted over 2 sec segments every half second using Open-
SMILE’s [25] “ComParE” configuration. Feature selection is
performed using an Information Gain criterion followed by
Principal Component Analysis and Whitening to reduce di-
mensionality to 100 or 300. These features are used both
directly in the k-Means framework (fusing the two feature
streams withe different dimensionality) and for trainining se-
mantic (“noiseme”) concept detectors, which in turn are then
used for segmentation, as described in Section 3.1. Parame-
ters have been tuned on the internal development set.

4. EXPERIMENTS AND RESULTS

Experiments and results are summarized in the following Ta-
bles. Table 1 shows the results of the individual low-level
features presented in Section 3 on the internal MEDTEST de-
velopment set, using the same k-Means based classification
pipeline for all features.

It can be seen that the individual MFCC features are the
most powerful features, and that adding temporal context by
simply stacking neighboring frames as well as adding a hier-
archical clustering for a compressed representation improve
performance over “plain” MFCC features.



Table 1. Feature Comparison (mAP) on internal MEDTEST development data, using SVM classifiers. The top rows show
performance on the pre-specified events, the bottom rows show ad-hoc events (E031-E040). Overall performance depends
strongly on the number of available training samples (EK 100 vs. EK 10), with stacked MFCC features performing best.

mAP MFCC-kMeans-4k MFCC-Compressed-16k MFCC-Stack5 LSPF 300 lMEL-Sparse
BoAW BoAW BoAW BoS BoAW

EK100 13.57 14.49 14.62 12.49 12.95
EK10 8.28 9.20 9.42 6.13 7.77
EK100 12.57 12.48 13.28 6.93 11.46
EK10 5.90 6.56 6.46 3.88 4.54

Table 2. mAP performance of different features on MEDTEST development data, using SVM and KR classifiers, for ad-hoc
events. The benefit from using delayed segmentation as presented in Section 3.1 for ASR is evident.

mAP on MEDTEST EK 10 (KR) EK 10 (SVM) EK 100 (KR) EK 100 (SVM)
ASR 4.25 3.94 8.61 7.22
ASR (non-delayed segmentation) 2.39 2.79 5.07 4.50
lMEL 3.97 4.54 10.14 11.46
LSPF 100 2.82 3.32 5.98 6.59
LSPF 300 3.05 3.88 6.51 6.93
MFCC-Compressed-16k 6.66 6.56 12.29 12.48
MFCC-k-Means-4k 5.81 5.90 12.04 12.57
MFCC-Stack5 6.33 6.46 12.62 13.28

Table 2 shows that the choice of classifier (Support Vec-
tor Machine, SVM, vs. Kernel Regression, KR) is secondary,
compared to the choice of feature. This table also shows the
influence of the proposed “delayed” segmentation on ASR
classification performance, and the performance breakdown
of the individual LSPF features without fusion.

5. SYSTEM COMBINATION AND FUSION

Late fusion was used to combine individual audio systems
together to improve overall performance. Fusion performance
was optimized on MEDTEST data.

It is interesting to note that the MFCC feature provides
the best performance in itself. A comparison between Ta-
ble 1 and Table 3 shows the benefit of the combination of
three MFCC features in itself to be 0.76 mAP. Still, LSPF
features contribute significantly to the overall performance,
because leaving them out from the audio fusion results in the
greatest overall loss (0.85 mAP), underscoring their comple-
mentarity. lMEL features also contribute. We also integrated
two other types of features, sub-band auto-correlation fea-
tures (SBPCA) [26], and self-organized units (SOUs) [19],
however these had the least influence on overall performance,
despite them being potentially complementary as well.

Table 4 shows the official evaluation results. The pre-
sented audio and ASR systems were tuned for EK 100, and
performed best for most conditions, with almost no tuning ef-
fort for the other setups. No low-level features could be used
in the EK 0 condition, so only the semantic “noiseme” fea-

Table 3. Performance on MEDTEST (EK 100 condition)
for individual features and fusion of audio-only features (no
ASR), and when leaving out individual features from the
fused audio result (“Leave-out-loss” column).

mAP Feature Leave-out-loss
Audio Fusion 17.04 -
MFCC 15.38 0.51
lMEL 13.90 0.16
LSPF 13.05 0.85
SBPCA [26] 11.55 -0.01
SOUs [19] 15.29 0.11

tures, as described in Section 3.1, were used in the “Audio”
case. Words of the ASR output and names of the semantic
concepts that could be detected were mapped to the terms
contained in the event kits in this case. It can be observed
that semantic audio features and ASR become relatively more
important for the low-resource conditions, where models for
data-driven approaches become harder to train.

6. CONTRIBUTIONS AND CONCLUSIONS

In this paper, we describe and analyze a number of techniques
that when taken together performed best in the audio-only
conditions of the 2013 TRECVID MED evaluation. Even
after combination with video features, we observe decent
gains, in particular for conditions where no (EK 0) or only



Table 4. TRECVID mAP results for pre-specified (top) and
ad-hoc events (bottom), on MED13 evaluation data (left)
and progress sub-set (right). We show audio and video fea-
tures (“A-V”), video-only (“Visual”), non-ASR audio features
(“Audio”), or ASR using delayed segmentation (“ASR”). “A-
V” is a fusion of the “Visual”, “ASR”, and “Audio” systems,
so the individual contributions can be compared.

mAP EK100 EK10 EK0 EK100 EK10 EK0
A-V 30.6 12.6 3.7 36.3 21.2 10.1
Visual 26.4 11.2 2.4 28.4 16.3 5.2
ASR 7.8 2.0 1.8 5.7 2.6 3.1
Audio 12.6 4.7 0.3 16.1 9.1 0.2
A-V 33.4 12.8 4.7 36.0 22.5 10.6
Visual 28.1 11.6 3.0 28.7 18.4 5.5
ASR 9.8 1.8 2.1 5.2 2.0 2.1
Audio 13.6 4.8 0.4 16.8 8.6 0.3

few example (EK 10) videos are available to train a low-level
retrieval model. Audio-based features and techniques are
poised to gain importance, as “semantic” techniques become
more relevant in the quest for compact representations and
meaningful labels in multi-media data.

The present paper describes three techniques that distin-
guish our approach from its competitors, and evaluates their
performance and relative contributions on top of a state-of-
the-art baseline. The first is a transformation of lMEL fea-
tures using sparse denoising auto-encoders, thereby applying
deep learning principles to audio features without supervi-
sion. Second, we present that wide context LSPF extraction
does not perform too well on its own, but it provides a com-
plementary feature at the fusion stage. The third main con-
tribution is a novel “delayed” segmentation technique, which
optimizes the output of an ASR system for retrieval perfor-
mance, rather than word error rate. This also relies on the
LSP features, and significantly improved the detection of au-
dio semantic concepts in consumer-grade audio.

In future work, we intend to further investigate the deep
learning based features, and will attempt to perform semi-
supervised training of semantic audio models by exploiting
co-training with visual semantic features, to further improve
the performance specifically for the few exemplar conditions.
We expect that temporal modeling of sounds, or even a tem-
poral model of entire events, should also lead to further gains.
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