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Abstract
Finding sufficient in-domain text data for language model-
ing is a recurrent challenge. Some methods have already
been proposed for selecting parts of out-of-domain text data
most closely resembling the in-domain data using a small
amount of the latter. Including this new “near-domain” data
in training can potentially lead to better language model per-
formance, while reducing training resources relative to incor-
porating all data.

One popular, state-of-the-art selection process based on
cross-entropy scores makes use of in-domain and out-of-
domain language models. In order to compensate for the
limited availability of the in-domain data required for this
method, we introduce enhancements to two of its steps.

Firstly, we improve the procedure for drawing the out-
of-domain sample data used for selection. Secondly, we use
word-associations in order to extend the underlying vocabu-
lary of the sample language models used for scoring. These
enhancements are applied to selecting text for language mod-
eling of talks given in a technical subject area.

Besides comparing perplexity, we judge the resulting
language models by their performance in automatic speech
recognition and machine translation tasks. We evaluate our
method in different contexts. We show that it yields consis-
tent improvements, up to 2% absolute reduction in word er-
ror rate and 0.3 Bleu points. We achieve these improvements
even given a much smaller in-domain set.

1. Introduction
The need for in-domain data in machine learning is a well-
established problem and should be well motivated in previ-
ous papers (e.g [1]). We briefly observe, however, that across
domains system performance is tied to the similarity between
training and testing data. The testing data used for guiding
system development is almost synonymous with in-domain
data. It follows directly that training data should also re-
semble the in-domain as closely as possible. In-domain data
however is also almost always the most limited kind. This
necessitates supplementing it with out-of-domain or non-
domain-specific data in order to achieve satisfactory model
estimates.

In this paper we consider the training of language mod-
els for speech recognition and machine translation of uni-

versity lectures, which are very domain-specific. Typically
this means adapting existing systems to a new topic. Perhaps
unique to this application is that the in-domain data for lec-
tures is normally of a very small size. A one-hour lecture
may produce under a thousand utterances and roughly ten
thousand words. The necessity of rapid system development
and testing in this context encourages us to limit training data
size. What we want, then is a way to reduce large amounts of
data and at the same time improve its relevance. Ideally we
would also be able to do so using only a very small amount
of in-domain data.

We improve the work of [2] by drawing a better repre-
sentative sample of out-of-domain data and language model
(LM) vocabulary. However, more centrally, we extend the
work of [2] by using a word-association based on a broad def-
inition of similarity to extend these language models. With
this extension, we do not compare solely the exact matching
words from in-domain and out-of-domain corpora, but also
their semantically associated words. These semantic associa-
tions can be inferred, as in the example of this paper through
the use of pre-existing non-domain-specific parallel and/or
monolingual corpora, or through hand-made thesauri. Then
with a small amount of in-domain data we use the aforemen-
tioned extended language models to rank and select out-of-
domain sentences.

1.1. Previous Work

The starting point and reference of our work is that found
in [2], which is to our knowledge one of the most recent
and popular methods in a series of methods on data selec-
tion [3, 4, 5]. Their approach assumes the availability of
enough in-domain data to train a reasonable in-domain LM,
which is used to compute a cross-entropy score for the out-
of-domain sentences. The sentence is also scored by another,
out-of-domain LM resulting from a similar-sized random
out-of-domain sample. If the difference between these two
scores exceeds a certain threshold the sentence is retained,
the threshold being tuned on a small heldout in-domain set.
This approach can be qualified as one based on the perplex-
ity of the out-of-domain data. The in-domain data used in
[2] is the EPPS corpus, which contains more than one mil-
lion sentences. This stands in contrast to the lecture case
with very specific domains and very limited data sizes. The



authors report their results in terms of perplexity, for which
their technique outperforms a baseline selection method by
twenty absolute points. Their approach has been shown to
be effective for selecting LM training data, at least from the
perspective of a Statistical Machine Translation (SMT) sys-
tem with a specific domain task [6, 7, 8]. We note that the
main task of these systems was to translate TED talks.1 The
work in [2] was extended to parallel data selection by [9, 10].
However, the last work concludes that the approach is less ef-
fective in the parallel case.

