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Abstract
For resource rich languages, recent works have shown Neu-
ral Network based Language Models (NNLMs) to be an ef-
fective modeling technique for Automatic Speech Recognition,
out performing standard n-gram language models (LMs). For
low resource languages, however, the performance of NNLMs
has not been well explored. In this paper, we evaluate the ef-
fectiveness of NNLMs for low resource languages and show
that NNLMs learn better word probabilities than state-of-the-
art n-gram models even when the amount of training data is
severely limited. We show that interpolated NNLMs obtain a
lower WER than standard n-gram models, no mater the amount
of training data. Additionally, we observe that with small
amounts of data (approx. 100k training tokens), feed-forward
NNLMs obtain lower perplexity than recurrent NNLMs, while
for the larger data condition (500k-1M training tokens), re-
current NNLMs can obtain lower perplexity than feed-forward
models.

1. Introduction
Statistical Language modeling is an important component
of many natural language processing applications, including
spelling correction, machine translation and automatic speech
recognition. The majority of previous work has focused on n-
gram back-off language models due to their low computational
complexity and effectiveness. In particular, modified Kneser-
Ney smoothed models [1] have been shown to achieve the best
performance[2] within n-gram models. In recent years, how-
ever, a variety of novel techniques for language modeling have
been proposed, including maximum entropy language models
[3], random forest language models [4], and neural network lan-
guage models ([5],[6]). Of these, neural network language mod-
els have been shown to perform the best in automatic speech
recognition tasks[7].

Neural network language models were re-introduced re-
cently in [8] to tackle the curse of dimensionality suffered by
n-gram models and allow continuous representation of words.
Rather than learn the probability distribution over words, ini-
tial work, such as [9], used neural networks to label words
within a sentence a part-of-speech tag. The models were subse-
quently modified for application to automatic speech recogni-
tion in [5],[10], and proved to perform better than n-gram back-
off models. More recently, recurrent NNLMs were proposed in
[6],[11], and shown to obtain higher speech recognition accu-
racy than feed-forward NNLMs. However, they are difficult to
train using standard back propagation through time ([12]) ap-
proaches because of the large size of output layer. [11] propose
a class-based approach to reduce training time, where the faster
computation comes at the cost of slight loss in performance. In
this paper, we perform an empirical study of performance of
feed-forward NNLMs focusing on low-resource languages and

transcriptions of conversational speech where the training data
is severely limited.

2. Feed-Forward Neural Network
Language Model

In this paper we adopt the techniques introduced in [5] to train
the feed-forward NNLMs (ff-NNLMs) and follow the notation
used in their paper. Figure 1 shows the architecture of our
model. The ff-NNLM, is an n-gram language model where the
posterior probability distribution of the following word is com-
puted for a given n − 1 history using a neural network model.
Each word in the model’s vocabulary is represented as a sparse
vector S1×N , where only the jth column is 1 for the word wj

(1-of-N). The probability of current word is then modeled to
depend on the n word history, ie :

p(wj |history) = p(wj |wj−1, wj−2, ...wj−n+1)

History is represented in the neural network by multiple sparse
vectors at the input layer. Each sparse word vector is mapped
linearly to a continuous word projection by a N × P weight
matrix (F ). The resulting layer formed by concatenating the
continuous word vectors is called the projection layer. The
number of units in the projection matrix determines the num-
ber of features used to represent each word. The second layer is
the hidden layer that uses hyperbolic tangent function as a non-
linearity. The output layer has N units (equal to the vocabulary
size of the model). At this layer a softmax function is applied
to the activation of each unit to produce posterior probabilities.

Let ck represent the projections for the history, dj be the
activations of the hidden units and oi be the outputs. Then, the
p(wj |hj) is given by:

dj = tanh

(∑
l

mjlcl + b1j

)
(1)

oi =
∑
j

vijdj + b2i (2)

pi = eoi/

N∑
k=1

eok (3)

where mji , b1j correspond to matrix M and bias B1 between
projection and hidden layer, and vij , b2j correspond to the ma-
trix V and bias B2 between hidden and output layer. All the
weight matrices in ff-NNLMs are trained using standard back-
propagation algorithm with an adaptive learning rate. Our op-
timization function is cross entropy of the data and a ”weight
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Figure 1: Graphical Model of feed-forward neural network.

decay” L2 regularization, given by:

E =

N∑
i=1

tilog pi + β
(∑

jl

m2
jl +

∑
ij

v2ij
)

(4)

where ti is the expected activation and pi is the probability as-
signed to word i and β is the regularization constant. It can
be shown that the outputs of a neural network trained in this
manner converge to the posterior probabilities and directly min-
imizes the perplexity. Neural networks are well suited for con-
versational language models because:

• In low resource conditions they do not suffer from the
curse of dimensionality and can be used to obtain poste-
rior probabilities for any history of words.

