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ABSTRACT

Recently, speech recognition systems based on articulatory
features such as “voicing” or the position of lips and tongue have
gained interest, because they promise advantages with respect to
robustness and permit new adaptation methods to compensate for
channel, noise, and speaker variability. These approaches are also
interesting from a general point of view, because their models use
phonological and phonetic concepts, which allow for a richer de-
scription of a speech act than the sequence of HMM-states, which
is the prevalent ASR architecture today. In this work, we present a
multi-stream architecture, in which CD-HMMS are supported by
detectors for articulatory features, using a linear combination of
log-likelihood scores. This multi-stream approach results in a 15%
reduction of WER on a read Broadcast-News (BN) task and im-
proves performance on a spontaneous scheduling task (ESST) by
7%. The proposed architecture potentially allows for new speaker
and channel adaptation schemes, including stream asynchronicity.

1. INTRODUCTION

Large vocabulary speech recognizers usually model speech as a
sequence of HMM states, whose models are learned by partition-
ing the training data into disjoint sets. This representation of the
speech production process is but a rough approximation of real-
ity [1, 2]. Phonology describes speech sounds in terms ofphones,
which are a shorthand notation for a certain combination offea-
tures (e.g.VOICED or LABIAL), which are either absent or present
in these (idealized) sounds. Adistinctive set of features can be
used to describe all relevant sounds in a specific language (see e.g.
[3]) in terms of these features. It is however understood that this
phonological categorization is only a rough approximation of the
phonetic realization of sounds during human speech production,
which is not at all a discrete process with clear-cut transitions be-
tween phones or other states.

HMM-based recognizers allow for this fact by modeling speech
not at the phone level, which is however used in the dictionary, but
by using sub-phonetic units, such as the common tri-state architec-
ture in which a phone/A/ is modeled by the statesA-b, A-m, and
A-e for the begin, middle, and end of the corresponding sound re-
spectively. Also, different acoustic models for a phone are trained
depending on the phonetic context, to allow for co-articulation ef-
fects. In order to model all posible configurations, modern LVCSR
architectures typically employ several thousands of these very spe-
cific models.

In this work, we present a speech recognition system, which
integrates dedicated detectors for phonological or articulatory fea-
tures with conventional context-dependent sub-phone models, us-

ing a stream architecture. The feature sub-system consists of sig-
nificantly less parameters and was trained on a subset of the data of
the “standard” system, yet the combination of the two approaches
yields a significant reduction in word error rate on two different
LVCSR tasks (read and spontaneous, clean speech). Initial experi-
ments on Switchboard data have not yet led to significant improve-
ments, but we are currently still in the process of optimizing our
setup for this task.

Speech recognition systems making use of articulatory fea-
tures have been proposed in different contexts already, and re-
searchers have investigated their potential with respect to robust
speech recognition [4] and its relation with articulatory and phono-
logical knowledge [5, 6], starting from a recognition-by-synthesis
approach and often using X-Ray data.

If our goal is speech recognition only, articulatory features can
be regarded as an abstract description of a speaker’s phonological
intention (i.e. producing a/b/ sound) and can then be recognized
in much the same way as phones or words, in our setup by esti-
mating GMMs on an MFCC representation of the speech signal.
If we regard these articulatory features as phonologically distinc-
tive properties of speech sounds and are not concerned with the
relationship with actual articulatory movements, several works [7]
have shown the feasibility of systems using articulatory features as
replacements or support for conventional acoustic models, mainly
on smaller robust recognition tasks. The additive combination of
scores at the log-likelihood level as used in our experiments, was
shown to be the most promising approach to fusion of feature and
standard models in [8].

Our approach uses up to 76 binary phonological features such
asVOICED or LABIAL. Acoustic scores for a state are computed
as a weighted sum of GMMs in log-space, representing “standard”
and “feature” PDFs. This setup allows a very flexible combination
of existing models with detectors for articulatory states in a one-
pass decoder.

The main goal of this work is to show how supporting a con-
ventional ASR system with only a few streams of articulatory fea-
tures can improve speech recognition performance significantly;
it is therefore not neccessary to build a full feature-based classifi-
cator. In section 2 we describe our experiments on the Broadcast
News task, discussing the architecture, the selection of features
and initial results of adaptation experiments. The extension of this
approach, by combining it with standard adaptation schemes for
acoustic models and further adaptation of the stream weights in a
speaker- or state-dependent way or the inclusion of asynchronous
state transitions should allow to reduce error rates even further. In
section 3, we test the same approach on clean, spontaneous speech
from the scheduling domain, and summarize our experience with
this setup on Switchboard data so far.
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Fig. 1. Stream architecture used in our experiments: stream 0 con-
sists of � 4000 conventional CD-HMM models, while streams 1,
2, ..., 76 (only two are shown) are feature streams which only have
two modelsabsent andpresent, apart from noise and silence dis-
tributions (not shown here).