The approach of differential LM scores used in the afore-
mentioned papers has a long history in the information re-
trieval (IR) domain [11, 12]. However, only unigram lan-
guage models are considered in the context of IR, since the
order in this task is meaningless.

Enriching the LM capability by incorporating word rela-
tionships has also been proposed in IR and is referred to as
a translation model therein [13, 14].2 More closely related
to our approach, [15] uses word similarities to extend LMs
in all orders. They show that extended LMs with properly
computed word similarities significantly improve their per-
formance at least in a speech recognition task.

1.2. Area of Application

The translation of talks and lectures between natural lan-
guages has gained attention in recent years, with events such
as the International Workshop on Spoken Language Trans-
lation (IWSLT) sponsoring evaluations of lecture translation
systems for such material as TED talks. From the perspective
of Automatic Speech Recognition (ASR), talks and lectures
are an interesting domain where the current state of the art
can be advanced, as the style of speaking is thought to lie
somewhere between spontaneous and read speech.

As noted previously, university lectures in particular are
very domain-specific and thus in-domain data tends to be
quite limited. The typical approach for language modeling in
such a scenario is to include as much data as possible, both
in- and out-of-domain, and allow weighted interpolation to
select the best mixture based on some heldout set. However,
if a satisfactory method could be found to choose only those
parts of the out-of-domain set most similar to the in-domain
set, this would reduce the amount of necessary LM training
data. Not only would this save training time, it would also
produce LMs that are smaller and possibly more adapted to
the task at hand.

We perform text selection using variations of our tech-
nique and train language models on the resulting selected
data. These LMs are then evaluated in terms of their perplex-
ity on a heldout set, the word-error-rate of a speech recog-
niser, and an SMT system using the LM. We also apply the
technique of [2] to our selection task as a reference.

1http://www.ted.com
2Note that we will use the terms “translation model” and “lexicon” inter-

changeably throughout the paper.

1.3. Paper structure

The remainder of the paper is structured as follows. In sec-
tion 2 we describe the theory behind our enhancements to the
standard selection algorithm. First, we discuss our method of
intelligently selecting the out-of-domain LM used for cross-
entropy selection. Next, we discuss our experiments with
a more careful selection of the cross-entropy in-domain and
out-of-domain language model vocabularies. In section 3.1
we introduce our association-based approach. We describe
how we compute lexicons and how we use them to extend
the cross-entropy language models. The results of our ex-
periments are presented in section 5. We end the paper with
section 6 in which we draw conclusions and discuss future
work.

2. Enhancements
2.1. Drawing an out-of-domain representative sample

In the cross-entropy method of [2] previously described in
Section 1.1, the out-of-domain LM is taken simply as a ran-
dom sample of the larger out-of-domain data upon which we
do selection, OD. However, randomly-drawn text may rep-
resent both in-domain as well as out-of-domain data (OD).
The out-of-domain LM should instead represent the kind of
data which we seek to exclude from our selection. Since the
in-domain data should be the furthest from the latter kind of
data, we reasoned that the in-domain LM could be used to
intelligently select the data for the out-of-domain LM. We
do this by first scoring the sentences in OD with the in-
domain LM for perplexity (with a closed vocabulary). As
some of our data in OD comes from web crawls, the sen-
tences with the highest perplexity are mainly “junk” coming
from automatic text processors and/or converters. The sen-
tences with the lowest perplexity are mostly in the in-domain
set. Therefore we specify some range around the median per-
plexity (m) as being a legitimate region from which to select
sentences for the out-of-domain LM. In our case we chose
m± 0.5m with m being the median perplexity. Then for our
out-of-domain LM we randomly draw an appropriate number
of sentences from this range. The probability of any particu-
lar sentence being drawn is proportional to its corresponding
perplexity.3

2.2. Vocabulary selection

Intuitively, we could think of vocabulary words as indicators
of the importance of a sentence. Words occurring with high
frequency in both in- and out-of-domain data sets would be
of lower interest. In contrast, words frequently encountered
in the in-domain only indicate that the sentence is of high
importance. It was not clear to us whether the words which
are common in the out-of-domain only would be a negative
indicator. That is why we experimented with different ways