• Due to the size of the output layer, the most compu-
tationally expensive step when training NNLMs is the
back propagation of errors from output layer to hidden
layer. Because of the small vocabulary size in our task,
the complexity is low and hence the training time is also
small.

2.1. Recurrent Neural Network Language Model

Recurrent neural networks were proposed in [6] and have been
shown to be effective for language modeling in speech recogni-
tion for resource rich languages such as English and Mandarin
Chinese. Figure 2 shows a simple recurrent NNLM, with the
transforming functions between first and hidden layer, and hid-
den and output layer being the same as ff-NNLM. The major
differences are in representation of each word, which are kept
as sparse 1-of-N vector N1×N w(t), and the first layer, x(t),
which is formed by concatenating this word vector with the hid-
den layer of the previous step s(t− 1). This is followed by the
hidden layer s(t) and a final output layer y(t). The details of the
process are described in [11]. In this paper, we report perplexity
results on r-NNLM using the class-based model as described in
[11].

3. Experimental setup
3.1. Language models

Both standard n-gram and ff-NNLMs estimate the probability
of next word based on a recent history of n − 1 words. For

s(t− 1)

wj−1(t)

N
s(t)

pi =

p(wj = i|Ci)∗
p(Ci|hj)

y(t)

c(t)

p(Ci) =

p(Cj = i|hj)

Figure 2: Graphical Model of recurrent neural network.

most speech recognition tasks, a history of two words, known
as tri-gram model, is sufficient [2]. For our baseline experi-
ments, we trained modified Kneser-Ney (mKN) smoothed tri-
gram language model using the SRILM toolkit [14]. Speech
recognition was performed using the Janus recognition toolkit
[15] which can apply n-gram language models, NNLMs and
combined n-gram+NNLM models during both speech recogni-
tion decoding and lattice re-scoring. Using the model structure
proposed in [5] and[7], we trained ff-NNLMs using a projection
layer of 100 and a hidden layer of 150 units. To train the recur-
rent NNLMs, we used the rnnlm toolkit [16]. Given the limited
vocabulary sizes and training data available for both the Lim-
itedLP and FullLP tasks in BABEL, we used 30 units within
the hidden layer. In addition to the recurrent neural network,
it also has direct connections from input to output layer. For
training the class-based r-NNLMs, we used 100 classes for all
languages.

3.2. Language model training data

The work described in this paper focused on using NNLMs
for low resource languages. We evaluate the performance of
these methods across five languages (Cantonese, Pashto, Taga-
log, Turkish and Vietnamese) using the LimitedLP and FullLP
resources made available to participants within phase one the
IARPA BABEL project1. The LimitedLP resources described
in table 1 consist of transcriptions of 10hrs or recorded con-
versations. We also perform experiments using the FullLP re-
sources which comprises of transcripts of 100 hours of training
data, shown in table 2. Although 100 hours of training data is
still generally considered a ”low resource” task, in this paper
we use it as an upper bound to compare the performance of the
language modeling techniques with varying data sizes.

Language Tagalog Pashto Cantonese Turkish Vietnamese
Sentences 11.5k 8.6k 10.3k 10.3k 10.1k

Tokens 88k 113k 110k 71k 117k
Vocabulary 5581 6185 5986 10186 3218

Table 1: Training data available in the LimitedLP condition

Language Tagalog Pashto Cantonese Turkish Vietnamese
Sentences 92.9k 69.6k 81.1k 81.5k 78.6k

Tokens 585k 881k 871k 555k 918k
Vocabulary 21k 17.6k 18.5 38.3k 6.2k

Table 2: Training data available in the FullLP condition

1This effort uses the IARPA Babel Program language collec-
tion release IARPA-babel101-v0.4c, IARPA-babel104-v0.4Y, IARPA-
babel105-v0.4-rc, IARPA-babel106-v0.2f, IARPA-babel107-v0.7



4. Experiment Results
To evaluate the performance of the different language model
techniques described earlier in the paper, we report results us-
ing two metrics on a 10 hr development set provided with the
BABEL corpora : a) Perplexity (PPL): 2

∑
x p(x) , and b) Word

Error Rate (WER)

4.1. Variation with training data size

We began by evaluating the performance of the tri-gram back-
off model and tri-gram ff-NNLM and as the training data size is
increased from 5k sentences to 93k sentences for Tagalog. The
perplexities for these different models are shown in table 3 for
different amounts of training data. Even when trained on very
limited resources, the ff-NNLM obtain lower perplexities than
the baseline mKN-LM model. The last row of table 3 show the
performance (perplexity) when the NNLM is interpolated with
the baseline mKN-LM. When interpolated with the mKN-LM
the reduction in perplexity is significant, 12% relative.

