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Abstract

In this paper we propose an approach for
monitoring human activities in an indoor environment
using an omnidirectional camera. Robustly tracking
people is prerequisite for modeling and recognizing
human activities. An omnidirectional camera mounted
on the ceiling is less prone to problems of occlusion. We
use the Markov Random Field (MRF) to present both
background and foreground, and adapt models
effectively against environment changes. We employ a
deformable model to adapt the foreground models to
optimally match objects in different position within a
pattern of view of omnidirectional camera. In order to
monitor human activity, we represent positions of people
as spatial points and analyze moving trajectories within
a time-spatial window. The method provides an efficient
way to monitoring high-level human activities without
exploring identities.

1. Introduction

Monitoring human activity has many applications
such as video surveillance and human computer
interaction. It requires understanding interaction among
people and between people and environments.
Automatically tracking people is prerequisite for
analyzing and understanding human activity. Human
activities can be monitored at different levels of details
by tracking different features. For example, some tasks
require a system monitor who is doing what, when, and
where, in what kind of mood. Such a system needs to
track every detail of a person, from facial features to
body parts as well as objects in the scene. Many other
tasks, on the other hand, do not need such detailed
information. For example, we can ignore many details if
we only want to know how many people are in a scene,
how long they have stayed in the scene, where they are
in the scene, and what pattern they are in the scene
(meeting or alone). In such a case, we even can represent
a person using a spatial point (x, y, z). In this research,
we are interested in monitoring human activities at this
level. More specifically, we are interested in monitoring
human activities at a coarse level in an indoor shared

working space such as a laboratory. We would like to
track moving trajectories of people in the space and use
such information to model and identify certain human
activities without detailed information. By combining
knowledge of the environment, the system will be able to
determine where a person is located; how people are
moving in the space; and if a person is working alone or
having a meeting with other people.

Occlusion is a major challenge for the existing
systems in monitoring human activities. A solution is to
use multiple cameras to view people from different
angles. This increases complexity and expense of the
system. Furthermore, a normal video camera has a
limited viewing angle and is directional. The human
target could be occluded from multiple normal video
cameras if he/she is among a crowd. An omnidirectional
camera mounted on the ceiling, on the other hand, has
360 degree viewing angle and, by virtue of being above
the ‘action,” is less prone to problems of occlusion.
Although an omnidirectional camera has a limited
resolution, it causes little problem for our application
where we represent a person as a point.

The work presented in this paper is related to video
surveillance. A good review of many state-of-the-art
video surveillance systems can be found in the special
issue of the IEEE Transactions on PAMI (August, 2000)
and October 2001 special issue of the Proceedings of the
IEEE as well as IEEE Workshops on Visual Surveillance
in the last three years (1998, 1999, 2000). These
technologies  include  feature-based, edge-based,
boundary-based, and model-based approaches. Feature-
based approaches, however, have problems when targets
are small or/and with deformations and occlusions. An
effective method is to combine model-based approach
and feature-based approach. Many researchers have used
various features to help initialize models [6, 9, 14, 18].
Several people tracking systems have been developed for
multi-person whole-body tracking. University of
Maryland has developed a series of outdoor person-
trackers named W* (separated people, grayscale camera),
W*S (separated people, stereo camera), and Hydra [10].
The Robotics Institute at Carnegie Mellon University has
created an elaborate system that classifies and tracks
multiple people and vehicles as they move about



outdoors, under the DARPA VSAM project [4].
Microsoft Easyliving project has developed multiple
people tracking system using multiple stereo cameras
[11]. MIT AI lab has derived dense stereo models for
object tracking using long-term, extended dynamic-range
imagery, and by detecting and interpolating uniform but
unoccluded planar regions [5]. Orwell et al. has reported
a tracking system that uses multiple cameras and tracks
multiple people walking in a parking lot [13]. Rosales
and Sclaroff described a multi-person tracking system
that unifies object tracking, 3D trajectory estimation, and
action recognition from a single video camera [17]. Rehg
et al. presented a multi-person tracking system for an
interactive kiosk that uses a pair of widely space color
cameras [16]. Boult et al. used an omnidirectional
camera to track multiple, camouflaged soldiers in
outdoor scene [3]. Rees first introduced the concept of an
omnidirectional camera for television [15]. There are two
classes of methods to obtain an omnidirectional view.
The first one is a single camera-based system, which can
be a catadioptric system [12] or a fish-eye lens based
system, and the other one is a multi-camera system, such
as multi-camera networks [7], FlyCam [8]. There are
several omnidirectional cameras commercially available
from different companies.