2. EXPERIMENTS

2.1. Description of Baseline System

The system used as stream 0 in our read Broadcast News (ReadBN)
experiments uses� 4000 fully-continuous context-dependent sub-
phonemic models with 32 Gaussians each and diagonal covari-
ances. These were estimated with 4 iterations of Viterbi training on
a 40-dimensional feature space derived from MFCCs after an LDA
transformation. CMS, variance normalization and VTLN were
also applied. The feature system uses 256 Gaussians per model,
trained with 6 iterations on a 32-dimensional feature space. The
number of parameters for human speech sounds in the feature sys-
tem is therefore about 0.5% for each stream used, when compared
to the standard system.

Training data for the ReadBN task consisted of about 65h of
original BN data and 35h from the English Verbmobil (ESST)
data. This data consists of spontaneous dialogues in the travel
and scheduling domain and was collected during the Verbmobil
[9] project. Test data consisted of 17 minutes of original BN texts
read under clean conditions (ReadBN).

The phone set of our recognizer consists of 45 human sounds.
We also used three noise and one silence model. The baseline
system reaches a word error rate of 13.4% using a 40k vocab-
ulary and tri-gram BN language model in the time-synchronous
one-pass beam search described in [10].

2.2. Combining Articulatory Features and CD-HMMs

We decided to use the 76 linguistically motivated questions used
during construction of the decision tree for context-dependent mod-
eling as an initial set of articulatory features. We expect that not all
features will improve recognition and that eventually the optimal
combination will depend on both channel and speaker. This set
contains questions for voicing, manner and place of articulation,
articulator and sound type, combinations thereof (ALVEOLAR--
FRICATIVE) as well as linguistic and phonetic features (CONSO-
NANTAL, REDUCED).

The stream architecture we used in our experiments is shown
in figure 1. In our experiments, we did not use a fully distinctive set
of features, as our feature streams “support” conventional models,
but instead tried to add only a subset of features, which increases
recognition rate most. We have also not limited the features to an

orthogonal set of questions, as we want to retain the advantages of
redundancy, which we assume humans use as well. The weight of
each feature stream was set to 0.05 throughout this work, with the
remaining weight being assigned to the “standard” stream, as this
setting was empirically found to give reasonable results.

2.3. Model Training for Articulatory Features

Detectors for articulatory features were built in exactly the same
way as acoustic models for existing speech recognizers. In our ex-
periments, we used the Janus [11] speech recognition toolkit. A
relevant detail of the acoustic training is that we used themiddle
frames only, assuming that features such asVOICED would be
more pronounced in the middle of a phone than at the beginning
or the end, where the transition into neighboring, maybe unvoiced,
sounds has already begun. As data is not fragmented as in context-
dependent acoustic modeling, but instead shared between different
phones, data sparseness is not a problem here. Also, feature detec-
tors for ReadBN were trained on the ESST subset of the training
data only.

Feature/ Task ReadBN Switchboard
Test on Frames Middle All All
UNVOICED 91.0% 84.5% 80.8%

STOP 87.3% 78.9% 74.6%
VOWEL 84.6% 77.2% 76.2%
LATERAL 95.0% 94.3% 95.0%
NASAL 94.2% 91.8% 90.1%
FRICATIVE 92.1% 86.2% 84.0%

LABIAL 90.2% 90.2% 85.7%
CORONAL (worst) 78.3% 72.0% 70.5%
PALATAL 96.7% 96.6% 96.2%
VELAR 90.8% 88.0% 90.2%
GLOTTAL 98.8% 97.9% 97.3%

HIGH-VOW 87.6% 85.7% 86.3%
MID-VOW 83.7% 80.4% 85.6%
LOW-VOW 90.3% 89.9% 91.4%
FRONT-VOW 84.8% 81.2% 84.8%
BACK-VOW 91.4% 90.8% 91.8%
DIPHTHONG 89.1% 87.9% 85.1%

ROUND 89.6% 88.5% 87.9%

RETROFLEX 95.9% 94.1% 94.7%
OBSTRUENT 90.6% 81.3% 79.6%
ALV-FR (best) 99.1% 98.9% 99.3%
OVERALL 90.8% 87.8% 87.3%

Table 1. Feature classification accuracy for selected features on
the ReadBN and Switchboard tasks.