Sentences 5k 10k 25k 50k 93k
Tokens 33k 65k 156k 320k 584k
Vocabulary 3312 5236 9140 14600 21075
mKN 101.5 106.9 111.0 114.9 116.8
ff-NN 100.6 106.5 109.5 109.5 110.8

ff-NN+mKN
90.0

(11%)
94.5
(11%)

97.9
(11%)

100.6
(12%)

102.3
(12%)

WER: mKN 62.9 61.3 59.7 58.4 57.5
WER: ff-NN
+mKN

62.2
(0.7)

60.5
(0.8)

58.8
(0.9)

57.6
(0.8)

56.7
(0.8)

Table 3: Perplexity and WER for varying amounts of Tagalog
training data: modified (mKN), feed-forward Neural Network
(ff-NN) and interpolated models (ff-NN+mKN)

As the combination of ff-NNLM + mKN-LM obtained the
lowest perplexity of the models evaluated, we evaluated the ef-
fectiveness of these models in terms of speech recognition ac-
curacy. Speech recognition was performed using the Janus de-
coder and the selected language models were used both dur-
ing decoding and lattice re-scoring. The Gaussian Mixture-
Model (GMM)-based Acoustic Model applied during decod-
ing was trained using the FullLP corpora described above (100
hours of training data). Neural Networks were trained to extract
Bottle-Neck-Features (BNF) using an approach similar to that
described in [17]. The speech recognition performance in terms
of WER (Word Error Rate) for these five models are shown in
table 3. In this evaluation we observed that the improvement
in speech recognition accuracy was consistent across different
amounts of training data.

4.2. LimitedLP condition

To verify that the neural network language models perform well
across different languages, we evaluated the perplexity of a
back-off n-gram model and ff-NNLM across all five languages,
as shown in table 4. In the LimitedLP condition (approx. 100k
training tokens) we observed that the NNLM performed better
on all languages except Turkish and Vietnamese. When com-
bined with the baseline mKN-LM, the NNLMs significantly
lower perplexity than the baseline model across all five lan-
guages. Compared to the baseline mKN-LM an average reduc-
tion of perplexity of 9.4% was obtained for the ff-NNLM after
interpolation. One possible reason that the individual NNLMs

may perform poorly for Turkish is that the very large vocab-
ulary size and limited training data will significantly skew the
distribution of training examples, resulting in a poorly trained
model, especially for singleton words. Table 4 also shows the

Tagalog Pashto Cant. Turkish Viet.
mKN 108.1 152.6 83.2 242.3 147.1
ff-NN 106.4 149.5 80.7 296.9 152.1

ff-NN+mKN
95.7
(11%)

134.5
(11%)

74.6
(10%)

233.4
(4%)

132.9
(9%)

WER: mKN 67.3 73.2 69.7 71.7 68.5
WER: ff-NN
+mKN

66.9
(0.4)

72.8
(0.5)

69.0
(0.7)

71.5
(0.2)

68.1
(0.4)

Table 4: Perplexities and WER for five different languages in
LimitedLP condition: modified (mKN), feed-forward Neural
Network (ff-NN) and interpolated models (ff-NN+mKN)

speech recognition performance (CER for Cantonese and WER
for other languages) using the LimitedLP resources. BNFs and
GMM-based AMs were trained on the LimitedLP resources
(approx 10 hours of training data) and decoding was performed
applying the baseline mKN-LM and or an combined of ff-
NNLM and mKN-LM model. Similar to the Tagalog case (sec-
tion 4.1) the speech recognition accuracy when the ff-NNLM
is introduced is consistency better across all languages than the
the baseline mKN-LM case. From the five languages evaluated
here the improvement for Turkish is minimum, which is also ob-
served in the minimal perplexity improvement observed in the
table above. Tagalog obtained the largest absolute improvement
(0.7% in WER). Despite the very different languages evaluated,
the ff-NNLM performed well across all of them without any
change in the network architecture.