The rest of this paper is organized as follows: We
briefly discuss the advantage of omnidirectional tracking
and its model in section II, and then we give the models
for background and object in section III. In section IV,
we analyze some human activity patterns from the
trajectories using a time-spatial window based method.
Some experimental results are given in section V, and
the conclusion is in section VI.

2. The omnidirectional camera model

The catadioptric omnidirectional camera Cyclo-
Vision’s ParaCamera is applied in our tracking task. The
advantage of the catadioptric omnidirectional camera is
that it can provide a wide scope of view to improve the
objects’ visibility from the top in the indoor
environment, such as office or shopping mall, because
the objects are easily occluded if they are monitored
from a corner mounted normal camera. Figure 1
illustrates coverage of an omnidirectional camera in a
typical indoor environment.
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Figure 1. An illustration of indoor tracking with
an omnidirectional camera
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A general catadioptric camera is an optical system
combined with a mirror and lens. For wide view purpose,
the mirror is convex, usually a half ball, paraboloid or a
cone. The imaging model can be as figure 2(a) or figure
2 (b), which depends on the adjusting of aperture. [1]
gives some geometry properties of omnidirectional
camera. The main difference between ordinary
perspective camera and catadioptric camera is that the
resolution of the image captured by the former is
homogeneous, while that provided by the later is
heterogeneous which has a high resolution in the center
and low resolution at the surround, which is similar with
creatural vision.
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Figure 2. Two types of omnidirectional camera
models

3. Tracking model

The purpose of the tracking is to find one or multiple
objects that we are interested in and to keep marking
them in a 2-D image and further to try to analyze their
actions in 3-D space. First, we will model the tracking as
an optimal problem based on the background and
foreground transformation model.

3.1. The background model

The initialization of the background and its update
along with time are two key points in background
estimation. Usually, the background can be stable for a
period, but it can also be changed in several ways:

1. Gradual lighting change, such as sunset or

sunrise;

2. Fade in / fade out lighting change, such as the
cloud passing;

3. Suddenly lighting change, such as the lamp
being turned on or turned off;

4. Partly background change, such as some objects
being added into or removed from the view
scope for permanent or a period.

All these cases should be considered in modeling the
background. The background can first be regarded as a
2-D field with limited support area, and evolves with
time 7. It is illustrated as Figure 3. The image we get can
be regarded as the background image covered with some
object’s images.

Suppose the support set of the image is A ={(1,1),

1,2),---,(1,n),(2,1),---,(m,n)} and m, n are the height



and width of the image respectively. The support set of
object i at time ¢ is A% — A . The background support

setat time ris A, = A\{UAY}.

/

Figure 3. 2-D background grid evolving along
with time

The backgrounds at time ¢ and ¢-1 can be regarded as
related, so the estimation of background is given as
equation (1).

arg max{p(B,,A, |1t’Br—l )} (1)
Al ’Bl ’

where B, is the ideal background image at time ¢, I,

is the observed image at time ¢. For those position
occupied by objects, we have

B,(i, j)=B,_, @, j) iff.(Q, j)e UA% . From Bayesian
k

rule, we have

P(lt |A,,B Bt—l)p(At’Bt’Bt—l)

P(BI’AtIIt7Bt*1)= P(I B )
t? -1

()
Because the observed image I, is directly from the

background B, at the time 7, so we have
P(,|A,,B,,B,_)=P(,|A,,B,), (3)

which can be considered as the process of an image
produced from an ideal background. Usually, we can
model the imaging procedure as an independent noise
addition.

