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ABSTRACT

Huge amount of videos on the Internet have rare textual
information, which makes video retrieval challenging given
a text query. Previous work explored semantic concepts for
content analysis to assist retrieval. However, the human-
defined concepts might fail to cover the data and there is a
potential gap between these concepts and the semantics ex-
pected from user’s query. Also, building a corpus is expensive
and time-consuming. To address these issues, we propose a
semi-automatic framework to discover the semantic concepts.
We limit ourselves in audio modality here. In the paper, we
also discuss how to select meaningful vocabulary from the
discovered hierarchical sub-categories and provide an ap-
proach to detect all the concepts without further annotation.
We evaluate the method on NIST 2011 multimedia event
detection (MED) dataset.

Index Terms— audio semantic concept discovery, semi-
automatic, multimedia retrieval

1. INTRODUCTION

There is a continuing growth of video collections available
for searching over the Internet. Given a query, search engine
retrieve relevant videos by analyzing their captions or textual
descriptions. This initial method faces big problem. A large
proportion of the videos are lack of detailed textual informa-
tion. Even for those with rich textual descriptions, the gap be-
tween the content in the video and the given textual informa-
tion is inevitable. To address the problem, advanced technolo-
gies in multimedia content analysis have become very popular
recently.

Previous work has explored detecting semantic concepts
in multiple modalities to capture the embedded semantics in
the multimedia stream [1] [2] [3]. In this paper, we limit
ourselves to discuss the audio semantic concepts. The au-
dio semantic concepts are often defined by human based on
their understanding of the specific application and their ob-
servations of limited data. After annotating a training corpus
of these defined concepts, people apply multiple supervised
methods for the semantic concept detection. Previous stud-
ies have adopted methods in speech recognition and speaker

identification [2] [3]. These approaches have been shown to
be effective on certain dataset for certain application.

However, there are potential problems of these approaches.
Firstly, defining a proper vocabulary of the semantic concepts
is time-consuming. Human experts have to observe a large
amount of data and summarize the patterns into a number
of semantic concepts based on their understanding. In this
situation, it is very likely that these semantic concepts fail
to cover the data and the vocabulary might be ineffective to
retrieve the information needed for the application. These
problems become more serious when new videos are added
to the collection continuously in practical application. Sec-
ondly, the generalization of the human defined vocabulary is
another problem. The domain-specific semantic concepts be-
come useless in new domains. And other applications might
yield refined concepts to distinguish the subtle difference
in semantics. Finally, the lack of generalization introduces
further problem. Previous attempts to detect the semantic
concepts largely adopted supervised method, which requires
large training data to achieve good performance. If we have
to build an annotation each time for new data or a new appli-
cation, it would be extremely expensive.

Previous studies also exploited unsupervised method to
learn acoustic units automatically [4] and deployed methods
to map them to high-level semantics [5] [6]. The main idea
is to learn a sound dictionary, which is similar to learning
a phone dictionary in speech recognition. Then, the audio
recording can be decoded into a sequence of the basic units
in the dictionary. Higher level semantics can be identified
through the occurrence pattern of the basic units. The unsu-
pervised method is easy to be generalized to new data and it
achieves good performance in the retrieval task. But there is
no clear semantics associated with the identified audio seg-
ments. It is still impossible to retrieve content-related audios
given a text query.

Another problem of the pure unsupervised method is the
gap between semantic similarity and acoustic similarity. The
acoustically similar sounds might be semantically different
while several acoustically distinguishable sounds might be
grouped into one semantic concept. Therefore, a well-defined
semantic concept should leverage both the acoustic character-
istics and human preference.



Following this intuition, we propose a novel framework to
discover semantic concepts semi-automatically, which lever-
ages the advantage of data-driven method while adding the
constraints of human knowledge. We use manual annotations
of broad semantic concepts as the seed and adopt unsuper-
vised approach to expand the semantic concept vocabulary.
The rest of the paper is organized as follows. In section 2,
we describe the proposed framework and discuss how to se-
lect the vocabulary from the discovered results. In section 3,
we describe the experiment setup and evaluate the result. We
discuss the result in section 4 and conclude in section 5.

2. FRAMEWORK

2.1. Overview

Our proposed method uses an annotation of broad semantic
concepts by human as the seed and explores unsupervised
method to discover the hidden hierarchical structure of each
broad concept. Each audio segment is mapped to a distribu-
tion of the acoustic descriptors learned over the data. Hier-
archical clustering is applied based on the dissimilarity over
the distribution. Each cluster is a candidate sub-category un-
der the broad concept. We describe how to learn the acoustic
descriptors using topic models in part 2.2 and how to apply
the clustering algorithm to discover sub-categories in part 2.3.
Concept vocabulary selection is discussed in part 2.4.