3For the weighted random sampling without replacement, we use the
algorithm described in [16]

http://www.ted.com


for choosing the vocabulary on which the LMs are based.
The first vocabulary is taken as the intersection of the in-
and out-of-domain vocabularies V1 = voc{ID}∩voc{OD}.
The second vocabulary incorporates the first and adds those
words which occur with high frequency in the in-domain
source only. This is V2 = V1 ∪ hf{ID}. The third incor-
porates the second (and consequently the first,) adding those
high-frequency words occurring only in the out-of-domain
LM dataset. Thus V3 = V1 ∪ hf{OD} A visual representa-
tion of this scheme is depicted in figure 1.

  

voc{OD}

hf{OD}

voc{ID}∩voc{OD}

hf{ID}

voc{ID}

Figure 1: Diagrammatic representation of vocabularies of
in- and out-of-domain sources

3. Extended Cross-Entropy Selection
In this section, we present our approach to create the word
associations resulting in a lexicon quantifying the strength of
relationships between vocabulary words and non-vocabulary
words. First, the theoretical motivation for this kind of asso-
ciation is presented. Then the technical details on how our
lexicon was built are discussed. Finally, the unigram LM ex-
tension is explained.

3.1. From bilingual word alignments to monolingual
word associations

It is noteworthy that the lexical word-associations could be
derived in many ways. These include manually hand-crafted
thesauri (e.g. WordNet [17]) or automatically learned from
monolingual corpora [18]. In this work, most of our exper-
iments are based on lexicons derived form freely available
parallel corpora, since we already dispose of relevant paral-
lel data and computational tools to perform such a task.

Our lexicon derivation is based on the following assump-
tion: In a perfectly aligned parallel corpus, words from the
source language aligned to the same target word should be
lexically related. Consequently, in creating a lexicon for a
language (say, German) we infer associations between the
(German) source words from their aligned target words (say,
in English.) The association between two source words is

proportional to the alignment probabilities relating them to
the common target word.

Based on this assumption, we would like to estimate re-
lationship strength (the so-called translation table) for pairs
of words. One word of such a pair, the vocabulary word,
is found in the LM vocabulary (and hence in the in-domain
sample). The selection of this vocabulary is explained in Sec-
tion 2.2. The other word comes from the source side (i.e.
German) of the parallel corpus but is not present in the LM
vocabulary.

Given a vocabulary word v and a non-vocabulary word
w, the association t(w | v) is estimated as follows:

t(w | v) = Pr(w, v)

Pr(v)

=
∑
z

Pr(z) Pr(w, v | z)
Pr(v)

≈
∑
z

Pr(z) Pr(w | z) Pr(v | z)
Pr(v)

=
∑
z

Pr(w | z) Pr(z | v)

(1)

In the second line of Equation (1), we rewrote the prob-
ability expression by introducing the aligned words z from
the target side (i.e English) as a latent variable. In the third
line, we simplified the expression in the previous line by as-
suming that source words are independent when conditioned
on the target words.

3.2. Lexicon creation

We create our lexicon from automatically aligned parallel
corpora (EPPS, NC, and Common Crawl). The corpora are
preprocessed by removing obvious tokens which would not
contribute to associating words such as numbers and punc-
tuation marks. Then we use the Giza++ toolkit to train the
IBM3 alignments in both directions (i.e German→ English
and English→ German). We then symmetrize the resulting
alignments using the intersection heuristic [19]. That is to
say, we retain only alignment points which appear in both
directions. An additional symmetrizing step we perform is
removing links corresponding to a negative association.4

The resulting alignments allow us to compute the terms
Pr(w | z) and Pr(z | v) in Equation (1) and therefore the
lexicon.5 The probabilities from this lexicon will be used to
induce a likelihood for the words which do not occur in the
original vocabulary of our LMs used for computing cross-
entropy scores. We discuss this LM extension in Section 3.4.

4Two words x and y are negatively associated if Pr(x, y) <
Pr(x) Pr(y) [20].

5In machine translation literature, the terms Pr(w | z) and Pr(z | v) are
referred to as Lexical Translation Models (not to be confused with the model
referred to as Translation Model in IR).