I,X)=B,X)+n(X) XeA,,

and we assume that the noise is the white Gaussian noise
n(X) ~ N(0,0?), we have

P(], /\,, [)—
| Nev

p(A,,B,,B, ) describes the transformation from
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{ [B,(X)-1,0F } )

B,_, to B, at the support set A,. From Hammersley-
Clifford Theorem [2], we can have

p(A,,B,,B,_l)=ZLexp[—U(A,,B B,_)IT]
r ,  (9)
> exp-U(A,,B,.B,)/T] is the partition
A,.B,.B,_,
function, T is a temperature related parameter, which
controls the speed of background evolution, and

U(A,.B,,B,_,) =ZVL, (A,,B,,B,_;) is the energy function

where Z, =

base on the clique ¢, where we use a causal first order
clique as shown in figure 4, and the clique energy at
position (i, j) is defined as,

U(A,,B,,B, )

2 2 2 2 6
_y {BB (X)} [a B,(X):I J{a B,(X)} (6)
XeA, ordx drdy
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Figure 4. First order clique

From equations (1)-(6), the background estimation is
gotten as following,

arg min{ Y Ey(X)+ E,,(X)/T}

A5 XeA, (7)
where,

B,(X)—1,(X)[
£, (%)= B L( i

o
2 2 2 2 2r
EP(X):FB[(X)} 2B [9°B,X)
ot otox otdy

It is easy to get a trivial solution A, =& if we

only have this background model (7). This is almost
impossible for a tracking system unless the object is too
close to the camera. We will give the object model as
another constraint.

3.2 The object model

The object model is divided into two parts: the
appearance model and motion model. The appearance of
the object is changed while the object itself or some
other objects move (occlusion), lighting condition
change, etc. The appearance changes not only its
silhouette but also the intensity distribution, which can
be modeled as a MRF. Usually, the object’s motion
keeps continuously in both speed and direction, and the
change of speed and direction is smooth, which can be
formed with Kalman filter.



Figure 5. An example of object size changing as the position changes

Suppose the position of the object i in a 2-D image

is Xi at time ¢. From the Kalman filter, we have
X;H =0

. . ]
D;H = H1+1X;+1 +§t’+l

i i
t+]Xt +nt+]

(8

where, H! , is the identity matrix. 77/, ~ N(0,Q},,),

é:tlﬂ ~ N(O, R;w] ), and E[ntlﬂ frlﬂ 1=0.

The object appearance model is similar to the
background model after motion compensation. The
appearance model can be expressed as

arg min{ > E, (X, X))+ E,(X,X))/T¢, 9)
A’t’oti XeAi,
where
E,(X.X)

[Bf(X)"Bf-;(X_X)]Z iff. Xe A andX-Xe A,

O- b
= . 2
B(X),B_(X-X
[max( /X0, B.( ))} otherwise
o

and
E,(X.X)=[BX)- B ,X-%)|

J{BB,(X) B aB”(X—X)Y J{E)B,(X) ) 8B,1(X—X)T'

ox ox dy dy

Therefore, the tracking problem can be formulated
as minimizing both background model (7) and object
model (9), we can model the tracking as equation (10).

Y EyX)+E,(X)/T
XeA
arg min{ | . . (10)
ol | FAY, D Ey XD+ E (X X)) /T,
i XeA,

A s a factor.

3.3 Adapting object model to an omnidirectional
camera

As we have mentioned in section II, the catadioptric
omnidirectional camera provides a deformative view.