The thus obtained feature detectors were used to classify the
test data intofeature present and feature absent categories on a
per-frame basis, by comparing the likelihood scores produced for
the test-data, also taking into account a prior value computed on
the frequency of features in the training data. The reference for
testing was given by the canonical feature values associated with
the phonetic label obtained through a Viterbi alignment of the tran-
scription using the baseline system. The results shown in the left
two columns of table 1 were obtained on our ReadBN test data.
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Fig. 2. Output of the feature detectors for part of the utterance “...
be more effective and you might even ...”; black bars meanfeature
present and white bars meanfeature absent. The height of the
bars is proportional to the score difference, i.e. the higher a black
(white) bar, the more likely it is that the corresponding feature is
present (absent) at this point in time. The numbers at the bottom
represent the frame numbers for this excerpt: 1sec = 100 frames.

The output of some of the feature detectors as used in the
classification experiment on ReadBN data is shown in figure 2.
It seems that the output of the detectors indeed approximates the
canonical feature values quite well, as is also indicated by the clas-
sification rates in table 1, although various co-articulation effects
(e.g. nasalization of/UW/ before/M/) are detected.

2.4. Selection of Features

Given a number of feature detectors, it becomes necessary to choose
which ones to retain in the recognizer. I.e. while the structure of
the second-level decision tree in figure 1 (feature present � fea-
ture absent) is fixed by the phonological structure, we have to
select the features to use in the combination and their respective
weights when computing the sum of GMMs at the top level (� ).
In a first step, we decided to incrementally add feature streams to
the baseline system using equal weights for all states and streams,
comparing three approaches to this problem:

FRAME-CR: Always add the one with the next-best frame clas-
sification rate, as shown in table 1: This leads to the fea-
turesALV-FR, ALVEOPALATAL, DEL-REL, AFFRICATE,
X-LMN, GLOTTAL, ASPIRATED, PALATAL, LABIODEN-
TAL, andLAB-FR being added in that order.

DECODE: Initially decode a complete set of two-stream systems
(i.e. add only one feature), then always add the one that
improved performance on the two-stream system most. In
this case, we added the featuresCORONAL, NASAL, LH-
DIP, LATERAL, GLOTTAL, BF-DIP, ASPIRATED, ALVEO-
PALATAL, VCD-PLOSIVE, andW-DIP in that order.
The word error-rates for these two-stream systems range
between 15.5% when addingY-GLIDE and 12.1% when
addingCORONAL (baseline WER is 13.4%).

TREE: Compute a divisive clustering tree on a generic speech
model, i.e. employ the data-driven strategy used to generate
context-dependent models to determine a feature set that
contains complementary information, by always adding the
feature where a context-dependent model would be created,
because this split has the highest gain in likelihood. Here,
the questions however do not refer to context, but to the
speech frame itself.

OBSTRUENT?

SIBILANT?SONORANT?

MH−DIP?HIGH−VOW? NASAL? VLS−FR?

Y N

Y−GLIDE? BF−DIP?BACK−VOW?RETROFLEX?

Fig. 3. Decision tree computed on a generic speech model using
the linguistically motivated question set for polyphone construc-
tion. This tree was computed on the feature training data (ESST).

During this process the questions forOBSTRUENT, SONO-
RANT, SIBILANT, HIGH-VOW, NASAL, VLS-FR, MH-DIP,
RETROFLEX, Y-GLIDE, andBF-DIP gave the greatest like-
lihood gain. The splitting tree is shown in figure 3, we can
also interpret it as a similarity tree showing the relation be-
tween sounds in their MFCC representation. It is interest-
ing to note that not all features that appear distinctive by
this criterion do also have a high per-frame classification
rate.

The results obtained with these three approaches are summa-
rized in table 2. We didn’t conduct experiments on systems based
on features alone, because the number of parameters in our feature
system is only a fraction of the number of parameters in the base-
line system. The result shows no clear superiority of either selec-
tion method, in all cases the word error rate decreases monotonously
to a minimum when adding 6 to 9 features, then slowly starts to rise
again. We therefore plan to investigate other methods for feature
selection and the determination of stream weights in the future.

# features FRAME-CR DECODE TREE

0 (BASELINE) 13.4%
1 13.2% 13.3% 13.3%
2 12.7% 12.9% 13.1%
4 12.4% 12.5% 12.3%
6 11.6% 11.7% 11.7%
8 11.6% 11.7% 12.0%
10 11.8% 11.7% 12.1%

Table 2. Best feature system using different feature selection al-
gorithms. The features used are listed in the main text.

While the baseline system without feature streams reaches a
WER of 13.4%, the best feature system, using the 8 featuresAF-
FRICATE, ALV-FR, ALVEOPALATAL, ASPIRATED, DEL-REL, GLOT-
TAL, PALATAL, andX-LMN with a weight of 0.05 each reaches a
WER of 11.6%. Using the 6 featuresBF-DIP, CORONAL, GLOT-
TAL, LATERAL, LH-DIP, andNASAL, the word error rate is 11.8%.