3.3. Associations from monoligual corpora

A more attractive approach to computing associations be-
tween words would be by exploiting monolingual resources.
These are available in much more important quantities for
any language compared to their parallel counterparts. We ex-
plored this approach by using the cosine similarity between
word vectors returned by word2vec [21] to infer word as-
sociations. For each vocabulary word we include the 10 most
similar non-vocabulary words in the resulting lexicon. The
similarity score between a vocabulary word v and a non-
vocabulary word w is computed as follows:

Sim (w, v) =
w · v
‖w‖‖v‖

+ 1

where w and v are the word vectors associated with w and v
respectively.

Then, the association t(w | v) is obtained by normalizing
the similarity scores, as follows:

t (w | v) = Sim (w, v)∑
w′ Sim (w′, v)

3.4. Extension of LMs

According to the cross-entropy selection, the out-of-
vocabulary (OOV) words will have only a small effect on
a sentence score. This is due to the fact that they are mapped
to <unk> (the unknown word,) and therefore the probabil-
ity returned from one model (e.g. the in-domain) cancels its
counterpart from the other (e.g. the out-of-domain.)6 Conse-
quently, including more “important” words in the model with
a realistic likelihood would conceivably make our model
more robust.

To extend the LM with knowledge from the lexicon, we
add to the unigram order those words which in the lexicon
are associated with the LM vocabulary words. Therefore,
these new unigrams can contribute to evaluating the sentence
probabilities by the back-off mechanism. We found that the
rate of backing-off to these new words is about 20%. The in-
tegration of the new unigrams is performed as follows. First,
we discount the probabilities of the vocabulary words to free
some a priori fixed mass (say 1 − m0.) Afterwards, each
word added from the lexicon receives a share from m0 pro-
portional to two factors. The first factor is the LM probabil-
ity of the associated vocabulary words. The second factor is
the strength of the lexicon association connecting the out-of-
vocabulary word to the in-vocabulary words. Note that m0

is a tunable parameter. In our experiments, we found setting
m0 = Pr(<unk>) to be optimal.

Formally speaking, the probability of observing the word
w given that the word sequence w∗ is expressed as follows:

Pr (w | w∗) =

{
m0 PrLM (w | w∗) if |w∗w| > 0

(1−m0)
∑

v:|w∗v|>0 t (w | v) PrLM (v | w∗) otherwise

6This effect will mostly be a penalization. In practice, the probability of
<unk> is larger in the out-of-domain model

where w∗ is an arbitrary sequence of words, possibly empty
(for unigrams); PrLM is the original back-off LM probabil-
ity; |x∗| is the number of times the sequence x∗ appears in
the text; and t is the association table associating a vocab-
ulary word v to a non-vocabulary word w. This procedure
results in a new LM whose vocabulary is a superset of the
original vocabulary. However, in most of this work we ap-
plied this extension at the unigram level only and hence kept
the number of higher order n-grams unchanged.

4. Experimental Design
4.1. Data sources

For our out-of-domain data, we used a collection of mono-
lingual German-language text corpora from various sources.
This corpus totals around 37 million sentences and 0.67 bil-
lion tokens. We call this set of corpora OD. A table sum-
marising these sources is given in Table 1.

Type Sentence count Token count
News 11M 204M
Blog 3M 45M
Webcrawls 18M 345M
Parliamentary transcripts 256K 3.4M
Speeches and talks 6.8K 164K
Other sources 1.2K 18K
Total 37M 670M

Table 1: Summary of monolingual out-of-domain text data
used as a basis for data selection, which we term OD

For bi-word association and lexicon training, we used a
German-English parallel corpus we term PC. This consists
of the public parallel corpora distributed for the WMT evalu-
ation campaign [22] totaling 3.3 million lines of parallel text.

An in-domain corpus was available totaling 11 thousand
lines and 237 thousand tokens, taken as mixture of transcrip-
tions of several university lectures. We call this corpus DEV.
Another similar-sized set from the same domain was held out
in order to evaluate the perplexity of the resulting LMs.

