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ABSTRACT

In the IARPA sponsored program BABEL we are faced with
the challenge of training automatic speech recognition sys-
tems in sparse data conditions in very little time. In this paper
we show that by using multilingual bootstrapping techniques
in combination with multilingual deep belief bottle neck fea-
tures that are only fine tuned on the target language the train-
ing time of an LVCSR system can be essentially halved while
the word error rate stays the same. We show this for recogni-
tion systems on Tagalog, making use of multilingual systems
trained on the other four languages of the Babel base period:
Cantonese, Pashto, Turkish, and Vietnamese.

Index Terms— automatic speech recognition, multilin-
gual speech recognition, rapid system development

1. INTRODUCTION

In the IARPA sponsored project BABEL1 we are faced with
the challenge of rapidly creating keyword search systems in
new languages with only very little training data in the new
language. During the end of the project the amount of avail-
able acoustic model training data will be less than 10 hours
and the allowed training time will be only one week.

Since state-of-the-art keyword spotting systems make use
of the output of large vocabulary continuous speech recogni-
tion (LVCSR) systems, this means that we need to be able to
train automatic speech recognition (ASR) systems with little
training data in a rapid manner. In this paper we will focus on
the training of the acoustic model (AM) and pre-processing
of the speech recognition system.

Past research has shown that the use of multilingual
acoustic modeling techniques can be used to initialize acous-
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tic models based on Hidden Markov Models (HMMs) using
Gaussian Mixture Models (GMMs) to estimate state emission
probabilities [1].

Recently, the concept of multilingual speech recognition
has also been extended to deep belief neural networks (DNNs)
[2] that are being used in speech recognition systems, either
for feature extraction in the form of deep belief bottle neck
features (DBNFs) [3] or for estimating HMM state emission
probabilities in hybrid HMM/DNN systems [4].

In this paper we present a detailed timing study that com-
pares the training time for speech recognition systems on the
BABEL task for the language Tagalog, comparing the use
of multilingual models for model initialization vs. training
solely on the available Tagalog training data. We also com-
pare the use of DBNFs trained solely on Tagalog vs. multilin-
gual DBNFs trained on four other languages.

We will show that with the help of multilingual modeling
techniques, both for model initialization and DBNF training,
the training time can be approximately halved while reaching
either comparable or even better word error rates (WERs),
depending on the amount of available training data.

2. FLAT START MODEL INITIALIZATION VS.
MULTILINGUAL BOOTSTRAPPING

2.1. Flat Start

Our baseline model initialization technique works solely on
the training data available in the target language. In order
to train an HMM/GMM acoustic model with the help of the
maximum likelihood (ML) training criterion using the expec-
tation maximization (EM) algorithm, one needs an initial set
of parameters for the HMM and GMMs of the model.

To do this task we have implemented a flat start train-
ing procedure that estimates good initial parameters from the
training data, instead of relying on randomly initialized pa-
rameters.

As pre-processing for our flat-start training we use a stan-
dard MFCC front-end, with frame stacking and linear dis-
criminant analysis (LDA) for dimensionality reduction. First,
we divide the training data into speech and non-speech por-
tions using a simple energy based classifier. We then esti-
mate the mean of all speech and all non-speech frames in the
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data. For every model that belongs to a real speech phoneme,
we create one single Gaussian with the mean value set to the
mean of the speech frames and one Gaussian for non-speech
models, such as silence and noise, with its mean set to the
mean of the non-speech MFCCs.

With this initial set of models we create a forced align-
ment of the training data. From this forced alignment data we
now successively create more complex, context-independent
models by iterating the following training procedure: a) es-
timate an LDA transform, b) extract data samples, c) incre-
mental growing of Gaussians training, d) write new forced
alignments with the newly estimated models.

In the first iteration of this procedure we set the maximum
number of Gaussians in the incremental growing of Gaussians
training to one and double it in every iteration. In total we
perform 8 iterations, so that the final model after this flat start
procedure has 128 Gaussian components per model.

2.2. Bootstrapping

For bootstrapping acoustic models in a new language we use
the technique ML-Mix [1]. ML-Mix relies on the availability
of a language independent phoneme annotation scheme, such
as SAMPA, X-SAMPA, IPA or GlobalPhone. When training
an acoustic model it pools the training data from all training
languages to train models based on the common phoneme set
representation. Phonemes in different languages that share
the same annotation also share all the corresponding training
data from those languages.

With a context-independent acoustic model trained via
ML-Mix it is straight-forward to initialize a context-
independent acoustic model in a new language. Parameters
from the multilingual model simply need to be copied over to
the models of the new language that share the same phoneme
notation. In case that a phoneme in the target language exists
that is not represented by the multilingual model, one needs to
back off to the model that is closest to the missing phoneme.
This back-off can be done manually, by using a set of rules
that operate on the common phoneme set, or in a data-driven
manner [5].