The accumulated acoustic scores produced by the stream sys-
tems are higher than those of the baseline system, so that the gains
do not result from a down-scaling of the acoustic scores, effec-
tively widening the beams. This control experiment was conducted
as well and did not decrease WER. Even for an 8-feature system,
the features are modeled by less than 5% of the parameters used
in the base system, yet performance improves. We therefore con-
clude that the feature streams indeed carry complementary infor-
mation, which can be used to increase word accuracy by mixing
log-likelihood scores in the proposed stream setup.



2.5. Adaptation Experiments

As an initial experiment to see how standard adaptation schemes
work in conjunction with the proposed feature stream set-up, we
computed a single speaker-dependent constrained MLLR adapta-
tion matrix on the feature space for the standard models and for
the feature stream models.

Applying this transformation improved the performance of the
baseline system to 13.0%. The feature system using 6 features im-
proved from 11.8% to 11.2%, so that the total gain is even greater
for the feature system. In this case, we computed separate adapta-
tion matrices for the feature system and the standard models.

Another approach to speaker adaptation is given by incremen-
tally collecting feature occurence statistics and comparing these
with the prior distribution computed for all speakers, then adapt-
ing these priors to the current speaker. For the six-feature system
this approach reduced the error rate from 11.8% to 11.6%.

Further adaptation is possible by setting the stream weights to
different, speaker- or state-dependent values [12], we are currently
in the process of preparing these experiments.

3. EXPERIMENTS ON ESST AND SWITCHBOARD

To test our approach on a larger number of speakers and on spon-
taneous speech under clean conditions, we ran experiments on the
ESST (Verbmobil) data. The baseline system (and stream 0) for
these experiments was trained on the ESST training data (35h) and
used 2250 models, with 48 Gaussians each on a 32-dimensional
feature space. The baseline system reaches a WER of 23.5% on
the 32-speaker, 85-minute ESST test-set using a tri-gram ESST
language model and an 8k vocabulary.

Adding the same features as in section 2.4 with a stream weight
of 0.05, WER reduces to between 23.2% (SONORANT) and 23.0%
(LATERAL). Performing an Oracle-experiment, i.e. assuming that
we could choose the feature to add on a per-speaker basis, the
WER reaches 22.6%. Sequentially adding features using the DE-
CODE criterion peaks at a WER of 21.9% using the featuresHIGH-
VOW, LATERAL, OBSTRUENT, SIBILANT, andY-GLIDE.

Feature detectors for Switchboard were trained on a 30h subset
of the available training data and the trained models contained 128
Gaussians per PDF. The baseline system, which was also trained
on these 30h of training data, reaches a WER of 35.9% on a 60min
subset of the 2001 evaluation data using speaker-adapted models.
When we combine these with speaker-independent feature models,
we see a slight improvement in performance, although this result
is not statistically significant.

Feature streams therefore improve ASR performance on large
LVCSR tasks, and can also be used for adaptation, but spontaneous
or sloppy speech probably requires a more complex modeling of
the underlying articulatory process than the binary distinction of
phonological categories used in our current setup. Per-frame fea-
ture classification rates on Switchboard were already shown in ta-
ble 1. These are not significantly below the classification rates
reached for the clean speech systems, indicating that at least for
the feature approach the difficulty lies not so much in the detection
of the features, but in the appropriate modeling of articulatory fea-
ture trajecories for spontaneous speech. The proposed articulatory
system indeed improved performance most on a small test-set of
hyperarticulated data, where subjects were induced to pronounce
phonetically similar words in a contrastive manner.

4. SUMMARY AND CONCLUSION

We have demonstrated the effectiveness of a stream-based approach
to articulatory speech recognition, that will eventually allow us
to incorporate more knowledge in richer ways than before. The
feature-supported recognizer reduced WER on a read BN task by
15%, from 13.4% to 11.6%, using only 5% more parameters ob-
tained on a subset of the same training data. On the spontaneous
ESST task, WER dropped from 23.5% to 21.9% (7% relative)
without even having fully explored the feature selection algorithms.
We also compared a number of selection methods for future speaker-
adaptation experiments and integrated the approach with existing
ML adaptation approaches.

The small difference in per-frame classification rate of the
BN and Switchboard feature detectors suggests that gains can be
gained on this task too by using speaker-specific stream weights
and asynchronous state transitions or other more sophisticated meth-
ods, which allow for a better modeling of sloppy speech. We
believe that the proposed stream architecture forms a good basis
for this research, as it can combine feature-models and “standard”
models in flexible ways.
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