For the purpose of computing ASR word error rates
(WER), we took as a basis 16 hours of transcribed in-domain
talk and lecture recordings from our in-house resources. The
transcriptions for this set, composed of 13 thousand lines
with 168 thousand tokens, were used as a set of held-out in-
domain text for testing the perplexity of our language mod-
els. This held-out set is named TEST.

From the 16 hours of audio we randomly selected one
hour on which to test the ASR. We call it WERTEST.

4.2. Selection Process

Our process of creating a set of selected texts from OD
proceeded in several steps. Given DEV and OD we cre-
ated an in-domain LM and out-of-domain LM. In our ex-
periments with association-based scoring we extend the in-
domain and out-of-domain LMs with information from our



lexicon. Next, scores were computed for each line in each
source in OD. We then ranked all candidate lines across
sources according to their score and retained only the top
K% of candidates to carry over into the selected corpus SEL.

Our baseline experiments focused on creating selections
from the base set, varying the top K% retained between 1%
and 100%. After creating the set SEL, we performed some
text normalisation such as compound word splitting.

German, the test language of our experiments, is known
for use of compound words. As this makes contributes to
a high out-of-vocabulary rate in ASR, a compound-splitting
algorithm is typically employed in this field. For exam-
ple “Entscheidungsfunktion” is split into “Entscheidungs+
Funktion.” This algorithm requires a list of sub-words and
selects the best split by maximizing the sum of the squared
sub-word-lengths [23]. The TEST and DEV corpora are pre-
processed using this technique, whereas as the alignment
texts for the lexicon training are not. This necessitated the
application of compound splitting after selection and prior to
LM training.

5. Results
In this section, we compare the results of the different tech-
niques mentioned in the previous sections (enhancements
and extensions).

In our first sets of experiments as shown in Tables 2 and
3, we perform selection using a reasonably-sized in-domain
set, DEV, with around eleven thousand sentences. 7 In Table
2 we report perplexity values of the LMs on TEST. For each
selection technique we show the results of retaining either
the top 1, 2, 5, 6, or 10% of sentences. The first row in the
table is our baseline consisting of the state-of-the-art cross-
entropy method of [2]. The improvements gained from the
enhancements are shown in the second row. The remaining
rows are related to applying the extension in different ways.

As shown in the third row, we apply the extension to the
in-domain LM in the process of drawing the out-of-domain
sample as explained in Section 2.1. For this we used only
the high-frequency in-domain vocabulary, hf{ID} as shown
in Figure 1. After that, we retrain both the in- and out-of-
domain LMs without extension. This configuration is re-
ferred to as “Extended Enhancements” (seen in the table as
“Ext. Enhancements.”)

In the fourth row we show the results of our “Extension”
configuration. This configuration applies the extension only
to our final in- and out-of-domain selection LMs (i.e., no ex-
tension was applied while drawing the out-of-domain sam-
ple), using the approach described in Section 3.4.

Finally, the previous two extensions are effectively com-
bined. This means that we apply two independent exten-
sions: we extend the in-domain LM in order to draw the out-
of-domain representative and then we extend both in- and

7It is noteworthy that even this reasonably-sized in-domain set is less
than 1% of the size of the in-domain set used in [2].

out-of-domain LMs for selection. We see this configuration,
“Double Extension,” on the fifth row of the table.

Table 3 shows WER resulting from using a subset of
these LMs in a recognition task.

Technique % Retained Sent. (ppl)
1 2 5 6 10

Moore, et al 222.7 202.4 190.3 190.0 190.5
Enhancements 211.9 195.4 185.3 184.5 185.9
Ext. Enhancements 208.1 192.9 183.4 183.3 185.0
Extension 206.2 191.9 183.0 182.5 184.4
Double Extension 203.0 189.1 181.3 181.0 183.3

Reference % Retained Sent. (ppl)
100

No selection 301.9

Table 2: Perplexity on TEST of the LMs selected using a
reasonable in-domain set

Technique % Retained Sent. (WER)
1 5 10

Moore, et al 30.5 29.1 29.5
Enhancements 30.2 28.7 28.9
Double Extension 29.9 28.2 28.5

Reference % Retained Sent. (WER)
100

No selection 29.9

Table 3: Word error rate on WERTEST of LMs selected
using a reasonable in-domain set

In our second set of experiments, we simulated the case
of hard conditions on the availability of in-domain data. We
used a very small set of only one thousand sentences for our
in-domain set as follows. First we split DEV into two parts,
each part begin scored using the other. Then we merged them
and selected the top-scoring one thousand sentences. This
way, we assume that the resulting small set would be concen-
trated on the dominating topic of the whole set. The results
of using this small in-domain set are summarized in Table 4.