3. MONOLINGUAL VS. MULTILINGUAL DEEP
BOTTLE NECK FEATURES

The use of deep bottle neck features (DBNFs) for auto-
matic speech recognition has been intensively studied over
the last couple of years [3, 6, 7]. For DBNFs a deep-belief
network with several hidden layers and one bottleneck lay-
ers is trained, that classifies extracted feature vectors as,
e.g., phonemes, context-dependent phonemes, or even model
states. The layers of the DBNF are usually pre-trained, either
by using Restricted Boltzmann Machines (RBMs) or denois-
ing auto-encoders. After that back-propagation training, in
one of several possible variants, is applied which is some-

times called fine-tuning. For our experiments we use our set-
up from [8].

Deep neural networks are well suited for intermediate rep-
resentations in their hidden layers of different tasks. Multilin-
gual speech recognition is one instance of this where different
languages share different sounds and might differ in others.
Training multilingual DBNFs can either be done by using one
shared phoneme set [9], as it is done for ML-Mix, or by us-
ing different language dependent output layers, one for every
language [10, 11, 12, 13].

4. EXPERIMENTAL SET-UP

4.1. Data

We performed our experiments with the help of the data cor-
pora provided during the base period of the Babel project.
The corpora cover the languages Cantonese, Tagalog, Turk-
ish, Pastho, and Vietnamese. For all languages, two condi-
tions with respect to the amount of training data exist, the full
language pack (full LP) and the limited language pack (lim-
ited LP). For the full language pack of every language approx.
70–80 hours of data are available, while for the limited lan-
guage pack approx. 10 hours of training data are available.
For our experiments we used the full language packs of Can-
tonese, Turkish, Pashto and Vietnamese for training our mul-
tilingual model for bootstrapping. For Tagalog we used both
language packs, full and limited, to measure the influence of
the amount of training data in the target language, when cre-
ating a new ASR system for it.

The data consists of telephone conversations recorded
over land line and mobile telephones directly in the countries
in which the languages are spoken. The recordings were made
in varying surroundings such as offices, in the street or in the
car.

Table 2 shows the exact amounts of training data used in
the experiments in this paper. For testing we used the devel-
opment set of Tagalog which is 10 hours in length.

Language Full Pack Limited Pack

Cantonese 68 —
Pashto 79 —
Turkish 72 —
Vietnamese 79 —
Tagalog 73 9

Table 2. Size of the training data for every language in hours

4.2. System Training

The acoustic models of our speech recognition systems are all
based on HMMs with a left-to-right topology without skip-
states. All phonemes are modeled with three states and gen-

6375



Limited LP Full LP

Flat Start Multilingual Bootstrap Flat Start Multilingual Bootstrap
Step Time WER Step Training WER Step Training WER Step Time WER

Flat Start 0.8 88.9 Bootstrap 0.0 91.9 Flat Start 2.3 87.8 Bootstrap 0.0 91.6
CI ML 2.4 86.3 CI ML 2.0 85.4 CI ML 13.6 83.6 CI ML 9.7 81.7
CD ML 2.8 79.6 CD ML 2.4 78.0 CD ML 11.8 67.7
DBNF Mono 10.7 70.0 DBNF Mono 10.3 69.6 DBNF Mono 36.6 56.7 DBNF Mono 33.5 55.4

DBNF Multi 3.7 69.9 DBNF Multi 19.8 55.9

Table 1. Training times in hours and word error rates for the Tagalog limited and full LP training condition

eralized quinphones were clustered with the help of a regres-
sion tree. For training our systems that do not use DBNFs we
use a standard MFCC front-end that extracts 13 dimensional
features every 10ms and uses a window length of 16ms. 15
consecutive frames are stacked and the dimensionality of the
resulting vector is reduced to 42 using LDA. The pronuncia-
tion dictionaries of our systems were all provided by IARPA
in the language packs, and only the pronunciations given in
these dictionaries were used in training and testing.

The acoustic model training was done in several stages.
First, initial context-independent (CI) models were created
either with the help of the flat start procedure described in
Section 2.1 or by multilingually bootstrapping as described
below.

Then six iterations of the following training scheme were
performed: a) writing forced alignments with the current
model set, b) estimating the LDA transformation, c) extract-
ing training samples for every model, d) incremental growing
of Gaussians training, e) semi-tied covariance training[14].

After these six iterations generalized quinphone models
were created with the help of a cluster tree. For the full LP
condition 10,000 models were clustered, for the limited LP
2,500.

For training the context dependent models we used the
same procedure as for training one iteration of context-
independent models.

For decoding a tri-gram language model using modified
Kneser-Ney back-off was estimated on the transcriptions of
the training data, with all words of the training transcriptions
in the vocabulary.

4.3. Multilingual Bootstrap

For bootstrapping we trained a context-independent multilin-
gual acoustic model using the technique ML-Mix as described
in Section 2.2. The model was trained on the languages Can-
tonese, Pashto, Turkish, and Vietnamese. Since all the dictio-
naries that were provided with the language packs by IARPA
were given in X-SAMPA notation, we used that as common
phoneme set. The multilingual model was trained with forced
alignments that came from monolingual recognizers trained
for the individual languages.

We then bootstrapped a context-independent acoustic
model for Tagalog by copying over the corresponding param-
eters from the multilingual modeling. Out of the 45 Tagalog
phonemes in our system, seven were not covered by the mul-
tilingual model. For these we fell back to the closest model
from the multilingual model by performing a manual map-
ping based on the articulatory features associated with the
phonemes in the respective models.