2.2. Learning Acoustic Descriptors

We assume that the sound recording characterizes of the dis-
tribution of multiple acoustic descriptors. Therefore, the de-
scriptors are expected to have two properties: (1) they are rep-
resentative patterns that can cover the data; (2) they are able
to capture the characteristics of the sound recording, which
help to identify the content but disregard the noise.

The MFCC (mel frequency cepstral coefficients) feature
captures the short-term spectral information considering hu-
man auditory characteristics and is widely used in speech
recognition and audio processing. Here we investigate to
learn acoustic descriptors from MFCCs.

Topic modeling methods have been successfully used in
text information retrieval. One of the methods, latent dirich-
let allocation (LDA), effectively captures the hidden semantic
structure in documents. We extend it to learn the acoustic
descriptors. We use vector quantization to map the MFCCs
into audio word in the codebook learned by k-means algo-
rithm. Then, each audio recording can be treated as a doc-
ument of words over the codebook. We apply the standard
LDA method to learn the topics, which perform as the acous-
tic descriptors.

We give a brief overview of the latent dirichlet allocation
below. Let K be a specified number of latent topics, V be
the size of the vocabulary, zi denotes a latent topic and wi

denotes a word. The generative process is as follows [7].

1.For k = 1, ...K, φk ∼ Dir(β);
2.For each document d in corpus:
i. choose θd ∼ Dir(α);
ii.For each word wi ∈ d:

-Choose a topic zi ∼ multinominal(θ)
-Choose a word wi ∼ multinominal(φzi)

where φk is a discrete distribution over a fixed vocabulary
that represents the kth topic distribution, θd is a document-
specific distribution over the available topics, and α, β are hy-
per parameters for the symmetric Dirichlet distributions that
the discrete distributions are drawn from. The joint probabil-
ity is intractable in general. We use Gibbs sampling to esti-
mate the parameter in the model.

Given a trained model, we can perform the inference on
unseen document dnew:

P (w|dnew) =
K∑

k=1

P (w|zk)
γk

K∑
j=1

γj

where γk is the Dirichlet parameter obtained during the infer-
ence on dnew. We use it as the posterior of topic proportions
over a document.

2.3. Hierarchical Sub-categories Discovery

Using method in part 2.2, each audio segment can be mapped
to a distribution over the acoustic descriptors. The dissimilar-
ity of audio segments can be measured by the distance of the
distributions.

Semantic Concepts should be defined by different levels
of similarity based on the application. Therefore, we hope to
discover a hierarchy of the concepts so that we can flexibly
choose concepts distinguished by certain dissimilarity crite-
rion which is proper for a certain application. Another benefit
is that the hierarchical tree would help human annotator un-
derstand the data better. Here we adopt agglomerative hier-
archical clustering algorithm among all the segments within
certain broad semantic concept in the seed annotations. Fig.1
gives examples of the hierarchical cluster trees we learned
from the broad semantic concepts using this algorithm.

Fig. 1. ’singing’(left) and ’whistle’(right)



2.4. Semantic Concept Vocabulary Selection

We can get a set of sub-categories of semantic concepts by
cutting the hierarchical cluster tree at certain level and as-
signing all the objects below each cut to one sub-category.
So the question is where to cut and how to evaluate whether
the generated clusters are reasonable or meaningful for the
application.

We can judge the quality of the clusters by listening to
the audio segments under each sub-category. For selecting
meaningful clusters, we can evaluate indirectly through the
performance of the application using a set of clusters. Here
we discuss how to evaluate the enlarged semantic concept vo-
cabulary for multimedia event detection (MED)[8]. For each
video clip, we use the occurrence of semantic concepts as fea-
ture and the effectiveness of features is evaluated by the event
classification performance. The semantic concept vocabulary
only consists of selected sub-categories for the original broad
categories. If there is no sub-category, the original broad cat-
egory is kept in the vocabulary.

Fig. 2. Diagram for predicting semantic concepts.

To avoid further annotation for sub-category concepts, we
design a scheme (Fig.2) to predict the probability for all se-
mantic concepts in the video clip. First, we detect segments
of the broad semantic concepts using classifiers trained on the
seed annotations. Then, for each detected segment, we infer
the distribution of acoustic descriptors using LDA models and
predict its corresponding sub-categories (if exists). The prob-
ability of a sub-category is calculated as:

P (ci|f) =
{
P (B|f) ifci = argmini=1,,M ‖f − fci‖2
0 else.

where ci denotes the ith the sub-category of broad concept
B. f is the feature vector generated from the distribution of
acoustic descriptors. fci is the centroid of a cluster, which
is calculated by taking the average of all samples within the
cluster.