We see that in the case of the small in-domain set, our
method outperforms the baseline of [2] by between 40 and
60 perplexity points, and up to 2 percentage points abso-
lute in terms of WER. For the reasonably-sized in-domain
set, using enhancement alone gives larger gains than the in-
cremental gains made by applying extension as well. For
the small in-domain set, applying extension adds incremen-
tal gains comparable to the initial gains from enhancement.

Furthermore, we tested some of our selected data in a
machine translation task. This is a phrase-based statistical
system, where the translation model is trained on EPPS, NC,
TED and BTEC English-German parallel corpora. It was
tuned and tested on portions of a computer science lecture.
The development set is around one thousand pairs whereas
the test set is about two thousand. The weights of the log-
linear model were tuned for a system using an LM trained on



Technique
% Retained Sent.

(ppl) (WER)
5 10 5 10

Moore, et al 297.3 256.3 32.4 31.3
Ext. Enhancements 267.0 237.7 31.7 30.8
Double Extension 230.1 216.4 30.2 29.8

Table 4: Perplexity and WER on TEST and WERTEST of
LMs selected using a reduced in-domain set

a completely different set. These were then kept unchanged
for all tested models. The results of the translation exper-
iments are shown in Table 5. Both enhancement and ex-
tension always outperformed the baseline. Here as with the
speech recognition experiments, the best performance is ob-
tained by selecting around 5% of the original data. However
for the cases of 10 and 20 percent retained sentences, the ex-
tension did not bring any additional gains.

Technique % Retained Sent. (BLEU)
5 10 20

Moore, et al 13.24 13.04 12.84
Enhancements 13.47 13.19 13.06
Extension 13.52 13.16 13.00

Reference % Retained Sent. (BLEU)
100

No selection 12.47

Table 5: BLEU scores for translation results

Finally, we performed some additional experiments in or-
der to examine the extension in all ngram orders and the us-
age of associations induced from monolingual corpora. Table
6 shows the corresponding results. The first row repeats the
last one in Table 2. The second row shows the results of a
full extension, where we use the same principle as detailed
in Section 3.4 in order extend words of the LM. However,
here we extend all orders from 1 through 4 unlike the previ-
ous experiments where we only extended the unigrams. The
results of monolingual-based associations are shown in the
third row. In this case, the association is equivalent to the
cosine similarity between word vectors (as explained in Sec-
tion 3.3.) These vectors are computed using a large corpus
(29 million sentences and 0.4 billion tokens). To do so, we
use word2vecwith continuous bag of words as the learning
algorithm [21].8 The size of the vectors is set to 500 and the
context window to 10. Words appearing less than 5 times are
discarded and the number of iterations used is 15.

It follows from these last experiments that both full ex-
tension and word2vec associations have no important ef-
fect on the performance. However, these can be considered
as baselines for future experiments as they lack thorough hy-
per parameter tuning.

8http://code.google.com/p/word2vec/

Technique % Retained Sent. (ppl)
1 5 10

Double Extension (only unigrams) 203.0 181.3 183.3
Full extension 203.0 181.4 183.4
word2vec associations 203.3 181.7 183.6

Reference % Retained Sent. (ppl)
100

No selection 301.9

Table 6: Perplexity on TEST of additional experiments

6. Conclusion
We presented several extensions and enhancements to the
state-of-the-art in-domain data selection method of [2]. Our
techniques bring consistent improvements to the perfor-
mance of the LM, given enough similarity between the test
set and the set used for selection. Improvement is notice-
able for a reasonably-sized in-domain set and it is quite more
noticeable still for very small in-domain sets, where in terms
of perplexity we substantially outperform the state-of-the-art.
In both ASR and SMT scenarios, our techniques proved ef-
ficient by aggressively reducing the size of the training data.
At the same time, they consistently improved the system’s
performance or in the worst case kept it unchanged.