4.3. FullLP Condition

In addition to evaluating the performance of NNLMs in low re-
source conditions (approx. 100k training tokens) we also evalu-
ated the performance of the feed forward NNLMs on the FullLP
condition, where models are trained with much larger resources
(500k - 1M training tokens). The vocabulary sizes and train-
ing data available for the FullLP task are listed in table 5. The
comparison of perplexity of baseline trigram back off models as
compared to the ff-NNLM across the five evaluation languages
is shown in table 5. Similar to the LimitedLP case the per-
formance gained on using only neural networks is quite good,
except for Turkish. Compared to the baseline mKN-LM, an
average reduction of perplexity of 7.7% was obtained for the
ff-NNLM after interpolation.

Tagalog Pashto Cant. Turkish Viet.
mKN 116.8 145.8 83.0 295.6 120.2
ff-NN 110.8 156.3 81.8 346.5 120.9

ff-NN+mKN
102.3
(12%)

142.3
(2%)

75.5
(9%)

278.9
(5%)

108.9
(9%)

WER: mKN 57.5 62.6 57.5 59.2 53
WER: ff-NN
+mKN

56.7
(0.8)

61.7
(0.9)

56.7
(0.8)

58.9
(0.3)

52.3
(0.7)

Table 5: Perplexities and WER for five different languages in
FullLP condition: modified (mKN), feed-forward Neural Net-
work (ff-NN) and interpolated models (ff-NN+mKN)

For Turkish and Pashto, the ff-NNLM alone is worse than



back-off models. The number of singletons in Turkish are very
high compared to other languages ( about 60% of the vocab-
ulary), resulting in poorly trained word feature vectors and a
worse performance. Handling the Turkish morphology before
training the NNLMs might be a solution to this problem, which
we plan to investigate as a part of future work.

The ASR experiments using the above mKN-LM and
ff-NNLM+mKN-LM combination are performed on acoustic
models built on 100 hours of data. Table 5 shows the perfor-
mance on the different languages. Comparing with table 4, the
improvements on Tagalog and Vietnamese are more with 100
hour data models than with 10 hour data models. But the im-
provement on moving from mKN-LM to NNLMs is certainly
clear for all the languages.

4.4. Comparison of Recurrent and Feed-Forward NNLM

From the previous sections, we can conclude that the ff-NNLMs
perform better than standard n-gram models in low resource
conditions. We also trained recurrent-NNLMs based on the
method described in section 2.1 using the toolkit in [16] and
compared the performance on the Limited and FullLP dataset.
In table 6 and 7, we observe that with small amounts of data (ap-
prox. 100k training tokens), feed-forward NNLMs obtain 3%
lower perplexity than recurrent NNLMs, while for the larger
data condition (500k-1M training tokens), on average recur-
rent NNLMs obtain slightly (0.3%) lower perplexity than feed-
forward models.

Tagalog Pashto Cant. Turkish Viet.
mKN 108.1 152.5 83.2 242.4 147.1

ff-NN+mKN
95.7
(11%)

134.5
(11%)

74.6
(10%)

233.4
(4%)

132.9
(9%)

r-NN+mKN
97.3
(10%)

141.1
(7%)

77.2
(7%)

234.3
( 3%)

141.8
(3%)

Table 6: Perplexities of ff-NNLM and recurrent-NNLM for five
different languages - LimitedLP condition

Tagalog Pashto Cant. Turkish Viet.
mKN 116.8 145.8 83.0 295.6 120.2

ff- NN+mKN
102.4
(12%)

142.3
(2%)

75.5
(9%)

278.9
(5%)

108.9
(9%)

r-NN+mKN
103.6
(11%)

132.4
(9%)

76.9
(7%)

274.4
(7%)

113.9
(5%)

Table 7: Perplexities of ff-NNLM and recurrent-NNLM for five
different languages - FullLP condition

5. Conclusion and future work
In this paper, we evaluated the performance of ff-NNLMs on
very limited amount of language model training data. The im-
provements were consistent across different training data sizes
and both neural network techniques performed well in terms
of perplexity and word error rate. The relative improvement
from back-off models to neural networks increases with the
size of training data. For small amounts of data, ff-NNLMs
perform better while for larger data size, ff-NNLMs need to
be interpolated with mKN-LM. The absolute improvement in
WER was upto 0.7% in WER when the limited-data training set
was used and up to 0.8% when full-data training set was used.
The trained ff-NNLM models are easy to train compared to the

recurrent-NNLMs, and yield significant improvements. Com-
pared to recurrent-NNLMs, the ff-NNLMs has a better relative
improvement when the training data was small.

Neural networks offer an easy way of adding more features
to capture this abstractness into the model. In future work, we
intend to use additional context information to vary the proba-
bilities at the output layer of the NNLMs. NNLMs performed
poorly on Turkish, which has rich morphology and low amounts
of training data. It can probably benefit to add morphological
information in the neural network input layer to model words
with the same root more robustly.
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