The occurrence probability of each semantic concept is
estimated by its lasting length weighted by the prediction con-
fidence:

dci =
P (ci) ∗ length(ci)/length(clip)

M∑
j=1

P (cj) ∗ length(cj)/length(clip)

3. EXPERIMENT

3.1. The dataset and seed annotations

The experiments are conducted on the development data from
the NIST 2011 Multimedia Event Detection task [8]. The
dataset includes 3104 video clips for training, and 6642 video
clips for testing.

We asked a human expert to manually label the audio
semantic concepts for around 380 videos in the training set
[9]. The name of the semantic concept refers to the event
kit description and is assigned based on human understand-
ing. After filtering the concepts that appear too rarely, we
use 40 semantic concepts as broad semantic concepts and use
the labeling as our seed annotations. The semantic concepts
are: crowd, laugh, mumble, speech, speech ne, cheer, mu-
sic, music sing, whistle, squeak, animal, anim bird, anim cat,
anim dog, scream, child, singing, tone, human noise, rustle,
scratch, micro blow, white noise, washboard, applause, wind,
engine quiet, engine light, power tool, engine heavy, radio,
water, knock, thud, clap, click, bang, beep, clatter, hammer.

3.2. Experiment setup

The parameters are experimentally set. In learning acoustic
descriptors, MFCC feature is extracted using 32ms sliding
window with 10ms shift. The codebook of MFCCs has 4096
word. The number of topics in LDA is set to be 100 and
the model is learned over the whole dataset. For hierarchical
clustering, we use the Euclidian distance as metric and use
complete linkage in clustering.

In selecting sub-categories, we need to choose a threshold
to cut the hierarchical tree generated in the clustering algo-
rithm. Here the cutting threshold is a proportion of the max-
imum distance among all pairs of samples. We also experi-
mented with other cutting criteria while the flat clusters are
basically the same.

The rarely occured semantic concept will not contribute
to distinguish the content of videos. Therefore, we heuristi-
cally filter out the clusters with low proportion. The rest of
the clusters are selected as sub-categories. The original se-
mantic concepts will be replaced by these sub-categories in
the expanded vocabulary.



3.3. Result and Analysis

From the observation of the hierarchy built by the algorithm
for each broad class, we find out that the number of clus-
ters and the distribution of these candidate sub-categories vary
from class to class. There are also some outliers, which fall
into none of the natural groupings.

We further listen to the samples in the discovered sub-
categories and most of the results sound reasonable. For ex-
ample, the music in background is separated from the normal
one, the heavy wind and breeze fall into different clusters, and
etc. Some sound events would co-occur with other sound in
some acoustic scene. We find out that some separated clusters
are due to different overlapping sound. For example, the seg-
ments of ’crowd’ with overlapping speech are separated with
those without speech.

cluster1 cluster 2a

cluster3 cluster 2b

Fig. 3. Spectrum of randomly selected audio recording within
clusters.

To further examine the result, we also observe the fre-
quency spectrum. Here we discuss the ’singing’ example. Ex-
cluding the outliers, we discover 3 sub-categories by certain
threshold in flattening clusters. Cluster1 sounds like opera
singing; cluster3 includes humming; another cluster includes
two types of singing, multiple people singing together (clus-
ter2a) and singing with music accompaniment (cluster2b). As
is shown in Fig.3, the pattern in the spectrum reflects that our
method is able to distinguish acoustic characteristics. The two
types in cluster2 look more similar in spectrum compared to
the other clusters. It would require cutting the tree at a lower
level to distinguish the subtle difference.

3.4. Vocabulary Selection for MED

We build multiple binary classifiers based on random forest
algorithm [10] using the seed annotations. The acoustic fea-
tures are extracted from 2s sliding window with 100ms shift.
So the prediction granularity is 100ms. The event classifica-
tion pipeline [11] uses one-against-all rigid kernel regression
classifier using χ2 kernel for each event over the feature. The
performance of the event classification task is evaluated by
the normalized MAP (the higher number indicates better per-
formance) since each event has different numbers of positive

samples and negative samples.

Fig. 4. The normalized MAP for event detection task using
different vocabulary of semantic conepts.

As is shown in Fig.4, we experiment with cutting thresh-
old of 0.5, 0.7 and 0.9 of the maximum distance. The results
show that we can get significant improvement using a proper
expanded vocabulary compared with the baseline using orig-
inal broad concepts. we can also observe that the perfor-
mance degrades after splitting broad semantic concepts into
too many sub-categories. This is understandable because the
introduced noise overwhelm the informativeness brought by
the sub-categories.

4. CONCLUSION

In this paper, we present a novel framework to discover audio
semantic concepts semi-automatically. The framework lever-
ages LDA models to discover hidden patterns in acoustic fea-
ture space and use seed annotations to distill human under-
standing. The proposed method allows us to build an effec-
tive vocabulary of semantic concepts on data quickly with an
initial annotation of broad semantic concepts. The hierarchy
would also help human understand the structure within each
semantic concept.
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