While the automatically computed associations are
cheaper to obtain, their hand-made counterparts are likely to
be more accurate. Consequently, we plan to perform a com-
parison between these two for English, as it disposes of the
largest hand-made thesaurus (WordNet).

It might be questioned why the associations used
throughout this paper were inferred from general domain cor-
pora, as this may lead to undesirable associations for a spe-
cific domain. Therefore, we would like to explore the effect
of a pre-selection process over the data used to compute the
association lexicon.

For the very small in-domain data sets, we think that bet-
ter results could be obtained if one follows a bootstrapping
strategy. That is, we repeatedly perform selection and add
the best scoring sentences to the in-domain set and use the
resulting set as the in-domain set for the next run.

We found both full extension and word2vec associa-
tions to be more expensive than the alignment-based unigram
extension. Full extension suffers from a combinatorial ex-
plosion when the vocabulary size is reasonable. word2vec
associations, on the other hand, are very slow to compute
since we need to test each pair of words. We think we could
improve this by performing the extension on a carefully se-
lected subset from the vocabulary.

Another question we need to look into is the way we con-
vert cosine similarities of word2vec into appropriate asso-
ciations. The values we get from our current implementation
are almost uniform. This might explain why this approach
could not outperform the alignment-based associations, in
spite of a much larger training corpus.

Lastly we close by noting that the tools developed for

http://code.google.com/p/word2vec/


lexicon creation are freely available on Github.9
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[1] I. H. Daumé and D. Marcu, “Domain Adaptation

for Statistical Classifiers,” J. Artif. Int. Res., vol. 26,
no. 1, pp. 101–126, May 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1622559.1622562

[2] R. C. Moore and W. D. Lewis, “Intelligent Selection
of Language Model Training Data,” in ACL (Short Pa-
pers), 2010, pp. 220–224.

[3] D. Klakow, “Selecting articles from the language model
training corpus,” in Acoustics, Speech, and Signal Pro-
cessing, 2000. ICASSP’00. Proceedings. 2000 IEEE In-
ternational Conference on, vol. 3. IEEE, 2000, pp.
1695–1698.

[4] S.-C. Lin, C.-L. Tsai, L.-F. Chien, K.-J. Chen, and L.-
S. Lee, “Chinese language model adaptation based on
document classification and multiple domain-specific
language models,” in Fifth European Conference on
Speech Communication and Technology, 1997.

[5] J. Gao, J. Goodman, M. Li, and K.-F. Lee, “Toward
a unified approach to statistical language modeling for
Chinese,” ACM Transactions on Asian Language In-
formation Processing (TALIP), vol. 1, no. 1, pp. 3–33,
2002.

[6] N. Durrani, B. Haddow, K. Heafield, and P. Koehn,
“Edinburghs machine translation systems for European
language pairs,” in Proceedings of the Eighth Workshop
on Statistical Machine Translation, 2013, pp. 112–119.

[7] J. Wuebker, M. Huck, S. Mansour, M. Freitag, M. Feng,
S. Peitz, C. Schmidt, and H. Ney, “The RWTH Aachen
machine translation system for IWSLT 2011,” in Pro-
ceedings of IWSLT, 2011, pp. 106–113.

[8] T.-L. Ha, T. Herrmann, J. Niehues, M. Mediani, E. Cho,
Y. Zhang, I. Slawik, and A. Waibel, “The KIT trans-
lation systems for IWSLT 2013,” in Proceedings of
IWSLT, 2013.

[9] A. Axelrod, X. He, and J. Gao, “Domain adaptation via
pseudo in-domain data selection,” in Proceedings of the
Conference on Empirical Methods in Natural Language

9https://github.com/medmediani/pdict

Processing. Association for Computational Linguis-
tics, 2011, pp. 355–362.

[10] S. Mansour, J. Wuebker, and H. Ney, “Combining
translation and language model scoring for domain-
specific data filtering,” in Proceedings of IWSLT, 2011,
pp. 222–229.