4.4. Bottle Neck Features

For training our monolingual bottle neck features on Taga-
log we used the set-up from [8]. For training the multilingual
DBNFs we followed [15], however without the shifting part.
That is, we pre-train the hidden layers as auto-encoders on
all languages, except Tagalog, and do the same for the fine-
tuning, but with language specific output layers. As input
features to the network we used stacked MFCC, Minimum
Variance Distortionless Response (MVDR), pitch, and fun-
damental frequency variation (FFV) features as described in
[16].

5. EXPERIMENTAL RESULTS

We performed our experiments on the 10h Tagalog develop-
ment set provided by IARPA. The training times and WERs
of all systems that we trained and tested are summarized in
Table 1 for the limited LP and full LP conditions.

The timings of the trainings were measured on a server
with two AMD Opteron 6134 processors with 8 cores each
and a frequency of 2.3GHz, and 126GB of main memory. All
training data was stored on a local hard disk.

5.1. Baseline System

As a baseline we trained a Tagalog system both for the full
and for the limited training data condition using our flat start
training procedure described in Section 2.1, followed by the
regular training procedure described in Section 4.2 which re-
sulted in two maximum likelihood trained context-dependent
systems. On top of that we then trained a DBNF system only
on the Tagalog data as described in Section 4.4. For the full
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language pack condition the context-dependent Tagalog sys-
tem took 15.6h to train and resulted in a WER of 69.9%.
For the limited condition the training took 2.8h and yielded
a WER of 79.6%. The extension to a DBNF system raised
the total training time to 36.6h for the full LP condition and
lowered the WER to 56.7%, while for the limited LP system
the total training time was 10.7h and the WER achieved was
70.0%.

5.2. Multilingually Bootstrapped Systems

In comparison we used the multilingual bootstrap method de-
scribed in Section 4.3 to initialize the models. After that we
again performed the regular training procedure to obtain two
context-dependent maximum likelihood trained models, one
for the full LP and one for the limited LP. The training time
for the limited LP models was 2.4 hours and led to a WER of
78.0%. For the full LP the training time was 11.8 hours and
resulted in a WER of 67.7%. So, while the training time was
only reduced by 14% relative, 24% respectively, when ini-
tializing the models with the multilingual bootstrap, the word
error rate is in both cases significantly lowered. When con-
sidering the absolute training times, especially for the limited
LP condition, the gain in training time from the multilingual
bootstrap is thus not that important in practice, but the reduc-
tion in word error rates are of more interest.

5.3. Monolingual vs. Multilingual DBNF Training

In a next step, we now trained DBNF networks and systems
on top of them. For the models trained from the flat start ini-
tialization we only trained one set of DBNFs that were trained
only on the Tagalog data, by first pre-training its layers and
then fine-tuning it on Tagalog. For the models initialized with
multilingual bootstrapping we trained the same monolingual
DBNFs and an additional set of DBNF networks, by taking
the multilingually trained DBNF described in Section 4.4 and
only fine-tuning it on the Tagalog data. Since most of the
time, when training the DBNF networks, is spent on the pre-
training, this method speeds up the training time significantly.

For the models initialized with flat-start the total training
time of the system with the monolingual DBNF is 10.7h for
the limited LP with a word error rate of 70.0%. For the full
LP the training time is 36.6h with a word error rate of 56.7%.
When training a monolingual DBNF on top of the multilin-
gually bootstrapped models, the training time for the limited
LP systems raises to 10.3h and a WER of 69.6% is reached.

However, when using the multilingually trained DBNFs
that are only fine-tuned on Tagalog, and applying them on
top of the multilingually bootstrapped models, the training
time for limited LP is reduced to 3.7h while the WER stays
at 69.9%, while for the full LP the training time is reduced to
19.8h with a WER of 55.9%.

So, when using multilingually boostrapped models in
combination with multilingual DBNFs, the training time for

the limited LP is reduced by 65% compared to the mono-
lingually trained models, while the WER essential stays the
same (-0.1% abs.). For the full LP the training time is reduced
by 46% while the WER is even decreased by 0.8% abs.

Figures 1 and 2 visualize these reductions in training time
with essentially unchanging word error rates.
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Fig. 1. Training Time plotted against WER for Flat Start train-
ing vs. Multilingual Bootstrapping for limited LP
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Fig. 2. Training Time plotted against WER for Flat Start train-
ing vs. Multilingual Bootstrapping for full LP

6. CONCLUSION

In this paper we have measured the influence of using multi-
lingually bootstrapped acoustic models vs. models obtained
by flat start training on the training time of a LVCSR sys-
tem for Tagalog on the Babel task, as well as on the resulting
word error rate of the recognition system. We further mea-
sured the differences in training time and WER when using
monolingual DBNFs vs. multilingual ones that were only fine
tuned on Tagalog. By combining multilingually bootstrapped
models with multilingual DBNFs we were able to reduce the
training time by 46-65% while the word error rate remained
essentially the same or was even slightly lowered, depending
on the data condition.
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