Under the view of the omnidirectional camera, the shape
and size of the object will be changed with the view
angle’s changes. Figure 5 is such an example. The above
object model is based on perpendicular projection, and
this model can also be used for a perspective projection
when an object is far enough from the camera. In order
to use the object model for omnidirectional tracking,
view angle-based compensation must be done before
object match. Based on the characteristic of the camera
we used, we calculate the factor of compensation as
figure 6. Figure 6(a) is the factor in X and Y direction
and Figure 6(b) is the factor in Z direction which is the
optical axis direction. We assume that the object
movement is only in X and Y direction in figure 6. The
captured scene in the image is located within a circle,
whose radius is 2f, and f is the focus length of the
paraboloid. The object’s dimension in X and Y direction
will be maximum when the object is located on the
optical axis, and will disappear at the circle. The object’s
dimension in Z direction will be invisible at the center
and the circle, and will reach maximum at the radius
0.8629f. We can estimate the size changes for each
object using such a match factor map.
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(a) factor in X-Y direction (b) factor in Z direction

Figure 6. Horizontal and vertical match factor
map for the omnidirectional camera

4. Activity and scene modeling from
trajectories

When a person is monitoring a spot, he can easily
judge an object’s purpose even if he can’t see the object
in detail, which implies that we can monitor object’s
behavior from trajectory, therefore we define a
hierarchical behavior model. At the lowest level of the
model, it contains essential information such as moving
or stopping and sitting or standing, which can be



observed from the tracking sequence. At a higher level
we can distinguish some different activities, such as
working alone or having a meeting, etc., which can’t be
observed directly. These activities can be observed via
tracking moving trajectories of people in a scene. For
example, we can define a meeting as two or more
trajectories coming from same or different directions and
staying in the scene for a period of time.

We use a time-spatial window to analyze individual
trajectory. 5 seconds’ duration is used as the time
window. The trajectory within this time window forms
the spatial window. The time overlap window is used for
each clip, and the overlap time is 2.5s. If the object stays
at a spot for a period, we just accumulate the histogram.
From the histogram we can infer some human activities.
Figure 7 shows some typical patterns for different
activities. The top-left in each group is the spatial
histogram. The top-right and bottom-left are horizontal
and vertical view of the histogram, and the bottom-right
is the top view of the trajectory.
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Figure 7. Examples of activity patterns

5. Experiments and discussion

The sampling rate is 12 fps in our experiments. The
first experiment is to build up a background model in a
dynamic environment. Building up a background is the
most important in tracking using the background

subtraction method. The background’s evolution speed is
controlled by the temperature 7 in the MRF model. We
use a high temperature at the beginning, and then
gradually replace it with a lower temperature. The
algorithm of building up the background is adaptive to
various scene conditions including background only
sequence, lighting condition change sequence, and
objects on spot sequence. Figure 8 is an example of
background building with an object on the spot. The first
row of images is the two image correspondence to the
begin and the end of background setup. The other two
rows are the under building background. At the
beginning of the background setup, some black areas
within the circle are under construction, and we can
dynamically update the background while tracking the
object and obtain a complete background when the
object is out of the spot.

Figure 8. Background evolutions with time
changing

Another experiment is to test the ability of tracking
and monitoring an object with changes in size and
lighting, and the ability to monitor multiple objects.
Figure 9 is an example of multi-object tracking. Only the
top left one with the background, the others are only
moving objects. Although one of the objects passes
through the blind zone as the frame 155, it is
continuously tracked by the system. This shows the
beneficial properties of the Kalman filter. In this



example, we track the stable and moving object at the
same time. It can be seen that the size and lighting of the
moving object in the tracking sequence change.

Frame 151

®

O

Frame 155 Frame 159

Figure 9. An example of multi-object tracking

6. Conclusion

In this paper, we have proposed to employ MRF
models to represent the background and foreground in
monitoring human activities using an omnidirectional
camera. We use a MRF background model to effectively
update environmental changes. We combine the MRF
based object model with a motion model to robustly
track human motion in a view of an omnidirectional
camera. We have presented a method of monitoring
human activities by analyzing the trajectory of motion
using a time-spatial window. The further work includes:
developing more complex behavior models from moving
trajectories;  automatically  estimating  geometric
parameters of people and scene from an omnidirectional
camera; and combining tracking results of an
omnidirectional camera with ordinary cameras for robust
video surveillance.
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