[11] J. Lafferty and C. Zhai, “Document Language
Models, Query Models, and Risk Minimization for
Information Retrieval,” in Proceedings of the 24th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
ser. SIGIR ’01. New York, NY, USA: ACM, 2001,
pp. 111–119. [Online]. Available: http://doi.acm.org/
10.1145/383952.383970

[12] W. Kraaij and M. Spitters, “Language Models
for Topic Tracking,” in Language Models for
Information Retrieval, B. Croft and J. Lafferty,
Eds. Kluwer Academic Publishers, 2003. [Online].
Available: http://www.springeronline.com/sgw/cda/
frontpage/0,11855,5-153-22-33670504-detailsPage%
253Dppmmedia%257Ctoc%257Ctoc,00.html

[13] A. Berger and J. Lafferty, “Information Retrieval
As Statistical Translation,” in Proceedings of the
22Nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
ser. SIGIR ’99. New York, NY, USA: ACM, 1999,
pp. 222–229. [Online]. Available: http://doi.acm.org/
10.1145/312624.312681

[14] G. Cao, J.-Y. Nie, and J. Bai, “Integrating Word
Relationships into Language Models,” in Proceed-
ings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, ser. SIGIR ’05. New York, NY,
USA: ACM, 2005, pp. 298–305. [Online]. Available:
http://doi.acm.org/10.1145/1076034.1076086

[15] I. Dagan, L. Lee, and F. C. N. Pereira, “Similarity-
based models of word cooccurrence probabilities,”
Machine Learning, vol. 34, no. 1-3, pp. 43–69,
1999. [Online]. Available: http://dx.doi.org/10.1023/A:
1007537716579

[16] P. S. Efraimidis and P. G. Spirakis, “Weighted random
sampling with a reservoir,” Information Processing
Letters, vol. 97, no. 5, pp. 181– 185, 2006.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S002001900500298X

[17] G. A. Miller, “Wordnet: A lexical database for
english,” Commun. ACM, vol. 38, no. 11, pp. 39–41,
Nov. 1995. [Online]. Available: http://doi.acm.org/10.
1145/219717.219748

http://dl.acm.org/citation.cfm?id=1622559.1622562
https://github.com/medmediani/pdict
http://doi.acm.org/10.1145/383952.383970
http://doi.acm.org/10.1145/383952.383970
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-153-22-33670504-detailsPage%253Dppmmedia%257Ctoc%257Ctoc,00.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-153-22-33670504-detailsPage%253Dppmmedia%257Ctoc%257Ctoc,00.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-153-22-33670504-detailsPage%253Dppmmedia%257Ctoc%257Ctoc,00.html
http://doi.acm.org/10.1145/312624.312681
http://doi.acm.org/10.1145/312624.312681
http://doi.acm.org/10.1145/1076034.1076086
http://dx.doi.org/10.1023/A:1007537716579
http://dx.doi.org/10.1023/A:1007537716579
http://www.sciencedirect.com/science/article/pii/S002001900500298X
http://www.sciencedirect.com/science/article/pii/S002001900500298X
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748


[18] P. D. Turney, P. Pantel, et al., “From frequency to mean-
ing: Vector space models of semantics,” Journal of arti-
ficial intelligence research, vol. 37, no. 1, pp. 141–188,
2010.

[19] P. Koehn, F. J. Och, and D. Marcu, “Statistical
phrase-based translation,” in Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology - Volume 1, ser. NAACL ’03.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2003, pp. 48–54. [Online]. Available:
http://dx.doi.org/10.3115/1073445.1073462

[20] S. Evert, “The statistics of word cooccurrences,” Ph.D.
dissertation, University of Stuttgart, 2004.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations in vector
space,” CoRR, vol. abs/1301.3781, 2013. [Online].
Available: http://arxiv.org/abs/1301.3781

[22] “ACL 2014 Ninth Workshop on Statistical Ma-
chine Translation, Results and Collected Judg-
ments,” http://www.statmt.org/wmt14/translation-task.
html, accessed: 2014-07-20.

[23] T. Marek, “Analysis of german compounds using
weighted finite state transducers,” Bachelor thesis, Uni-
versity of Tübingen, 2006.
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